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Abstract

The assessment of environmental risk and the
evaluation of environmental policies increasingly re-
quire accurate and relevant information about the
environment. For policy makers and stakeholders
to evaluate possible policy changes, an understand-
ing of the cause-and-effect relationship between the
alternative policies and their environmental and so-
cial outcomes is essential. Addressing these ques-
tions requires information from diverse sources to
be collected, organized, and combined. Evolution-
ary improvements in Geographic Information Sys-
tems (GIS) now routinely allow the management and
mapping of spatial-temporal information. However
there is a dearth of statistical methodology, not only
to represent the complexities of the information, but
also to allow the uncertainty of the resulting infer-
ence to be quantified. The development of statisti-
cal models to combine information of different types
and spatial support is of vital importance to envi-
ronmental social science.

The objective of the paper is to improve under-
standing of the biological integrity of stream and
river systems in the United States Mid-Atlantic Re-
gion by combining information from separate mon-
itoring surveys, available contextual information on
hydrologic units and remote sensing information.

An essential initial step in this process is the com-
pilation of a geographic information system combin-
ing standardized data sets available on the WWW
in a form that facilitates modeling. The research is
based in part on information underlying the Land-
scape Atlas of the mid-Atlantic region produced by
the US Environmental Monitoring and Assessment
Program (EMAP). The construction of the Atlas is
an extraordinary achievement. We also combine in-
formation from two overlapping separate monitoring
surveys, the EMAP Stream and River Survey and

the Maryland Biological Streams Survey.

The heart of the research program outlined in this
paper is to complement the mapping presented in
the Atlas with new hierarchical spatial statistical
models for environmental indicators on the streams
and rivers that capture the spatial variation in the
measures. These models are used to estimate the
indicators through the riverine system based on the
information from multiple sources and aggregate
scales. We also quantify the uncertainty in the esti-
mates and develop methods to visualize the resulting
estimates and uncertainties.

In environmental research, regional differences or
temporal changes are a common focus of study.
While means and variances are typically the basis
for statistical methods used in this research, the un-
derlying environmental questions involve properties
of spatial distributions that are not well captured by
these summary measures. Examples include the cur-
rent questions of environmental justice, risk assess-
ment, and the impact of environmental change on
survival and health. The distributional differences
that animate these debates are complex. They com-
prise the usual mean-shifts and changes in variance,
but also more detailed comparisons of changes in the
upper and lower tails of the distributions. Environ-
mental data contains a wealth of this distributional
information, but the traditional methods of analysis
leave most of it untapped.

The third objective of the paper is to present
a general framework for comparative distributional
analysis. The methods are based on the relative spa-
tial distribution. The spatial models developed are
used to predict spatial distributions and relative spa-
tial distributions. These methods are then used to
combine county-level social science data with the dif-
ferent sources of environmental data. This makes
it possible to investigate questions of environmental
justice in a systematic and rigorous way.
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1. Introduction

Policy decisions by governmental and industrial
organizations increasingly require accurate informa-
tion about the environment. Information is needed
on the status of, and trends in, basic environmental
conditions in order to develop environmentally ap-
propriate policies. In addition, proper planning re-
quires an understanding of the interactions between
social and physical environmental processes. For
policy makers and stakeholders to evaluate the range
of options, a framework for evaluating the potential
impact of alternative policies on environmental and
social outcomes is essential.

While much of the initial interest in the
population-environment interaction focused on the
impact of humans on their environment, over the
last decade there has been increasing interest in the
reverse question: the impact of environmental degra-
dation on the health and wellbeing of populations.
This interest has been motivated by the recogni-
tion that certain types of environmental degrada-
tion, such as incinerators or polluting industries,
tend to have a disproportionate impact on the local
population. The spatial distribution of such environ-
mentally undesirable activities has therefore become
an important public health issue. To the extent that
these activities are spatially concentrated in econom-
ically disadvantaged communities, this raises ques-
tions of environmental justice: “the fair treatment
for people of all races, cultures, and incomes, regard-
ing the development of environmental laws, regula-
tions, and policies” (EPA 1993).

Evaluating questions of environmental justice re-
quires information from diverse sources to be col-
lected, organized, and combined. For example, con-
sider investigating the relationship between the level
of pollution of streams and the economic status of
the surrounding residents. The pollution level can
be assessed based on an environmental monitoring
survey on selected stream sites. These will need to
be adjusted for biophysical cofactors, such as soils
and land cover, that effect pollution levels, but are
not necessarily evidence of environmental injustice.
Such information may be available in separate mon-
itoring surveys, contextual spatial databases and re-
mote sensing sources. The characteristics of the hu-
man population usually need to be determined by
additional sources of data, such as social surveys or
census information.

Combining all of these different sources of infor-
mation has been facilitated by dramatic improve-
ments in Geographic Information Systems (GISs).
These now routinely allow the management, dis-

play and mapping of spatial-temporal information.
More importantly they allow the “spatial indexing”
of multiple types of information over the study re-
gion. To a large extent, however, these new facilities
are descriptive, rather than analytical. The method-
ology for analyzing the interrelationships between
these multiple sources of information remains un-
derdeveloped.

To move beyond descriptive analysis, statistical
methods are necessary. Statistical models make
it possible to investigate hypotheses regarding the
complex relationships within and between the differ-
ent levels of analysis. They also provide the frame-
work for evaluating the findings. This enables re-
searchers to draw inferences about characteristics of
the phenomena most directly relevant to the envi-
ronmental social science questions, and to quantify
the uncertainty of the resulting inference. The devel-
opment of statistical models to combine information
from the different sources of spatial data is of vital
importance to environmental social science.

With respect to environmental data, the cur-
rent situation is ironically one of both wealth and
poverty. The wealth arises from the many forms
of remote sensing and spatial extant data that pro-
vide coverage of the regions of interest. The poverty
arises from the lack of longitudinal data with spa-
tial extent and representativeness. Most environ-
mental monitoring programs are subject to scientific,
political, ethical and cost considerations, and these
have resulted in an unwieldy patchwork of spatial-
temporal information.

A notable exception is provided by the US En-
vironmental Monitoring and Assessment Program
(EMAP). EMAP is designed to address questions
about the current status, changes, and trends in
indicators of ecological condition of the nation’s
ecosystems (Messer et al. 1991). The EMAP
Landscape Atlas of the mid-Atlantic region (Jones
et al. 1997) represents one of the first regional-
scale ecological assessments that incorporates multi-
ple sources of non-EMAP data. It is a extraordinary
achievement in combining multiple data sources, and
will clearly be the basis for the development of en-
vironmental statistics in the future.

The research plan here is one of the first to take
advantage of the opportunities that EMAP Land-
scape Atlas of the mid-Atlantic region provides. As
the first part of our research plan, we seek to comple-
ment the mapping presented in the Atlas with new
statistical models for combining information from
multiple sources to gain insight into the complex re-
lationship between environmental factors.

An excellent review on the state of statistical
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methods for combining environmental data is given
by Cox and Piegorsch (1996), Piegorsch and Cox
(1996), and Cox (1998). For a discussion of issues
for combining information from different agricultural
experiments, see Besag and Higdon (1999). Hand-
cock, Huovilainen and Rendall (2000) develop sta-
tistical models to combine social survey data with
population-level census information. They show how
likelihood-based inference for models based on sur-
vey data can be extended to include census and reg-
istry information. The paper also reviews methods
used by social scientists for combining data of this
type.

As the second part of our research plan, we
develop preliminary approaches for integrating so-
cial science data into these environmental models.
Here we draw on methods developed for measuring
the spatial distribution of environmental indicators
(Handcock 1999), relative distribution methods for
measuring economic inequality (Handcock and Mor-
ris, 1999), and spatial-temporal models for commu-
nity economic status (McLaughlin and Handcock,
1999).

This paper is an attempt to answer the call by
Cox (1998) for “... the development of a theoretical
framework for integrating spatial, and [probability]-
sample methods for environmental assessment, new
methods and extensions of existing methods for com-
bining spatial data collected at different aggregate
scales, ..., and hierarchical methods that enable com-
bination and intercomparison of different environ-
mental studies.”

2. Specific Evaluation of Ecological
Indicators of Streams

In this section we describe the region of study, and
the component sources of information that will be
combined. Streams form a continuous network em-
bedded in the watersheds they drain. The conditions
of the watersheds and ecoregion through which the
streams run is reflected in the quality of the ecolog-
ical indicators of the streams (Herlihy et al.). Any
modeling approach must respect this fundamental
tenet of limnology – that these conditions depend on
the network structure of the streams, and the fact
that water moves continuously downstream (Van-
note et al. 1980).

2.1. The Study Area: The United States
Mid-Atlantic Region

The study area is the mid-Atlantic region of the
eastern United States and its watersheds. This re-
gion is defined by the EPA to be the land and

near coastal area that includes all of EPA Region
III and parts of Regions II and IV. The region
extends from southern New York into northeast-
ern North Carolina. The region includes EPA Re-
gion III (i.e., Pennsylvania, West Virginia, Mary-
land, Delaware, and Virginia); the Susquehanna
and Allegheny River basins, which extend into New
York; the Delaware River basin, which extends into
New Jersey; and the Chowan-Roanoke and Neuse-
Pamlico basins, which extend into North Carolina.
The mid-Atlantic region encompasses the area from
the mid-Appalachian highlands to the estuaries.

This region was chosen for a number of scientific
and practical regions. The mid-Atlantic region has
been extensively studied by the EPA and other sci-
entific groups. The region is one of the most data-
rich areas in the country, in part because of its dense
population and proximity to Washington, D.C.

Most of the component surveys, especially those
addressing water-related concerns, further partition
the region into the USGA defined hydrologic ac-
counting units. Roughly speaking, these units follow
watershed boundaries - areas of land that is drained
by a single stream, river, lake or other body of wa-
ter. Hence watersheds are the natural units for the
environmental analysis based on riverine systems.
We note that the hydrologic units are not, strictly
speaking, watersheds in the sense of topographically-
defined catchment areas. Following the usage in the
component surveys, we shall use these as the ba-
sic unit of analysis and for simplicity refer to them
as watersheds. The methods developed here can
equally be applied to other partitions of the region
- indeed in Section 6 we consider counties.

One of the problems indicated by the hydrography
of the region is that of using naturally-defined units
such as watersheds to assess environmental condi-
tions over politically-defined units such as counties
or states. Individual watersheds can lie in two or
more states or counties. This issue of misalignment
is fundamental one in environmental statistics. Ex-
cellent progress has been made on these issues by
Mugglin, Carlin and Gelfand (2000), Mugglin and
Carlin (1998) and Mugglin et al. (1999). These pa-
pers are mainly concerned with variables that are ag-
gregated over differing sets of units. To the extent
that the models proposed here are used to change
units, they can be regarded as variants of the mod-
eling approach of the above papers. The models de-
scribed below focus on combining multiple sources
of information and are based on explicitly modeling
the underlying riverine systems.
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2.2. Sources of Information on the Mid-
Atlantic Region Combined

The paper is the first part of what is to be a case-
study for the combination of information from mul-
tiple sources. The accessibility of the case-study will
be improved by basing it on readily available, com-
patible and mature data sets. Most of the data are
available in formats readily adapted to standard GIS
and statistical analysis packages (e.g., ARC/INFO,
SAS and S-PLUS).

The project uses as its foundation the work of the
following two interrelated initiatives:

1. The EPA/ORD Mid-Atlantic Integrated As-
sessment (MAIA)
This multi-year project undertakes a ecosystem-
based evaluation of the mid-Atlantic region and
its watersheds. MAIA incorporates numer-
ous state, regional, and national environmental
monitoring programs into an assessment pro-
cess specifically targeted to the management
needs of EPA Region III. Examples of pro-
grams with which there are specific cooperative
efforts include the Environmental Monitoring
and Assessment Program (EMAP), the mid At-
lantic Highlands Assessment, the National Bi-
ological Service’s Gap Analysis Program, the
Chesapeake Bay Program, the Delaware Estu-
ary Program, the Virginia Coastal Bays Pro-
gram, the U.S. Geological Survey’s National
Water Quality Assessment Program, the For-
est Service’s Forest Inventory and Analysis Pro-
gram, and the National Oceanic and Atmo-
spheric Administration’s Coastal Change Anal-
ysis Program. For an description of MAIA see
http://www.epa.gov/emap/maia.

2. An Ecological Assessment of the United States
Mid-Atlantic Region: A Landscape Atlas
As described above the Atlas is an assessment
of relative ecological conditions across the mid-
Atlantic region, and was published in April
1998. The Atlas identifies, with never-before
achieved detail and comparability, patterns of
land cover and land use across the region.
The report is based on data from satellite im-
agery and spatial databases on biophysical fea-
tures such as soils, elevation, and human popu-
lation patterns. It compares nine landscape in-
dicators on a watershed-by-watershed basis for
the lower 48 states (at a relatively coarse-scale
resolution of 1 km), placing the mid-Atlantic
region in the context of the rest of the country.
Using finer-scale spatial resolution (e.g., 30-90

meters), the report then analyzes and interprets
environmental conditions of the 125 watersheds
in the mid-Atlantic region based on 33 land-
scape indicators. Results are presented relative
to four general themes identified by stakehold-
ers in the region: (1) people (potential human
impacts), (2) water resources, (3) forests (forest
habitat), and (4) landscape change.
The data underlying this Atlas is publicly avail-
able and initial analysis indicates that it proves
invaluable for the project. For an description of
the Atlas, see http://www.epa.gov/emap/
html/ma atlas.html.

The specific components surveys that we use are:

a EMAP Mid–Atlantic Integrated Assess-
ment (MAIA) Survey(Larsen and Christie
1993).

We use the Stream and River Survey that
has data on 100-200 sites from 1993-96.
Some of the sites are repeat visits. For
a description of the EMAP Surface Wa-
ters Mid-Atlantic Streams 1993-96 data set
see http://www.epa.gov/emap/html/dataI/
surfwatr/data/mastreams.

b Maryland Biological Streams Survey
(MBSS)
(Heimbuch, Seibel, Wilson and Kazyak 1998)

To provide much needed information about the
ecological consequences of acid deposition and
other human-related impacts, the Maryland De-
partment of Natural Resources designed the
MBSS. The MBSS is a long-term monitoring
program designed to describe the current sta-
tus of aquatic biota, physical habitat and wa-
ter quality in first, second and third order non-
tidal streams within the state of Maryland. The
MBSS was implemented as a three-year study in
1995. Sampling is probability-based, and strat-
ification is based on stream order and drainage
basin. Approximately 1000 sites were sampled
during 1995-1997. A “State of the Streams” re-
port which summarizes the initial round of the
MBSS has recently be completed.
For a description of the MBSS see
http://www.dnr.state.md.us/streams.

c EMAP Mid–Atlantic Landscape Indica-
tors(Kepner, Jones, Chaloud and Wickham
1995).

This project supplies landscape classification
data with a resolution of 30 meters based on
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satellite imagery. For a description of the mid–
Atlantic Landscape Indicators, see
http://www.epa.gov/emfjulte/html/
ma atlas.html.

These surveys are supplemented by:

d EMAP Streams network database (RF3)
(Dewald and Olsen 1994).

This is the primary database for the locations
of the rivers and streams in the mid–Atlantic
region. We use the River Reach File Ver-
sion 3, derived from the U.S. Geologic Survey
Digital Line Graph - streams, 1:100,000-scale.
The study use all first- through third-order (i.e.
wadeable) streams. There are 230,400 kms of
wadeable streams in the study region.

e USDA Natural Resources Conservation
Service soils database(USDA 1994).

This data set is a digital general soil associa-
tion map developed by the National Coopera-
tive Soil Survey and distributed by the Natural
Resources Conservation Service (formerly Soil
Conservation Service) of the U.S. Department
of Agriculture. It consists of a broad based in-
ventory of soils and nonsoil areas that occur
in a repeatable pattern on the landscape and
that can be cartographically shown at the scale
mapped.
For a description of the soils database, see
http://www.epa.gov/emfjulte/html/
ma atlas.html.

Note that there is an overlap between the Mary-
land monitoring survey and the EMAP monitoring
survey, as Maryland is a subset of the mid-Atlantic
region. The density of monitoring sites from the
Maryland survey is much greater than the EMAP
survey in Maryland. This offers an opportunity to
calibrate the EMAP information and use the Mary-
land information to build a better model of the local-
scale structure of environmental indicators that can
be leveraged over the mid-Atlantic region by com-
bination with the EMAP monitoring survey. In
addition the Landscape Atlas provides data on de-
mographic characteristics, potential human impacts
and use, water resources, forest habitat, and land-
scape change at the watershed level. These are also
used.

2.3. Indicators of Environmental Condition

As detailed in above references, the two moni-
toring surveys used (EMAP and MBSS), collect an
array of ecological indicators at each site. These

include various biotic, chemical, physical, ripar-
ian and watershed characteristics (Lazorahak et al.
1998). Fish species are particularly effective indica-
tors of the condition of aquatic systems (Fausch et al.
1990). Human impact of streams and the environ-
ment effect key characteristics of aquatic ecosystems:
water quality, habitat structure, hydrologic regime,
and biologic interactions (Karr and Dudley 1981).
Although the models can be adapted for alternative
indicators, we describe models for fish assemblage
metrics. Models for water chemistry indicators will
also be considered in later work.

3. Methods for Combining Informa-
tion from Multiple Surveys

In this section we propose statistical modeling
methods for combining information from the surveys
identified in the previous section. The purpose of
these models is to create a stochastic representation
for the measurement at each location on the riverine
system. This representation forms the basis for the
further modeling developments proposed in Sections
4, 5 and 6. The underlying modeling approach is
hierarchical to allow complex structure to be rep-
resented by a hierarchy of relatively simple model
specifications. The idea is to model the spatial de-
pendence indirectly through latent stochastic pro-
cesses. Related work is Besag (1974, 1975), Cressie
(1995), Molliè and Richardson (1991), and Bernar-
dinelli and Monotomoli (1992). Further references
are given below.

Let R ⊂ IR2 be the set of locations on rivers and
streams in the mid–Atlantic region. We define R
operationally by those in the River Reach File Ver-
sion 3 (RF3). Let W (x) represent the hydrologic
unit (watershed) that the location x belongs, and
{Wi : i = 1, . . . ,H} represent the set of all hydro-
logic units. The units form a partition of R. Let
Z(x) be a measure at each location in R. We con-
sider a number of indicators of condition and stress
related to fish or water chemistry. For simplicity of
exposition, we shall consider linear formulation for
Z(x) here. However the approach can be extended
to cover much more general forms – we postpone this
to Section 7. Throughout we will use as an example
the fish index of biotic integrity (IBI) (Karr 1986),
although difficulties with the representativeness of
this measure may lead us to focus on the component
fish assemblage metrics.

First we describe a model for the measure at each
location. We write:

Z(x) = L(x)β1 + C(x)β2 + S(x)β3 + η(W (x); γ)
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+φ(x; ν) + ε(x;σ)

(3.1)

where the first three terms capture variation due to
differences in covariates, the φ and η terms capture
residual spatial variation and the last term the un-
explained variation. The terms are:

• L(x) row vector of location-specific covariates
at location x and are potentially spatially vary-
ing in a neighborhood of x.
These measures are required to be known at
each location in R. Examples, of covariates are
latitude, longitude, and elevation. We will also
include here indicators for the monitoring sur-
vey that provide the measurement. Hence sys-
tematic differences between the measurements
of the surveys, here EMAP and MBSS, can be
identified. These difference could be due to dif-
ference in the collection protocol or calibration
differences. Clearly if more complicated calibra-
tion issues are envisaged they can also be added
here or in the stochastic components. This set
of covariates is restricted because we also need
to know them at each value in R.

• C(x) row vector of contextual covariates related
to location x.
These measures are required to be known at
each location in R, but can be areal. Examples,
of covariates are characteristics of the reaches
from RF3 such as stream order and stream level.
Variables on demographic characteristics, air
pollution, agricultural usage, human use index
from the Landscape Atlas database are include
here. This set is also restricted because we need
to know them at each value in R.

The effects of political divisions can be inves-
tigated using contextual variables to indicate
the location is within a given political division.
The most direct example is the state (or states)
that the watershed resides in. While the water-
shed does not necessarily respect state bound-
aries, state and local government regulations
may directly influence the environmental con-
dition and human activities. Hence the relative
comparison of state-level effects if a very impor-
tant way of assessing the role of institutions at
the state level. This approach can be applied
to other political division such as labor-market
regions and counties (See Section 6).

• S(x) row vector of complete coverage covariates
related to location x.
These measures are assumed to be known at

each location in the region, including those
at each location in R. Examples of covari-
ates are biophysical features such as soil types
from the USDA Natural Resources Conserva-
tion Service soils database, forest habitat, ri-
parian cover, and human population patterns
available from the Landscape Atlas database
and other satellite-based landscape indicators.

Note that this division between location-
specific, contextual, and complete coverage co-
variates is not absolute. Indeed similar model-
ing approaches can be applied to each of these
components. The taxonomy is mainly to aid
the identification of factors from the component
surveys and to group the factors for interpreta-
tion. Each of these terms appears in a linear
functional form with regression coefficient vec-
tors (β1,β2,β3). The functional form of the co-
variate vectors themselves can be adapted so
that this functional form is appropriate. Note
the spatial variation terms represent the effects
of unadjusted for, or unobserved, covariates as
well as the effects of spatial proximity.

In addition to these effects we explicitly model
the spatial variation between and within water-
sheds.

• η(W (x); γ) latent between watershed effects.
Each location within the same watershed re-
ceives the same effect. It represents the over-
all level differences between the units. We will
consider two models for {η(i; γ) : i = 1, . . . ,H}.
The first represents them as fixed but unknown
environmental characteristics (i.e., a classical
“fixed effects” specification). This representa-
tion is of interest as the watershed are unchang-
ing over the time scale of the study, and the
watershed effects are themselves of direct sci-
entific interest. Under the second specification
the {η(i; γ) : i = 1, . . . ,H} form a spatial lat-
tice random field. The simplest model has the
values independent of each other. We use a
neighborhood-based lattice pairwise-difference
model (Cressie 1993, Anselin and Florax 1995).
Consider a neighborhood system for the wa-
tershed based on spatial contiguity, that is,
units that share a common boundary are neigh-
bors. We capture this effect with a class of
non-stationary Gaussian intrinsic autoregres-
sions (Besag et al. 1991, Bernardinelli and
Monotomoli 1992). Let vij be prescribed non-
negative weights, with vij = 0 unless water-
sheds i and j are neighbors. Let λγ be a scale
parameter to which we give a Gamma distri-
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bution. The conditional distribution of η(i; γ)
given the other effects in the watershed is spec-
ified to be Gaussian:

η(i; γ) | η(j; γ), i "= j; γ

∼ N




∑

j∈WNi

vij

vi+
η(j; γ),

1

λγvi+





where WNi represents the watersheds j that are
neighbors of i and vi+ is the sum over j ∈ WNi

of vij . The joint distribution of the between wa-
tershed effects is then an intrinsic Gaussian ran-
dom field. The basic continuity scheme is conti-
guity, although alternative length schemes can
clearly and fruitfully be considered, for exam-
ple, length of common boundary, percentage of
common boundary. The parameter γ includes
λγ and others necessary to further specify the
weights.

• φ(x; ν) latent within watershed effects within
the watershed of location x.
We model each {φ(x; ν) : x ∈ Wi}, i = 1, . . . ,H
as a spatial random field on the riverine sys-
tem within each watershed. For simplicity, we
shall initially specify that the inter-watershed
dependence is captured by η(W (x); γ) and the
within watershed spatial fields are independent
between watersheds. This assumption can be
relaxed if significant variability can be explained
by doing so. The model within each watershed
is a pairwise-difference model (Besag 1989). For
example, consider a neighborhood system for
x based on being on the same stream segment
(according to RF3). That is, two location are
neighbors if, and only if, they belong to the
same stream segment. One would expect that,
all else being equal, two location on the same
stream would more likely have closer values
on the measure than two locations on separate
streams. We capture this effect with a modified
class of non-stationary Gaussian intrinsic au-
toregressions. The riverine system represented
by the RF3 is composed on a finite, albeit large,
number of elements. Let s(x) be the stream
element that x ∈ R is on, and there are a fi-
nite number M, say of such elements. We spec-
ify that φ(x; ν) is constant over the stream el-
ement s(x). While a continuum random field
on the riverine system is more appealing in
principle, the hybrid irregular lattice version
proposed below is designed to parsimoniously
capture the stream-to-stream spatial variation.
The main disadvantage of the continuum ap-

proach based on geostatistical models is the dif-
ficulty of specifying the variogram due to a lack
of information at local scales. However for gen-
eral processes the geostatistical approach has
many advantages, as Zimmerman and Harville
(1991) show with application to agricultural ex-
periments. Progress on continuum models has
been made (Kelsall and Wakefield 1997, Moller
1998, Ecker and Gelfand 1997, and Best, Ick-
stadt and Wolpert 1998). See Besag and Higdon
(1999) for additional references and a discussion
of these issues.

Returning to our model, prescribed non-
negative weights, w(x, y) = W (s(x), s(y)), with
w(x, y) = 0 unless x and y are neighbors.
As there are M stream elements the values of
w(x, y) form a M × M symmetric matrix W.
Let λν be a scale parameter to which we give
a Gamma distribution. The conditional distri-
bution of φ(x; ν) given the other effects in the
watershed is specified to be Gaussian:

φ(x; ν) | φ(y; ν),W (y) = W (x), y "= x; ν

∼ N




∑

s(y)∈N1(x)

w(x, y)

w(x,+)
φ(y; ν),

1

λνw(x,+)





where N1(x) represents the stream elements
that are neighbors of x, and w(x,+) is the
sum over s ∈ N1(x) of W (s(x), s). The joint
distribution of the within watershed effects for
each stream element is then an intrinsic Gaus-
sian random field. The simplest choice of the
weights is w(x, y) = 1 if x and y are on the
same stream segment. However we can explore
choosing weights proportional to those from a
continuous geostatistically motivated semivari-
ogram model to additionally capture the decay
with distance between the locations (Raftery
and Banfield 1991, and the discussion of Besag
and Higdon 1999).

A number of neighborhood schemes could drive
the spatial variation. For example:

1. N1 segment: locations belong to the same
stream segment

2. N2 stream: locations belong to the same
stream, at the same order

3. N3 siblings: locations belong to the same
stream, but at different orders of the
stream

4. N4 cousins: locations belong to different
streams, but have the same order and
source.
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The above model can be generalized to this
case where the weights are adjusted accordingly.
The parameter ν defines the structure of the
within watershed spatial variation and includes
λν and others necessary to further specify the
weights. We expect that the precise form of
these neighborhood schemes, and weights de-
pends on the nature of the spatial variation
identified during the data analysis process – this
will be explored further in future work.

• ε(x;σ) residual spatial variation.
The residual spatial variation is assumed to be
independent of the other factors in the model.
The form of the variation depends on the mod-
els specified for the spatial dependence. If an
auto-normal is used for the other terms then
ε(x;σ) will be assumed to be mean zero Gaus-
sian with standard deviation σ.

3.1. Inferential Procedures

Based on this model, we use likelihood–based in-
ference for Z(x) to infer the parameters β1,β2,β3,
γ, ν and σ. Most of our likelihood-based inference
is within the Bayesian paradigm, mainly as it pro-
vides an elegant way of incorporating parameter un-
certainty into the final inference and the incorpo-
ration of expert knowledge when it exists (Gelman,
Carlin, Stern and Rubin 1995). Inference with the
Bayesian paradigm, implemented via the now stan-
dard Markov Chain Monte Carlo (MCMC) methods
can address, and even solve, many very difficult in-
ferential problems, often making it the only realistic
option. However, this approach is not always neces-
sary as Zimmerman and Cressie (1992) show.

The likelihood framework makes available ex-
ploratory graphical tools useful for inference about
the underlying random field (Handcock, Meier and
Nychka 1994). These tools can identify when an ap-
proach is lacking.

4. Models for Spatial Cumulative
Distributions

In an increasing number of environmental appli-
cations, the comparison of an environmental indi-
cator across regions requires consideration of more
than the usual summary measures of level and vari-
ation. Environmental scientists are increasingly in-
terested in techniques for comparing changes in dis-
tributional shape as well as changes in mean-levels.
Traditionally, comparative research has relied heav-
ily on measures that capture differences in average
indices between regions or rough measures of dis-
persion over time. These summary measures leave

untapped much of the information inherent in a dis-
tribution.

A common distributional tool is the spatial cu-
mulative distribution function (SCDF) defined over
each watershed:

Fi(r) =

∫

x∈Wi

I(Z(x) ≤ r)dx (4.1)

The SCDF is a largely under appreciated character-
istic of spatial random fields. The motivation and
use of SCDFs is reviewed in Lahiri, Kaiser, Cressie
and Hsu (1999). By focusing as they do on the
SCDF, scientific attention is moved from idealized
point spatial units to larger, often more relevant, re-
gional units. These distribution functions, and nu-
merical summary measures derived from them are
the basis of output from the model.

We now propose a model-based approach for the
prediction of Fi(r). The model (3.1) satisfies:

E{Z(x)} = f (x)′β for x ∈ R,

where f (x) =
{
L(x),C(x),S(x)

}′
is a known vector

function and β = (β1,β2,β3) is a vector of unknown
regression coefficients. Furthermore, we represent
the covariance function by

cov
{
Z(x), Z(y)

}
= αKθ(x, y) for x, y ∈ R

where α > 0 is a scale parameter, θ = (ν, γ,σ) ∈ Θ
is a q × 1 vector of structural parameters, and Θ
is an open set in IRp. For the models illustrated
here, the exact form of Kθ(x, y) can be derived di-
rectly from the neighborhood dependence structure
given for the model (3.1). Under that structure,
{Z(x) : x ∈ R} is Gaussian, although the covari-
ance structure is not stationary. The development
for alternative and more general models follows the
same principles.

If we wish to predict characteristics of {Z(x) :
x ∈ R}, then we need to express our uncertainty
about the unknown dependence structure through θ
and the mean through β. Under a simple Bayesian
formulation (see Handcock and Stein 1993), we can
specify the prior as

pr(α, β, θ) ∝ pr(θ)/α

so that the marginal posterior distribution:

pr(θ | Z) ∝ pr(θ)·|Kθ|
−1/2|F ′K−1

θ F |−1/2α̂(θ)−(N−q)/2

captures our knowledge about θ. Here

α̂(θ) = (1/N)(Z − F β̂(θ))′K−1
θ (Z − F β̂(θ))

and
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β̂(θ) = (F ′K−1
θ F )−1F ′K−1

θ Z

are the maximum likelihood estimators (MLEs) of
α and β conditional on θ, F = {fj(xi)}N×q, and
Kθ = {Kθ(xi, xj)}N×N . To predict the SCDF for a
given watershed, F (z), say, we need to express our
understanding of Z(x) at each point x ∈ R. Op-
erationally choose a large finite subset of locations
v1, . . . , vm, from the watershed as a surrogate for
the continuum. For example, we could choose a re-
alization from a high-intensity spatial Poisson point
process restricted to the riverine system in the water-
shed. or a design adapted for numerical integration
(Owen 1994).

Let Z = {Z(x1), . . . , Z(xN )}′ be the sample, and
let Z0 = {Z(v1), . . . , Z(vm)}′ then




Z
−
Z0



 ∼ NN+m

[


Fβ
−
F̃β



 ,α




Kθ | Hθ

− · −
H ′

θ | Jθ




]

It is well known that:

Z0 | θ, Z ∼ tm

(
Ẑ0(θ),

κα̂(θ){Jθ − H ′

θKθ
−1Hθ + B′

θ(F
′K−1

θ F )−1Bθ}

)

pr(Z0 | Z) =

∫

Θ
pr(Z0 | θ, Z)pr(θ | Z)dθ (4.2)

where

Bθ = F̃ ′ − F ′Kθ
−1Hθ

Ẑ0(θ) = H ′

θKθ
−1Z + B′

θβ̂(θ)
κ = N/(N − q)

These calculations are straightforward even for large
m as the conditional predictive distribution is mul-
tivariate t with the appropriate covariance matrix
and inversion of the covariance matrix of Z0 is not
necessary. In some circumstances, it will be easier
to use the formula

pr(Z0 | Z) =
pr(Z0 | θ, Z)pr(θ | Z)

pr(θ | Z,Z0)

(Besag 1989), rather than do the p-dimensional inte-
gral directly. The posterior distribution of F (z) can
then be approximated by that of

F m(z) =
1

m

m∑

i=1

I(Z̃(vi) ≤ z) (4.3)

where {Z̃(v1), . . . , Z̃(vN )} is a random draw from
(4.2). The approximation can be made arbitrarily
accurate by choosing m large, and more importantly

the accuracy of the approximation can be easily as-
sessed for any m. One simple approach is to draw
samples directly from pr(Z0 | Z) and use (4.3) for a
range of z values to obtain draws from posterior of
F (z). The analysis of these draws would be very use-
ful in understanding the behavior of F (z). In partic-
ular they can be used to define pointwise probability
limits and prediction bounds for F (z).

Example: Spatial Distribution of Fish IBI in
in the Gunpowder-Patapsco watershed

As an illustration, the model described in Section
3 has been applied to a single watershed in Maryland
on the shores of Chesapeake Bay. The location and
hydrology of the watershed are given in the Figure
1. For simplicity, a simple contiguity neighborhood
for the streams with distance decay specified by the
Matérn class of covariances and prior distributions
described by Handcock and Wallis (1994) is used.
The resulting mean posterior SCDF for the fish IBI
metric is given in Figure 2. The point prediction is
smooth as the model averages over many possible
spatial dependence structures.

Figure 1: Hydrologic detail of the Gunpowder-
Patapsco watershed on the Chesapeake Bay in Mary-
land. The figure provides the detail of the wadeable
streams in the watershed and outlines of the surround-
ing watersheds. The monitoring sites from the Mary-
land Biological Streams Survey are marked.
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Figure 2: The mean posterior spatial cumulative
distribution function for the fish IBI within the
Gunpowder-Patapsco watershed.

5. Models for Relative Spatial distri-
butions

Many questions of environmental justice take
the form, usually implicitly, of the comparison
of distributions across different groups. For ex-
ample, consider comparing the pollution levels
of an area with predominantly lower socioeco-
nomic status to one with predominately higher
status. This is fundamentally a distributional
question - how does the SCDF of the pollution
level of the lower socioeconomic area compare to
that of the higher. Relative distribution methods
are designed to address these questions. We re-
view the concepts below. A book length treat-
ment is given in Handcock and Morris (1999).
See also the website (http://www.stat.psu.edu/∼
handcock/RelDist) This site contains software, ex-
ample data-sets, manuals, and example code for
published analyses to guide the practitioner.

The relative distribution is summarizes the in-
formation required for scale–invariant comparisons
between two distributions. It appears, explicitly
and implicitly, in many independent research ar-
eas (Parzen 1977, 1992, Cwik and Mielniczuk 1993,
Holmgren 1995, Li, Tiwari and Wells 1996). Re-

cently it has been used to study changes in envi-
ronmental characteristics over time and between de-
mographic groups. For example, Morris, Bernhardt
and Handcock (1994) study changes in yearly earn-
ings by race and gender from 1967 to 1987. Bern-
hardt, Morris and Handcock (1995) used it, and its
extensions, to take a closer look at the shrinking gen-
der gap in earnings. Handcock and Morris (1998)
use the relative distribution to study the changes in
the distribution of yearly hours worked between 1975
and 1993. In each of these areas of study the pat-
tern of the changes has made it necessary to study
differences beyond the usual differences in the sum-
mary measures of location and variation (Butler and
McDonald, 1987; Karoly, 1993). Additional applica-
tions are given in Handcock and Morris (1999).

5.1. The Relative SCDF and the Relative
Spatial Density

Let F0 be the SCDF of an environmental indica-
tor on a reference area and F be the corresponding
SCDF for a comparison area. Typically the reference
area is the measurement for a separate area or the
same area during an earlier time period. However
the reference distribution can be from a minimally
disturbed area where it represents a nominally “pris-
tine” state. Indeed, it may even be a hypothetical
distribution based on an environmental standard or
regulation. The objective is to study the differences
between the distributions of the environmental in-
dicator in the reference and comparison areas. Let
Y0 ∼ F0 and Y ∼ F. We suppose that F0 and F are
absolutely continuous with common support. The
grade transformation of Y to Y0 is defined as the
random variable (Cwik and Mielniczuk 1989):

R = F0(Y ) (5.1)

R is obtained from Y by transforming it by the func-
tion F0 and so it is continuous with outcome space
[0, 1]. As R measures the relative rank of Y com-
pared to Y0, we refer to the distribution of R as
the relative spatial distribution. We can express the
CDF of R as

G(r) = F (F−1
0 (r)) 0 ≤ r ≤ 1

(5.2)
where r represents the proportion of values, and
F−1

0 (r) = infy{y | Fo(y) ≥ r } is the quantile func-
tion of F0. The probability density function (PDF)
of R is

g(r) =
f
(
F−1

0 (r)
)

f0

(
F−1

0 (r)
) 0 ≤ r ≤ 1

(5.3)
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If the two distributions are identical then the CDF
of the relative distribution is a 45o line and the PDF
of the relative distribution is the uniform PDF.

The relative distribution is an intuitively appeal-
ing approach to the comparison problem because
both the density and the CDF have clear, simple in-
terpretations. The relative spatial density g(r) can
be interpreted as the ratio of the comparison pop-
ulation to the reference population at a given level
(F−1

0 (r)). The relative spatial CDF G(r) can be in-
terpreted as the proportion of the comparison area
whose attribute lies below the pth quantile of the
reference area. More technically: a proportion G(r)
of the Y are below the values of a proportion p of
Y0.
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Figure 3: The relative spatial CDF of fish IBI. in the
Gunpowder-Patapsco watershed to the Severn water-
shed. The upper and right axes is labeled in the fish
IBI units.

Inference for the relative distribution when the
available information takes the form of independent
sample from both reference and comparison distri-
butions is reviewed in Handcock and Morris (1999).
We are developing Bayesian inference for both the
relative SCDF and the relative spatial density. As
we have, in principle, the joint posterior for F0 and
F , we can use (5.2) and (5.3) to produce the pos-
teriors for both quantities. However a number of
implementation issues remain to be addressed.

Example: Comparing the Gunpowder-
Patapsco and Severn watersheds

Adjacent, and upstream, from the Gunpowder-
Patapsco watershed is the Severn watershed. We
have repeated the modeling process for Severn and
compared the two watersheds in Figures 3 and 4.

Figures 4. is the relative spatial density of the
Gunpowder-Patapsco watershed to the Severn wa-
tershed. The value of one represents the relative den-
sity if the two distributions were identical. We can
see, however, that there is a substantial difference
between the shapes of the two distributions. The fish
IBIs for Gunpowder-Patapsco over–represented in
the lower and upper quantiles of the Severn distribu-
tion. They are correspondingly under–represented
in the middle 60% of the distribution. The fre-
quency of Gunpowder-Patapsco streams does not
match that of Severn streams until about the 25%
quantile and again at the 85% quantile of the Severn
distribution. These observations are not readily ap-
parent from the direct comparison of the SCDF for
Severn with that for Gunpowder-Patapsco in Figure
2 .
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Figure 4: The relative spatial density of fish IBI in the
Gunpowder-Patapsco watershed to the Severn water-
shed. The upper axis is labeled in the fish IBI units.

The relative density enhances comparison of the
distributions in two ways. Firstly, it expresses the
relative frequency in terms of a ratio, which is easier
to understand both visually and numerically. Sec-
ondly, it rescales the horizontal axis so that length
is equivalent to the proportion of streams in Severn
with that level of fish IBI. This facilitates direct com-
parisons between the SCDFs because the two axes
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are now in comparable units. For example, there are
over 1.5 times as many Gunpowder-Patapsco than
Severn stream-miles in the lower decile of the Sev-
ern fish IBI distribution.

These figures demonstrate how the relative spa-
tial distribution can aid the comparison of distribu-
tions. This is not to suggest that they can replace
the SCDF (as in Figure 2); rather it complements it
by focusing on those characteristics of the individ-
ual distributions essential for scale-free comparison.
Figures 2 3 provide absolute and relative descrip-
tion of environmental condition respectively. Figure
4 provides a relative description on a scale that may
be more interpretable for most statisticians.

6. Application to Environmental So-
cial Science: Modeling the Re-
lationship Between Demographic
Characteristics and Environmen-
tal Health

Our model for the environmental indicators, and
the application of this model to relative spatial dis-
tributions, can also be used to address questions in
the area of environmental social science. The ap-
plications described in this proposal predict spatial
distributions (SCDFs) for geographical units defined
by watersheds. However the same procedure can be
used with appropriate modifications to predict the
SCDFs for politically defined units such as counties.
There is a wealth of information on human popu-
lation characteristics readily available at the county
level. The modeling framework proposed here will
make it possible to investigate the relationship be-
tween these sociodemographic factors and environ-
mental health in direct and innovative ways.

As a simple but practical example of this, we can
relate the population density of a county to charac-
teristics of the SCDF for indicators of environmen-
tal health. For example, this allows us to assess
the impact of density on such things as the mean
or ninetieth percentile of a fish biodiversity index.
Any population characteristic for which data are col-
lected at the county level – from racial composition
to business indicators – can be integrated into this
framework.

In future work we propose specifically to address
questions of environmental justice using this ap-
proach. One of the most basic issues of environ-
mental justice concerns the link between community
economic status and environmental degradation. It
is often argued that poorer communities are less ef-
fective in preventing the siting of environmentally
undesirable activities in their areas. While this ar-

gument has fairly strong face validity, the empiri-
cal evidence is typically based on case studies. To
systematically evaluate this claim, it is necessary to
take a different approach, and the modeling frame-
work proposed here makes that possible.

At the county level, a natural index of commu-
nity economic status is the level of household in-
come. Mean income is the obvious candidate, but
the mean can mask large disparities in community
status within counties. To the extent that the bot-
tom tail of the distribution drives the vulnerabil-
ity of the community, some measure of the inequal-
ity in household income would be a better index.
We know that household income inequality in the
United States has increased dramatically during the
past three decades (Karoly, 1993), and a county-
level study of the spatial and temporal patterns in
inequality is now underway (McLaughlin and Hand-
cock, 1999). The approach taken in this county-
level study is perfectly suited to the task here. It
is based on census data and produces indicators of
the level of economic inequality for each county that
are easily integrated into spatial-temporal models.
We propose to use the modeling approach described
above to examine the relationship between summary
measures of environmental indicators based on the
SCDF for each county, and summary measures of
county economic status. The association between
economic inequality and environmental health can
thus be systematically and directly assessed. For
example, we may find that the mean county income
has little impact on environmental health, while in-
equality, or the level of the lowest income decile, has
a large impact. For smaller areas, where a more de-
tailed analysis is possible, an alternative approach
can be taken that uses all of the available distribu-
tional information, rather than the summary mea-
sures. This would allow us to compare the relative
distribution of income between counties to the rel-
ative spatial distribution of environmental health,
using the methods in Handcock and Morris (1999).

7. Further Issues and Extensions

It is tempting to develop a spatial-temporal model
for indicators in the region. However the number of
monitoring site revisits is small so that the amount
of information on the temporal patterns is small. We
note that the modeling framework can be extended
in a straightforward fashion to include simple tem-
poral effects.

A model-based approach such as the one described
here coupled with a broad range of dependence
structures can capture a wide range of spatial varia-
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tion. However, in most cases the underlying random
field can not be assumed to be Gaussian. The con-
ditional distribution of Z(x) may be Gamma (Best,
Ickstadt and Wolpert 1998) or even discrete. We
may also wish to consider derived measures of ex-
ceedences useful for risk assessment e.g.,

E(x) = I (Z(x) ≤ L) for given L (7.1)

where L is a pre-specified limit on the measure. The
generalized linear spatial models approach of Diggle,
Tawn, and Moyeed (1998) greatly broaden the form
of spatial variation that can be represented by the
framework described here. Theirs is a fully Bayesian
approach that can also be implemented via MCMC
methods. The central idea is that the observed indi-
cator E(x), say, satisfies a generalized linear model
conditional on Z(x). In essence we are adding an-
other layer to the top of the hierarchal model. Ex-
tensions such as these improve on the simple model
described here at the expense of some computational
complexity.

The watershed effects can also be modeled hier-
archically to investigate the effects of political di-
visions. The most direct example is the state (or
states) that the watershed resides in. While the
watershed does not necessarily respect state bound-
aries, state and local government regulations may
directly influence the environmental condition and
human activities. Hence the relative comparison of
state-level effects if a very important way of assess-
ing the role of institutions at the state level. This
approach can be applied to other political division
such as labor-market regions and counties. It is also
natural to consider extensions to more sophisticated
models for misaligned data, such as those of Muggins
and Carlin (1998).
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