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Abstract. We present a stochastic model for networks with arbitrary
degree distributions and average clustering coefficient. Many descriptions
of networks are based solely on their computed degree distribution and
clustering coefficient. We propose a statistical model based on these char-
acterizations. This model generalizes models based solely on the degree
distribution and is within the curved exponential family class. We present
alternative parameterizations of the model. Each parameterization of the
model is interpretable and tunable. We present a simple Markov Chain
Monte Carlo (MCMC) algorithm to generate networks with the specified
characteristics. We provide an algorithm based on MCMC to infer the
network properties from network data and develop statistical inference
for the model. The model is generalizable to include mixing based on
attributes and other complex social structure. An application is made to
modeling a protein to protein interaction network.

1 Introduction

In this paper we consider models for relational data, and specifically networks.
We have in mind social networks where the nodes represent individuals and the
edges represent some form of social contact or partnership. However, the for-
mulation is general and can be used to represent other forms of networks. We
assume that the network is a realization of a stochastic process characterized
by random mixing between individuals conditional on the individual activity
levels (i.e., the nodal degrees) and clustering [1, 2]. One popular class are those
that exhibit power-law behavior, often loosely referred to as “scale-free” distri-
butions. We also consider models for the network degree distributions in which
the variance can greatly exceed the mean.

In Section 2 we develop the general form of the model and models for the
degree distribution. In Section 3 we give an simple algorithm for the generation
of random networks from the model. In Section 4 we provide an algorithm for
approximating the likelihood function for the model as a basis for inference. In
Section 5 we apply the model to a protein-protein interaction network. Finally, in
Section 6, we discuss generalizations of the model for more complex structures.
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2 Models for Social Networks

2.1 Exponential Family Models

Let the random matrix X represent the adjacency matrix of an unvalued net-
work on n individuals. We assume that the diagonal elements of X are 0 – that
self-partnerships are disallowed. Suppose that X denotes the set of all possible
networks on the given n individuals. The multivariate distribution of X can be
parameterized in the form:

Pη,X (X = x) =
exp [η · Z(x)]

c(η,X )
x ∈ X (1)

where η ∈ Υ ⊆ IRq is the model parameter and Z:X → IRq are statistics based
on the adjacency matrix [3, 4]. There is an extensive literature on descriptive
statistics for networks [5, 6]. These statistics are often crafted to capture features
of the network (e.g., centrality, mutuality and betweenness) of primary substan-
tive interest to the researcher. In many situations the researcher has specified
a set of statistics based on substantive theoretical considerations. The above
model then has the property of maximizing the entropy within the family of all
distributions with given expectation of Z(X) [7]. Paired with the flexibility of
the choice of Z this property does provide some justification for the model (1)
that will vary from application to application.

The denominator c(η,X ) is the normalizing function that ensures the distri-
bution sums to one: c(η,X ) =

∑

y∈X
exp [η · Z(y)]. This factor varies with both η

and the support X and is the primary barrier to simulation and inference under
this modeling scheme.

The most commonly used class of random network models exhibit Markov
dependence in the sense of [3]. For these models, dyads that do not share an
individual are conditionally independent; this is an idea analogous to the nearest
neighbor concept in spatial statistics. Typically a homogeneity condition is also
added: all isomorphic networks have the same probability under the model. It
is shown in [3] that the class of homogeneous Markov undirected networks is
exactly those having the degree parameterization:

dk(x) =
the proportion of nodes with

degree exactly k
k = 0, . . . , n − 1

NΔ(x) =
1
6

∑

i,j,k

xijxjkxkl,

where dk(x) counts the proportion of individuals with degree k and NΔ(x) is
a count of the complete triads. Throughout we consider undirected networks,
although the situation for directed networks is very similar. This model can
be reexpressed in the notation of model (1) by setting Zk(x) = dk(x), k =
1, . . . , n − 1, Zn = NΔ(x), q = n, η ∈ Υ = IRn. This parameterization has the
advantage that it is directly interpretable in terms of concurrency of partnerships
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(i.e. dm(x) for m > 0 is the proportion of individuals with exactly m concurrent
partners).

A popular variant of the statistic NΔ(x) is the clustering coefficient
defined as

C(x) =
3NΔ(x)
N3(x)

where N3(x) is the number of connected triples of nodes (i.e., 2−stars [3]). This
describes the proportion of complete triads in the networks out of a total number
of possible triads.

In the remainder of this paper we focus on the following novel model

log [Pθ(X = x)] = η(φ) · d(x) + νC(x) − log c(φ, ν,X ), (2)

where x ∈ X , θ = (φ, ν), Θ ⊂ IRn, d(x) = {d1(x), . . . , dn−1(x)}. The parameters
φ and ν represent the network degree distribution and clustering, respectively.
Specifically, the ratio of the probability of a given network to a network with
the same degree distribution and correlation coefficient 1% less is 0.01× exp(ν).
Alternatively, consider the conditional probability of a partnership existing given
the rest of the network. If the formation of the partnership increases the corre-
lation coefficient by α% (relative to the same network without the partnership)
then the log-odds of the partnership existing is αν%. The degree distribution
parameters have similar interpretations: ηk(φ) is the ratio of the log-probability
of a given network to a network with the same clustering coefficient and one less
node of degree k and one more isolate. An important property of the model is
the variational independence of the parameters [7].

This model is a curved exponential family if Θ is a smooth curve in Υ = IRn

[8, 9]. Any degree distribution can be specified by n − 1 or less independent
parameters. Typically the number of parameters is small. As we shall see, this
is true for the models considered below.

If ν = 0 the model corresponds to random networks with arbitrary degree dis-
tributions, as considered by many researchers [10]. If ηk(φ) = φk, k = 1, . . . , n−1
the value of φ is interpretable as the log-probability of a given network to a net-
work with one less partnership and the same clustering coefficient [8]. If both
ν = 0 and ηk(φ) = φk, k = 1, . . . , n− 1 it is the classical random network model
of Rényi and Erdós[11].

The model (1) has a generative interpretation, which we illustrate with model
(2). Consider a dynamic process for the network {X(t): t ≥ 0} developing
according to the local rules

logit
[
P (Xij(t) = 1|Xij(t−)=xij)

]
=η(φ) · [d(x+

ij) − d(x−
ij)

]
+ν

[
C(x+

ij) − C(x−
ij)

]

where x+
ij is the network with a partnership between i and j and the rest of

the network equal to xij . x−
ij is similar with no partnership between i and j.

Based on the theory of continuous-time Markov Chains, the equilibrium distri-
bution is model (2). Ties are formed (or broken) based on their propensity to
change the network characteristics. This also provides another interpretation of
the parameters φ and ν and their joint effects.
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An alternative parameterization that is usually more interpretable is: (φ, ρ)
where the mapping is:

ρ = Eφ,ρ [C(X)] =
∑

y∈X
C(y) exp [η(φ) · d(y) + νC(y)] ≥ 0 (3)

Thus ρ is the mean clustering coefficient over networks in X . Thus models with
higher ρ have higher clustering coefficients on average. Note that models with
ρ = 0 will not have any complete triads. The range of ρ is a subset of [0, 1] and
depends on the other parameters and X .

The two parameterizations represent the same model class [9]. Translating
between equivalent parameters is achieved using the MCMC algorithm given in
Section 3 [9, 8].

2.2 Models for Degree Distributions

Let Pθ(K = k) be the probability mass function of K, the number of partnerships
that a randomly chosen node in the network has. Based on the model (2)

Pθ(K = k) = Eθ [dk(X)] k = 0, . . . , n − 1

Clearly for a given network of size n nodes, the distribution of K has finite range
with upper bound n − 1. In some cases this distribution is approximated by an
idealized distribution with infinite range. Let K∗ be the degree of a node in a
(possibly hypothetical) infinite population of nodes. Then K can be thought of
as the degree of the node restricted to nodes in the network. In cases where this
conceptualization is used we will consider the case

Pθ(K = k) = P (K∗ = k|K∗ < n) k = 0, . . . , n − 1,

While the model (2) has arbitrary degree distribution, of particular interest are
the various “scale-free,” preferential attachment and power-law models popular
in the physics literature (see, e.g., [12]). These models assume that all networks
with the same degree distribution are equally likely. We say P (K∗ = k) has
power-law behavior with scaling exponent φ > 1 if there exist constants c1, c2,
and M such that 0 < c1 ≤ P (K∗ = k)kφ ≤ c2 < ∞ for k > M .

We focus on a stochastic mechanisms for the formation of the social networks
that is a variation on a preferential attachment process, such as those advocated
by several recent authors [13, 14]. The limiting distributions of this mechanism
can be characterized by long tails.

2.3 Simple Preferential Attachment Models

A mechanism that has been suggested for the formation of power-law social net-
works is preferential attachment [15, 16, 2]. This and related stochastic processes
have a long history in applied statistics [17, 18, 19]. Consider a population of r
people in in which (1) there is a constant probability p that the r + 1st part-
nership in the population will be initiated from a randomly chosen person to a
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previously sexually inactive person, and (2) otherwise the probability that the
r +1st partnership will be to a person with exactly k partners is proportional to
kf(k|r), where f(k|r) is the frequency of nodes with exactly k connections out
of the r total links in the population. The limiting distribution of this process is
known as the Waring distribution [19]. The Yule distribution discussed by [17]
and used by [20] to model degree distributions is a special case of the Waring
distribution with p = (φ2 − 2)/(φ2 − 1).

The probability mass function (PMF) of the Waring distribution [21] is:

P (K∗ = k) =
(φ2 − 1)Γ (φ2 + φ1)

Γ (φ1 + 1)
· Γ (k + φ1)
Γ (k + φ1 + φ2)

, (4)

φ1 > −1, φ2 > 2,

where Γ (·) is the Gamma function and the mixing parameter φ1 is related to p
via:

p =
φ2 − 2

φ2 + φ1 − 1
. (5)

The Waring distribution has power-law behavior with scaling exponent φ2.
The mean and variance of the Waring distribution are:

E(K∗) =
1
p
, V(K∗) =

(1 − p) (φ2 − 1)
p2 (φ2 − 3)

, φ2 > 3.

Thus, the expected value of the Waring distribution is simply the inverse of
the probability of forming a partnership to an individual lacking existing part-
nerships. Both the Waring and the Yule distributions have been re-discovered,
apparently without awareness of their historical antecedents, by [22] and [23]
respectively in the context of modeling growth of the Internet.

3 Generating Random Networks with Specified Structure

Markov Chain Monte Carlo (MCMC) algorithms for generating from the model
(1) have a long history and been well studied (see [24] for a review). The basic
idea is to generate a Markov chain whose stationary distribution is given by
equation (1). The simplest Markov chain proceeds by choosing (by some method,
either stochastic or deterministic) a dyad (i, j) and then deciding whether to set
Xij = 1 or Xij = 0 at the next step of the chain. One way to do this is using
Gibbs sampling, whereby the new value of Xij is sampled from the conditional
distribution of Xij conditional on the rest of the network. Denote “the rest of
the network” by Xc

ij . Then Xij |Xc
ij = xc

ij has a Bernoulli distribution, with odds
given by

P (Xij = 1|Xc
ij = xc

ij)
P (Xij = 0|Xc

ij = xc
ij)

= exp{η·Δ(Z(x))ij},

where Δ(Z(x))ij denotes the difference between Z(x) when xij is set to 1 and
Z(x) when xij is set to 0. A simple variant to the Gibbs sampler (which is an
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instance of a Metropolis-Hastings algorithm) is a pure Metropolis algorithm in
which the proposal is always to change the value of xij . This proposal is accepted
with probability min{1, π}, where

π =
P (Xij = 1 − xij |Xc

ij = xc
ij)

P (Xij = xij |Xc
ij = xc

ij)
(6)

=

{
exp {η·Δ(Z(x))ij} if xij = 0;
exp {−η·Δ(Z(x))ij} if xij = 1.

The vector Δ(Z(x))ij used by these MCMC schemes is often much easier to
calculate directly than as the difference of two separate values of Z(x). For
instance, if one of the components of the Z(x) vector is the total number of
partnerships in the network, then the corresponding component of Δ(Z(x))ij is
always equal to 1.

The Metropolis scheme is usually preferred over the Gibbs scheme because it
results in a greater probability of changing the value of xij , a property thought
to produce better-mixing chains. However, it is well known that these simple
MCMC schemes often fail for various reasons to produce well-mixed chains
[25, 26, 27]. More sophisticated MCMC schemes have been developed and are a
topic of ongoing research [8].

A variant of this algorithm proceeds in two steps:

1. Generate dk
i.i.d.∼ Pθ(K = k), k = 0, 1, . . . , n − 1.

2. Generate a random network conditional on this degree distribution:

Pν(X = x|dk(X) = dk) =
exp [νC(x)]
c(ν, dk,X )

x ∈ X (dk)

where X (dk) = {x ∈ X :dk(x) = dk}.
The first generates individual degrees from an arbitrary distribution, and the
second generates networks condition on those degrees. Note that the structure
of the exponential family in (1) ensure that the samples are from the correct
distribution [7]. The first step can be simulated easily as we know Pθ(K = k).
Note that not all degree sequences will be consistent with a network of size n. For
example, sequences with an odd total number of partnerships are not realizable.
However we can construct a compatible sequence {dk}n−1

k=0 via a simple rejection
algorithm. The second step is also straightforward: we can conditionally simulate
values using a MCMC holding the degree distribution fixed by using a Metropolis
proposal consistent with this restriction. It is convenient for this algorithm to
have a starting network with the given degree distribution. This network is easy
to construct by a finite algorithm (as it need not be be a draw from a random
distribution) or using sequential importance sampling. An important property
of this the second step is the independence of the distribution from φ. It is a
simple parameter distribution depending only on ν [7].

As an application of this algorithm, consider a network model for n = 50 nodes.
We choose a degree distribution which is Yule with scaling exponent φ2 = 3. This
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Fig. 1. An example network generated from model (2) with n = 50 and degree dis-
tribution draw from the Yule model (equation 4) with scaling exponent φ2 = 3. The
random network is drawn from the model with mean clustering coefficient ρ = 3%. The
network has clustering coefficient C(x) = 2%.

Fig. 2. An example network generated from model (2) with n = 50 and degree dis-
tribution draw from the Yule model (equation 4) with scaling exponent φ2 = 3. The
random network is drawn from the model with mean clustering coefficient ρ = 15%.
The network has clustering coefficient C(x) = 18%.

corresponds to a “scale-free” degree model. If ν = 0 the network is random with
the given degree distribution. This corresponds to a mean clustering coefficient
ρ = 3%. A realization of this model is given in Fig. 1. The clustering coefficient
for this network is 2%. Fig. 2 is a realization from the model with mean clustering
coefficient ρ = 15% (corresponding to a clustering parameter of ν = 0.46.) The
centralization of the clustering is apparent relative to the network in Fig. 1.

As an second application we generate a network model for n = 1000 nodes
with the same degree distribution (φ2 = 3). A realization of this model is given in
Fig. 3. The clustering coefficient for this network is 2%. Fig. 4 is a realization from
the model with mean clustering coefficient chosen to be ρ = 15% (corresponding
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Fig. 3. A random network from the model with n = 1000 and the same Yule degree
distribution with φ2 = 3. The largest component is visualized. The network is drawn
from the model with mean clustering coefficient ρ = 3%. The realized network has
clustering coefficient C(x) = 1%.

Fig. 4. A random network from the model with n = 1000 and the same Yule degree
distribution with φ2 = 3.. The largest component is visualized. The network is drawn
from the model with mean clustering coefficient ρ = 15%. The realized network has
clustering coefficient C(x) = 14%.

to a clustering parameter of ν = 27.) The elongated nature of the resulting
network is apparent as is the centralization of the clustering.

4 Statistical Inference for Network Models

As we have specified the full joint distribution of the network through (1), we
choose to conduct inference within the likelihood framework [28, 24]. For econ-
omy of notation, in this section, we use φ to represent either η in (1) or the
curved exponential family form (φ, ν) in (2). Differentiating the loglikelihood
function:


(φ; x) ≡ log [Pη(X = x)] = η(φ) · Z(x) − log [c(φ,X )] (7)
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shows that the maximum likelihood estimate φ̂ satisfies

∇
(φ̂) = ∇η(φ̂) ·
[
Z(xobs) − E η(φ̂) Z(X)

]
, (8)

where ∇η(φ) is the p × q matrix of partial derivatives of η with respect to φ
and Z(xobs) is the observed network statistic. We may search for a solution to
equation (8) using an iterative technique such as Newton-Raphson; however, the
exponential family form of the model makes the Fisher information matrix

I(φ) = ∇η(φ)· [Covη(φ) Z(X)
]∇η(φ) (9)

easier to calculate than the Hessian matrix of second derivatives required for
Newton-Raphson. For more about equations (8) and (9), see [8] The method of
Fisher scoring is an iterative method analogous to Newton-Raphson except that
the negative Fisher information is used in place of the Hessian matrix.

Direct calculation of the log-likelihood by enumerating X is infeasible for
all but the smallest networks. As an alternative, we approximate the likelihood
equations (8) by replacing the expectations by (weighted) averages over a sample
of networks generated from a known distribution. This procedure is described in
[24]. To generate the sample we use the MCMC algorithm of Section 3.

5 Application to a Protein-Protein Interaction Network

As an application of these methods, we fit the model to a biological network of
protein-protein interactions found in cells. By interact is meant that two amino
acid chains were experimentally identified to bind to each other. The network
is for E. Coli and is drawn from the “Database of Interacting Proteins (DIP)”
[29]. The DIP database lists protein pairs that are known to interact with each
other. The dataset we use is Ecoli20050403. We have chosen E. Coli as it is well
studied and this will minimize the number of false-negative interactions (that is,
two proteins that interact but are not in the database). For simplicity we focus
on proteins that interact with themselves and have at least one other interaction.
We do not represent the self-interactions as part of the network. This results in
a network in Figure 5 with 108 proteins and 94 interactions.

We consider the model (2) with a clustering coefficient term and the degree
distribution model by a preferential attachment process (the Yule distribution
with scaling exponent φ). We choose the Yule as it represents the simple version
of preferential attachment that is common in the literature. The estimates are
given in Table 1. They are derived using the algorithm in Section 4.

The estimate of the preferential attachment scaling decay rate of about three
suggests that the network is close to the so-called “scale-free” range (that is,
φ ≤ 3). We note that the standard errors are based on the curvature of the
estimated log-likelihood and approximations to the sampling distribution based
on asymptotic arguments require non-standard justifications. In this case the
standard approximation to the sampling distribution can be shown to be valid
using a parametric bootstrap. The standard error of the scaling rate indicates
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Fig. 5. A protein - protein interaction network for E. Coli. The nodes represent proteins
and the partnerships indicate that the two proteins are known to interact with each other.

Table 1. MCMC maximum likelihood parameter estimates for the protein-protein
interaction network

Parameter est. s.e.

Scaling decay rate (φ) 3.034 0.3108
Correlation Coefficient (ν) 1.176 0.1457

some uncertainty in the determination of the rate. However the parameter of the
correlation coefficient is very positive. This indicates strong clustering (given
the degree sequence) and hence so-called “small world” behavior in the net-
work. Thus, this model provides a statistical valid means to test for small-world
characteristics of a network using the statistics commonly used to characterize
small-world networks.

Finally, we can test if the network is generated by this preferential attachment
model. If preferential attachment among proteins generated this network then
the parameter ν of the clustering coefficient will be zero. However we see that
the estimate is positive. We can test this more rigorously by comparing the log-
likelihood values for the maximum likelihood fit in Table 1 to the model where
ν is constrained to be zero. The change in the log-likelihood is 52.3, so that the
change in deviance is 104.6. This indicates that deviation from the preferential
attachment model is statistically significant, as can be verified by a parametric
bootstrap of the change in deviance.

6 Discussion

We have presented a simple stochastic model for random networks that has
arbitrary degree distribution and average clustering coefficient. The clustering
component of the model is directly interpretable via the clustering coefficient
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of the realizations from the model. The model places positive probability over
the set of possible networks. Conditional on the degree sequence, the clustering
coefficient covers the full range of values possible. The distribution over this
range is tuned as a monotone function of the clustering parameter.

The model form (1) is very general, and can incorporate general social struc-
ture [3, 30, 9, 8]. For example, in disease epidemiology, the two-sex random
network epidemic model is a commonly used to represent the contact structure
of pathogens transmitted by intimate contact [31]. This model is the model (2)
with ρ = 0 and X is restricted to heterosexual networks. However, this model
contains a major weakness which ultimately limits its utility. Specifically, it as-
sumes random mixing conditional on degree. The model (2) is a simple extension
of that allows tunable correlation coefficient. More generally, (1) can be used to
include nodal attributes and other structural characteristics. Such models have
proven to be valuable in epidemiology [32, 33].
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