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Some Asymptotic Properties of Kriging When the 
Covariance Function Is Misspecified1 

Michael L. Stein2 and Mark S. Handcock2 

The impact of using an incorrect covariance jUnction on kriging predictors is investigated. Results 
of Stein (1988) show that the impact on the kriging predictor from not using the correct covariance 
jUnction is asymptotically negligible as the number of observations increases if the covariance 
jUnction used is ''compatible'' with the actual covariance jUnction on the region of interest R. The 
definition and some properties of compatibility of covariance jUnctions are given. The compatibility 
of generalized covariances also is defined. Compatibility supports the intuitively sensible concept 
that usually only the behavior near the origin of the covariance jUnction is critical for purposes of 
kriging. However, the commonly used spherical covariance jUnction is an exception: observations 
at a distance near the range of a spherical covariance function can have a nonnegligible effect on 
kriging predictors for three-dimensional processes. Finally, a comparison is made with the per­
turbation approach of Diamond and Armstrong (1984) and some observations of Warnes (1986) 
are clarified. 

KEY WORDS: prediction, intrinsic random fields, compatibility, robustness. 

INTRODUCTION 

Kriging is a method of prediction for random fields popular in mining and hy­
drology (Joumel and Huijbregts, 1978; Kitanidis, 1983). The basic model is 
that Z( x) is the value of a quantity of interest at location x, and Z( · ) is a random 
field on Rd with mean function 

EZ(x) = (3'f(x) (1) 

where f( ·) is a known vector-valued function and (3 is a vector of unknown 
coefficients, and covariance function 

cov [ Z( x), Z( y)) K(x, y) 
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We observe Z(x1 ), • • ·, Z(xN) and wish to predict Z(x0 ). A commonly used 
class of predictors are linear combinations of the form 

N 

I; AiZ(x;) 
i=l 

The kriging predictor, Z(x0 ), is the unbiased linear predictor that minimizes the 
variance of the prediction t:mor. The weights A = (A1, • • • , AN)' defining Z(x0 ) 

are given by 

(2) 

where 

F= [f(xJ), ·· ·,f(xN)] 

c = [K(x0 , x 1 ), • • ·, K(x0 , xN)]' 

Cis anN X N matrix with ijth element K(xi, xj), and F and C have full rank 
(Goldberger, 1962). The prediction error is denoted by e(x0 ) = Z(x0 ) - Z(x0 ); 

its variance is 

K(xo, xo) - c'C- 1c + [f(x0 ) - FC- 1c]'(FC- 1F'f
1
[f(x0 ) - FC- 1c] 

(3) 

A concise introduction to kriging methods is given by Rendu (1978). 
In practice, the covariance function K( · , · ) is not specified and must be 

estimated from data. The effect of not having the correct covariance function 
in Eqs. (2) and (3) has been considered by Diamond and Armstrong (1984), 
Sukhatme (1985), Yakowitz and Szidarovszky (1985), Warnes (1986), Arm­
strong and Myers (1984), and Stein (1988). Diamond and Armstrong (1984), 
Sukhatme (1985), Warnes (1986), and Armstrong and Myers (1984) investigate 
the effect of small perturbations of the covariance function on the kriging pre­
dictor given a fixed set of observations. Yakowitz and Szidarovszky (1985), 
Stein (1988), and the present work study the behavior of kriging predictors 
based on an incorrect covariance function as the number of observations in some 
fixed region R increases. 

In many situations, Z(x) is an intrinsic random function of nonnegative 
order so that K(x, y) can not be written as K(x - y), but certain linear com­
binations of Z(x) (i.e., increments) have an explicitly defined (generalized) 
covariance function that is homogeneous (Delfiner, 197 6). This paper will focus 
on fields for which the covariance function is homogeneous [i.e., K(x, y) = 
K(x - y)]. 

In the next section, results of Stein (1988) are summarized, showing that 
the impact on the kriging predictor from not using the correct covariance func-
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tion is asymptotically negligible as the number of observations increases if the 
covariance function used is "compatible" with the actual covariance function 
on the region of interest R. The definition and some conditions for the compat­
ibility of covariance functions on a region R are given. For homogeneous co­
variance functions, two covariance functions must behave similarly at the origin 
in order to be compatible. Covariance functions that behave similarly at the 
origin are, in many practical cases, compatible. Thus, the intuitively sensible 
concept that only the behavior of the covariance function at the origin needs to 
be estimated well is supported. However, similar behavior at the origin does 
not guarantee compatibility. In particular, the commonly used spherical co­
variance function (Joumel and Huijbregts, 1978, p. 164), for large enough re­
gions in three dimensions, is shown not to be compatible with an exponential 
covariance function that behaves similarly at the origin. An example is given 
in which the kriging predictor based on a spherical covariance function exhibits 
what would usually be considered physically unrealistic behavior. This suggests 
that the spherical covariance function is an inappropriate model for most three­
dimensional fields. Finally, the compatibility perspective on the misspecifica­
tion problem is compared to the perturbation approach of Diamond and Arm­
strong (1984). When compatibility can be brought to bear, it provides sharp 
practically useful solutions. This is demonstrated in clarifying some examples 
given by Warnes (1986). 

ASYMPTOTICALLY EFFICIENT PREDICTION 

Consider a random field Z( · ) with a continuous covariance function on a 
bounded region R in Rd with mean function as in Eq. (1). Let x0 be a point in 
R and {X; } r= 1 a sequence of points in R that has Xo as a limit point but does 
not include x0 . The asymptotic behavior of the kriging predictor of Z(x0 ) based 
on Z(xJ), · · ·, Z(xN) as N--> oo is considered when the covariance function 
used in Eqs. (2) and (3) is incorrect. The asymptotic approach of an increasing 
number of observations in a fixed region also is used by Yakowitz and Szida­
rovszky (1985) and Stein ( 1988) and is a natural one for spatial phenomena. 
Often the behavior of some field Z( · ) in a fixed region of interest is important, 
and, at least in principle, taking an increasing number of observations in this 
fixed region can be considered. Of course, in practice, such additional sampling 
is rare. As with all asymptotic statistical results, the real utility of this formu­
lation should be judged in terms of how appropriate it is for samples of the sizes 
seen in practice. 

Now, suppose K0(x, y) and K 1(x, y) are compatible covariance functions 
on R. An exact mathematical definition and some interpretations of compati­
bility are given in the next section. Let e;(N) measure the error of the kriging 
predictor of Z(x0 ) based on Z(x1 ), • • ·, Z(xN) and the covariance function 
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K;( · , · ) , i = 0, 1. Let V/ · ) be the variance of a linear combination of values 
of Z(x) under K;( ·, · ). If 

lim V0 [ e0(N)] = 0 (4) 
N--> oo 

then Stein (1988) proves 

. V0 [ e0(N)] 
hm 

N-->oo Va[ei(N)] 
and (5) 

. V1[e1(N)] 
hm 

N-->oo Va[ei(N)] 
(6) 

Equation (5) says that, if our predictor of Z(x0 ) is based on K1 when in fact K0 

is the actual covariance function, then as long as K0 and K1 are compatible on 
R, an asymptotically efficient predictor of Z(x0 ) will be obtained. That is, the 
ratio of the actual variance of the prediction error using K1 (i.e., V0 [ e1 (N)]) to 
the variance of the prediction error using the correct covariance function K0 

(i.e., V0 [e0(N)]) tends to one as N --> oo. Equation (6) says that the ratio of the 
value of the variance of the prediction error obtained by using K 1 in Eq. (3) 
(i.e., V1 [ e1 (N)]) to the actual variance of the error of this predictor when K0 

is the correct covariance function (i.e., V0 [ e1 (N)]) tends to one as N --> oo. In 
other words, the value of the variance of the prediction error based on the in­
correct covariance function K1 will be close to the actual variance for large N 
as long as K1 is compatible with the true covariance function K0 on R. The 
assumption in Eq. (4) just says that the kriging predictor using the correct cov­
ariance function is consistent as N --> oo. Because x0 is a limit point of the 
observation sites, this assumption is weak. For example, this condition is sat­
isfied whenj(x) = 1 and K0( ·, ·)is bounded and continuous on R X R (Stein, 
1988). If K0 and cK1 are compatible for some c > 0, Eq. (5) still will hold and 
the limit in (6) will be c- 1

• That is, an asymptotically efficient predictor will 
result and the value for variance of the prediction error is, asymptotically, off 
by a constant multiple. In summary, these results say that, for purposes of 
kriging, the difference between using the correct covariance function K0 and a 
compatible covariance function K 1 is asymptotically negligible. 

These results apply to both Gaussian and non-Gaussian fields. However, 
caution against using linear kriging for highly non-Gaussian fields is recom­
mended for two reasons. First, nonlinear predictors of Z(x0 ) may perform much 
better than the best linear predictor. More importantly, the formula for variance 
of the prediction error in Eq. (3) gives the unconditional variance, which may 
be very different from the conditional variance for a non-Gaussian field. Be­
cause predicting Z(x0 ) given the observed values Z(x1 ), • • • , Z(xN) is of in­
terest, the conditional distribution of the prediction error really is wanted. 
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Hence, the unconditional variance of the prediction error can be misleading for 
non-Gaussian fields. 

DEFINITION AND DISCUSSION OF COMPATIBILITY 

Introduction 

In order to define compatibility of covariance functions, some properties 
of probability measures need to be introduced. Let R be a bounded region in 
Rd and [Z(x): x E R] be a random field. For the moment, consider continuous 
random fields. Suppose [Z(x): x E R] has covariance function K(x, y) and 
mean function m(x). For any such mean function and covariance function, a 
unique Gaussian random field with those characteristics (Doob, 1953, p. 72) 
can be produced. To simplify the notation, denote the unique Gaussian proba­
bility measure corresponding to m(x) and K(x, y) by [m, K]. 

Mutual Singularity and Mutual Absolute Continuity of Probability 
Measures 

Let P0 and P1 be arbitrary probability measures with respect to a given 
sample space !1 (and an appropriate a-field). A support of P0 is defined to be 
any event A with P0(A) = 1. P0 and P 1 are called mutually singular if they 
have disjoint supports. That is, disjoint events A and B exist that satisfy 

P0(A) = 1 and AnB=0 

where 0 is the null event. This is denoted by P 0 ..L P 1• P 0 and P 1 are called 
mutually absolutely continuous if they have the same set of supports. That is, 
an event A satisfies P 0 ( A) = 1 if and only if P 1 (A) = 1. This is denoted by P 0 

-Pl. 
Now suppose that a realization of the field under either P0 or P 1 is given, 

but which one is the correct measure is not known. If P0 ..L P 1 then, with 
probability one, which law produced this single realization can be determined. 
If P0 - PI, which law produced this single realization cannot be determined 
with certainty. These definitions denote different ends of the spectrum: P 0 -

P 1 when supports are the same and P0 ..L PI when they have a disjoint support. 
Although two general probability measures may be neither mutually singular 
nor mutually absolutely continuous, any two Gaussian measures are necessarily 
either mutually singular or mutually absolutely continuous (Hajek, 1958, p. 
615). This property can be used to show that 

and 
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Hence, to establish mutual absolute continuity in the Gaussian case, two simpler 
cases may be considered: 

(1) K0 is identical to K 1, but m0 differs from mi> and 

(2) K0 differs from K 1, but m0 is identical to m1. 

For homogeneous covariance functions, both of these cases are considered 
at length by Rozanov (1968), Skorokhod and Yadrenko (1973), lbragimov and 
Rozanov (1978), and Krasnitskii (1973). Here, only the second case, where the 
covariance function is misspecified, is considered. 

Definition of Compatibility 

Definition. Let K0 and K1 be covariance functions defined on R, a bounded 
region in Rd. Then K0 is compatible with K 1 on R if [0, K0 ] - [0, Kd. 

Compatibility is well-defined as each covariance and mean function pair 
characterizes a Gaussian probability measure and vice versa. Because Gaussian 
measures are either mutually absolutely continuous or mutually singular, K0 is 
not compatible with K1 on R if and only if [ 0, K0 ] ..L [ 0, K1]. The presence of 
R in the definition is essential. If K0 is compatible with K 1 on R, K0 is also 
compatible with K 1 on any subset of R. On the other hand, if K0 is not com­
patible with K 1 on R, K0 still may be compatible with K 1 on some subset of R. 

Compatibility is a property of the covariance functions on a specified do­
main and applies to non-Gaussian as well as Gaussian fields. The definition 
does make use of properties of the Gaussian random fields that are characterized 
by the covariance functions. However, the idea of compatibility of covariance 
functions is appropriate whatever the random field Z( · ) that the covariance 
functions describe. In particular, validity of Eqs. (5) and (6) does not depend 
in any way on Z( ·)being Gaussian. 

Now consider a random field on R with unknown covariance function K0 . 

All covariance functions on R can be partitioned into a set that is compatible 
with K0 and a set that is not compatible with K0 . Covariance functions in dif­
ferent sets are not compatible on R whereas those in the first set are compatible 
with each other. Results given by Eqs. (5) and (6) indicate that, when estimating 
K0 , it is asymptotically not important to distinguish between covariance func­
tions in this first set. 

Behavior of the Covariance Function at the Origin and Local Behavior of 
a Random Field 

Local variations of a random field about its mean function are governed 
by the behavior of its covariance function at the origin (Ripley, 1981, p. 44-
75). Let Z(x) be a random field with constant mean and homogeneous covari­
ance function K(x ). K(x) is continuous at the origin if and only if Z(x) is mean­
square continuous (Yaglom, 1962, p. 22). If K(x) has continuous second de-
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rivative, Z(x) is mean-square differentiable. More generally, if K(x) has 2m 
derivatives, Z(x) ism times mean-square differentiable. Hence, the smoothness 
of K(x) at the origin translates directly to the local smoothness of Z(x). 

Let K0(x) and K 1(x) be homogeneous covariance functions on a region R. 
If K0 is compatible with K 1, they have similar behavior at the origin. For ex­
ample, suppose R = [0, T] C R 1 and K0 has 2m continuous derivatives on R 
with K62m+t) (0+) * 0. If K1 is compatible with K0 , it must also have 2m 
continuous derivatives on R and K62m + I) ( 0 +) = K\2m + l) ( 0 +). As will be seen 
in the next section, this condition is not generally sufficient for compatibility, 
although it is in many practical cases. For instance, K0(x) = A0e-lxl/t-o and 
K 1(x) = A1e-lxl/"' are compatible on [0, T] for all Tand positive A0 , A1• Note 
that K0( x) and K1 ( x) are not differentiable at zero and K 0( 0 + ) = K; ( 0 + ) = 
-1. An example of a pair of covariance functions that are compatible and do 
not have linear behavior at the origin is K0 ( x) = 5e- i xI [cos ( I x !) + sin ( I x I ) ] 
and K 1 (x) = e-21xl [cos (I xI) + 2 sin (I xI)]. They satisfy the above condition 
with K63)(0+) = K\3)(0+) = 20. As a last example, K0(x) = e-lxl

2
/" is not 

compatible with K1(x) = e-lxl for any A because the first is parabolic at the 
origin and the second is linear at the origin. 

In higher dimensions, similar results hold. Precise necessary and sufficient 
conditions for arbitrary covariance functions are known (Skorokhod and Yad­
renko, 1973). Many results are stated better in terms of the corresponding spec­
tral densities. Forexample, supposeK0 andK1 are isotropic [K0(x) = K0(lxi)J 
and have spectral densities f 0( A) and / 1 (A), respectively, then necessarily / 0( A) 
= / 0 ( I A I) and/1(A) = / 1( I A I). Using Theorem 7 of Skorokhod and Yadrenko 
(1973), K0 is compatible with K 1 on any bounded region in Rd if 

f"" 11 _ !t(A)l\d-1 dA < 
00 

Jo L fo(A) J (7) 

and / 0 ( A) satisfies a technical condition. Compatibility of covariance functions 
with geometric anisotropies (Joumel and Huijbregts, 1978, p. 177) can be de­
scribed in terms of compatibility of the corresponding isotropic covariance func­
tions. For example, for a given matrix V, K0 ( I Vx I) and K1 (I Vx I) are compat­
ible on R if K0 ( I xI ) and K1 ( I xI) are compatible on the set Q = { Vx : x E R}. 

Finally, up to now, the covariance functions have been assumed to be 
continuous. Often the covariance function has a discontinuity at the origin [i.e., 
"nugget effect" (Ripley, 1981, p. 50)] caused by measurement error or micro­
structures. If K0 is compatible with K1 on R, K0(x) + Or} {x = 0} can be shown 
to be compatible with K1 (x) + 011 { x = 0} on R if and only if 00 = 81• 

Compatibility of Generalized Covariances 

Extending the notion of compatibility to intrinsic random functions (IRFs) 
and generalized covariances (Matheron, 1973) is considered briefly. Every IRF 
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has an infinite number of representations as a (possibly nonstationary) random 
field (Matheron, 1973, p. 445). Let Z;(x) be a continuous IRF on R, a bounded 
region in Rd, with generalized covariance G;(r), i = 0, 1. G0 and G1 are defined 
to be compatible on R if compatible covariance functions K0 and K1 exist (pos­
sibly inhomogeneous) such that K; is the covariance function of a representation 
of Z;. The compatibility of K0 and K 1 implies that Eqs. (5) and (6) will hold for 
that pair of representations. The variance of any contrast depends only on the 
generalized covariance and not on the particular representation. Therefore, be­
cause all prediction errors are contrasts, Eqs. (5) and (6) apply for compatible 
generalized covariances G0 and G1• 

Determining the compatibility of generalized covariances is straightfor­
ward when they are bounded. If G0 is bounded on Rd, Matheron (1973, Theo­
rem 2.4) proved that representations of Z0 have homogeneous covariance func­
tions that differ by constants. Iff ("A) is the spectral density of a homogeneous 
covariance function K0(x) and 3a, J...0 > 0, and n a positive integer such that 

for I "AI > "A0 

K0 can be shown, by applying Theorem 3 of Skorokhod and Yadrenko (1973), 
to be compatible (on R) with every covariance function that differs from it by 
a constant. Subject to this mild condition, the compatibility of bounded gener­
alized covariances can be determined directly from the compatibility of any pair 
of covariance functions corresponding to respective stationary representations. 
This result will allow us to determine the compatibility of variograms (IRF-Os) 
used in the upcoming examples. The condition is not satisfied by the covariance 
function Kc(x; a, u2

) = u2 exp (-lxl 2 /a2
) that is used in Warnes (1986). 

Kc(x; a, u 2
) is not compatible with any other covariance function (lbragimov 

and Rozanov, 1978, p. 95), so it is incompatible with rP + Kc(x; a, u 2
) for rP 

> 0. This covariance function corresponds to a Gaussian field with "analytic" 
realizations, so that, for example, the entire realization along a line can be 
reconstructed from knowing the realization on any segment of that line. Thus, 
this covariance function normally would be considered a physically unrealistic 
model. 

The focus on bounded generalized covariances is not overly limiting be­
cause, in most practical situations, attention is restricted to some natural bounded 
region in Rd. If a bounded generalized covariance on Rd coinciding with our 
unbounded model on this bounded region can be found, this bounded model 
may be used and the above result can be applied. As an example, suppose that 
kriging is contemplated on [ 0, 1 ] and the unbounded generalized covariance 
model GL(x) = -xis being considered. The alternative 

Gy{x) = \ -x 
l-1 

if lxl < 

if lxl ~ 
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coincides with GL on [ 0, 1 ] and is bounded on R 1. Just as with covariance 
functions, the behavior at the origin of generalized covariance is critical in de­
termining compatibility. For example, the order 1 generalized covariances -x 
+ ca 3 and (3x 3 can be shown to be incompatible on any bounded region for 
any a > 0 and (3 > 0, and -x + ca 3 and -x are conjectured to be compatible 
on any bounded region for any a > 0. 

INCOMPATIBLE COVARIANCE FUNCTIONS WITH SIMILAR 
BEHAVIOR AT THE ORIGIN 

A One-Dimensional Example 

The ''triangular'' covariance function with range b for a one-dimensional 
field is given by 

K(x) = ( b - I xI)+ 
where the plus indicates the positive part. Let K0(x) be the triangular covariance 
function with range one. This covariance function has the same behavior at the 
origin as 

K
1
(x) = e-lx! 

However, if R = [0, T], K0 ( ·)and K 1( ·)are compatible on R if and only if 
T ::5 1 (lbragimov and Rozanov, 1978, p. 100). The incompatibility forT> 
1 is due to K0(x) not being differentiable at x = 1, in contrast to the behavior 
of K 1(x). 

Kriging predictors based on K0 ( • ) can be shown to behave in a manner 
that usually would be considered physically unrealistic. Throughout this sec­
tion, the mean of Z( ·) is taken to be an unknown constant. Suppose that Z( ·) 
is observed at the N locations, 

2 

N-1'N-1' 

N 
1-­

, N- 1 

and Z(O) is to be predicted. Assuming K0 ( ·) is the covariance function, the 
kriging predictor of Z( 0) is 

z[ ( N - 1 r I ] - ~ Z( 1 ) + ~ z[ N I ( N - 1 ) ] 
2 2 

(8) 

Two observations, Z(l ) and Z[ N I ( N - 1 ) ], that are far from Z( 0) get sub­
stantial weights in the kriging predictor for all N. These two observations are 
both about a distance of one from Z(O); K0(x) not being differentiable at x = 

1 leads to this phenomenon. The value of the variance of the prediction error 
under K0 ( • ) is 1. 5 I ( N - 1 ) . The variance of the kriging predictor using Z[ ( N 
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- 1 ) -I] alone is 2 I ( N - 1 ) , so Z( 1 ) and Z[ N I ( N - 1 ) ] have a nonnegligible 
impact on the kriging variance. Suppose, in fact, that Z(x) has a triangular 
covariance function with a range of two, so K0 ( ·) has the same slope at the 
origin. The variance of the error of the predictor in Eq. (8) is then 2.51 (N -
1 ), which is 513 times the variance of the prediction error using K0( • ). Also 
note that, if Z( · ) has a triangular covariance function with a range of two, the 
kriging predictor of Z( 0) is Z[ 1 I ( N - 1 ) ] , which does not put weight on 
distant observations. The predictor in Eq. (8) is peculiar, and thus the triangular 
covariance function would usually be an inappropriate model when the region 
of interest is an interval whose length is greater than the range of the covariance 
function. This effect is not due to the fact that the mean is unknown because 
the simple kriging predictor of Z(O) (i.e., assuming the mean is zero) is given 
by 

2N- 3 -I 1 N- 2 

2(N _ 1) Z[ (N- 1) ] - l Z(1) + 2(N _ 
1

) Z[NI(N- 1)] 

The Spherical Covariance Function 

The triangular covariance function has a physical interpretation as a mov­
ing average of white noise: if W(x) is Brownian motion so that dW(x) is white 
noise, and 

i
x +I /2 

Z(x) = dW(t) = W(x + 1) - W(x - 1) 
x -1/2 

Z(x) has the triangular covariance function with range of one. The commonly 
used spherical covariance function has a similar interpretation in three dimen­
sions. If Y( x) is three-dimensional white noise and Z( x) is obtained by inte­
grating Y( ·) over a ball of radius 0.5 centered at x and normalizing by the 
appropriate constant, Z( · ) has covariance function 

K(x) ~ [~- lxl + \lxl' if lxl < 

if I X I 2:: 
(9) 

the spherical covariance function with range one. If R contains a ball of diam­
eter greater than one, the spherical covariance function in Eq. (9) can be shown, 
using Theorem 2 in Skorokhod and Yadrenko (1973) to be incompatible with 
K(x) = exp (- I xI) on R, even though these covariance functions behave 
similarly at the origin. The incompatibility is caused by the lack of a third 
derivative at I xI = 1 for the spherical covariance function. This theorem also 
shows that, for any bounded region in one or two dimensions, spherical and 
exponential covariance functions that behave similarly at the origin are com­
patible. Thus, one might expect to find unusual behavior in a kriging predictor 
based on a spherical covariance function with three-dimensional fields, but not 
with one- or two-dimensional fields. 
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Consider the situation, in three dimensions, where Z(O) is to be predicted 
based on observing the field on four spheres of radii E, 1, 1 + E/2, and 1 + E 

units and centered at the origin (Fig. 1). As in the case of the triangular co­
variance function in one dimension, behavior of the field at distances near the 
range of the spherical covariance function from Z(O) can have a nonnegligible 
impact on the kriging predictor even when the field near Z(O) is observed. The 
follo~ing example is a three-dimensional analog of the triangular example. De­
fine Z(r) to be the average of Z(x) over the surface of a sphere of radius r 
centered at the origin. By symmetry, the predictor based on the four spheres is 
of the form 

Z(l ) , Z(l + e /2), and Z(l + E) will be demonstrated to have a ~ubstantial 
impact on the kriging predictor of Z( 0) for small E even though Z( E) is ob­
served. Now, if Z( ·)is isotropic with covariance function K( · ), 

Fig. 1. Cross section of the three-dimensional data configuration in which 
the random field Z( ·) is observed everywhere on spheres of radii E, I, I 
+ t/2, and I + E. The object is to predict 2(0). 

( 11) 
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If K( · ) is the spherical covariance function in Eq. (9), the kriging weights in 
Eq. (10) can be shown using Eq. (11) to be 

A, = 1 + 0( E) 

3 2389 
At = - 4E - 2944 + O( E) 

(12) 
3 1833 

At +./2 = 2E + 1472 + O(E) 

3 1277 
At+ E = - 2E - 2944 + O( E) 

The variance of the prediction error when the spherical covariance function in 
Eq. (9) is correct i~ (55 I 96 )E + 0( E~ ""' 0. 573E. The kriging predictor of 
Z(O) based just on Z(E) is, of course, Z(E), and the variance of its prediction 
error is (213)E + 0(E2

) ""' 0.667E. As E ~ 0, Z(l), Z(l + El2), and Z_£_1 + 
E) have a nonnegligible impact on the kriging predictor of Z( 0). Note that Z( 1 ) , 
Z(l + El2), and Z(l + E) do not get zero weight even though they are un­
correlated with Z( 0). The point is that the partial correlation between Z( 0) and 
Z( 1 ) , Z( 1 + E I 2), or Z( 1 + E) induced by Z( E) is not zero, and this correlation 
determines the importance of the observation in the predictor. 

Now consider this example using the covariance function exp ( - I x I ) , 
which behaves similarly at the origin as the covariance function in Eq. (9), but 
is incompatible with it on large enough regions in three dimensions. As E ~ 0, 
the kriging weights can be shown to be 

2e2 

A, = 1 + ( 2 3) E + 0( E
2

) 3 3e - 4e-

-2e2 

-----=----- E + 0( E2
) 

3(3e2 
- 4e- 3) 

whereas At+ .;2 and At+, are 0( E2
). The variance of the prediction error when 

the exponential covariance function is correct is £._2 I 3 )E + 0( E2
) ""' 0. 667 E. 

The variance of the prediction error using only Z( E) to predict Z( 0) is also 
( 2 I 3 )E + 0( E2

). So, using an exponential covariance function, the distant ob­
servations have an asymptotically negligible impact on the kriging predictor of 
Z( 0). The variance of the error for the predictor using weights in Eq. ( 12) when 
exp ( - I x I ) is the correct covariance function is ( 73 I 96 )E + 0( E2

) ""' 0. 760E. 
Thus, the actual variance is 32% greater than the predicted variance for small 
E. In contrast, if the covariance function is presumed to be exponential, the 
actual variance of the prediction error is approximately ( 2 I 3 )E whether the true 
covariance function is exponential or the spherical covariance function in Eq. 
(9). The numerical results presented here are summarized in Table 1. 
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Table 1. An Example of Unusual Behavior of a Kriging Predictor 
Based on a Spherical Covariance Function 

Presumed covariance 

Spherical 
Exponential 

Actual covariance 

Spherical 

0.5729E 
0.6667E 

Exponential 

0.7604E 
0.6667E 

Note: Each entry gives the variance of the prediction error when 
predicting Z( 0) for the situation described in the text. The 
presumed covariance function is used to compute the krig­
ing predictor [see Eq. (2)], and the actual covariance func­
tion is used to compute the variance of the error of that 
predictor. Errors in the table entries are all 0( E2

) as E t 0. 
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This example suggests that the spherical covariance function is an inap­
propriate model for most fields in three dimensions unless some reason exists 
for thinking that the observed field is a spherical moving average of white noise. 
In most practical situations, using spherical covariance functions may not lead 
to serious problems. However, to use a model that is known to lead to such 
physically unrealistic results is dubious, especially when alternative models 
(e.g., the exponential covariance function) exist that do not, as far as known, 
have this problem. 

COMPARISON WITH PERTURBATION METHODS 

The three factors that affect the kriging predictor are 

(1) the covariance model, 

(2) the number and spatial arrangement of observations, and 

(3) the relationship between the support for the observations and support for 
the quantity being kriged. 

Small perturbations in any of these will lead to changes in the kriging predictor. 
Diamond and Armstrong (1984) (from now on, DA) attempt to define a neigh­
borhood of variograms "close" to a given variogram based on relative devia­
tion from that variogram. The effect of perturbing the variogram with the ob­
servations and geometric relationships fixed is investigated. This perturbation 
is passed through the matrix equations defining the kriging system to give bounds 
for the effect on kriging weights and estimation variance. Armstrong and Mey­
ers (1984) extend the work, showing that the effect of the above factors on 
kriging weights can be determined by solving the appropriate perturbed kriging 
equations. In this context, Sukhatme (1985) derives approximations to kriging 



184 Stein and Handcock 

weights explicitly in terms of known covariance quantities. Finally, Warnes 
(I986) approximates the effects of covariance perturbations on the prediction 
surfaces of kriging. 

The perturbation approach is contrasted with compatibility in several ex­
amples. Although results given in Eqs. (5) and (6) do not provide explicit error 
bounds, they provide useful insights in these examples. In the notation of DA, 
let N 15 ( 'Y) = { g E <t : I ( g I 'Y) - II < o} where <t is the class of valid var­
iograms in Rd and I · I is the sup norm on continuous functions from R + to R +. 

In situations where the support of the variograms is a subset of R +, the vario­
gram is extended to R + in a manner consistent with the restriction to conditional 
positive definiteness. 

Example 1 

Consider the class of variograms /'1\(x) = )\(I - e-x/"-), )\ > 0, x ;:::: 0. 
Using Eq. (7), these can be shown to be compatible on any bounded region in 
Rd. Also note that 'h(x) E N 15('}' 1 ) if and only if I)\- II < o. Hence,)\ may 
be chosen to make/'/\ as "close" or as "far" from /'J as desired in the sense 
of DA, whereas any /'/\ is "close" to /'J in the compatibility sense. 

Example 2 

Consider the class of variograms 

e -3ax/4 

'Ya(x) = I - -(3- [3ex sin (f3xl4) + (3 cos (f3xl4)] 

ex (9ex2 
- 8) 

= x 2 
- - x 3 + x 4 + O(x 5

) 
2 48 

for small x, where (3 = ../32 - 9ex2 and 0 :5 ex :5 1. Here, I' a can be shown 
to be the variogram of the AR(2) process U(x) defined by 

dU(x) + ~ exU(x)dx + 2U(x)dx = dW(x) 

where W(x) is a Wiener process. Although U(x) is differentiable, U(x) is no­
where differentiable and hence U(x) does not exist. Thus 'Y"' - C'}' "'' if and only 
if c = ex I ex~> where 0 :5 ex, ex 1 :5 I so that the predictors based on 'Y"' and 
I' a, will be asymptotically the same. Furthermore, values for the kriging vari­
ance will, asymptotically, differ only by the constant multiple ex I ex 1• 

In the simple situation (Fig. 2), a constant mean random field is to be 
predicted at 3~: based on observations at 0 and t. Suppose that the predictions 
under the true variogram 'YJ are compared to those under the compatible var­
iogram model 2'}' 1 ; 2 (Table 2). Each t represents a different kriging situation, 
with the region of interest shrinking as t t 0. The exact numerical solutions for 
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Weight 

0 2E 3c 

Q Observed Value 

@ Value to be Predicted 

Fig. 2. The kriging situation for Example 2. Z( 3E) is to be predicted on the basis of ob­
servations at 0 and E. Weights given Z( 0) and Z( e) are J\o and A, respectively. 
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the particular cases E = 0.1, 0.01, 0.001 (Table 3) show that both kriging 
weights and prediction variances are similar and converge rapidly. Note that, 
for small, x, 

'Ytdx) = 1 +::- x2 + O(x3) 
1'1(x) 4 64 

so that 2'}' 1 ; 2(x) If N1 ( 'YI ). Although 2'}' 1 ; 2 is not "close" to 'Yt in the DA sense, 
they provide similar predictions. On the other hand, when the region of interest 
is the interval [ 0, 3E], 1' 1 ; 2( x) E N3.; 4 ( 1' 1 ) , so that the DA approach suggests 
1'1; 2 and '}' 1 are "closer" than 21' 1; 2 and 'YI· The kriging weights using 1'1; 2 

will be the same as for 21' 1 ; 2 whereas the presumed prediction variance will be 
about half its actual value under 1' 1. 

Interestingly, the condition number K(r) = i12
E-

2 + T 112
E-I + 0(1) 

as E ~ 0. Hence, the necessary condition [DA equation (12)], 

(13) 

Table 2. A Comparison Between the True Variogram and a Misspecified Variogram 

Quantity 

Variogram 

J\o 
A, 

Presumed prediction variance 
Actual prediction variance 

Presumed variogram 

Correct, [ y 1(x)] 

x 2 
- x 3 /2 + x 4 /48 + O(x 5

) 

-2 + 7E/2 + 9E2/8 + O(e3
) 

3 - 7e/2 - 9e2 /8 + O(e3
) 

24E3 
- 29E4 + 0( E5

) 

24e3 
- 29e4 + 0( e5

) 

Incorrect, [2y 1; 2(x)] 

2x 2 
- x 3 /2 - 23x 4 /96 + O(x 5

) 

-2 + 7e/4 + 49e2 /16 + 0(e 3
) 

3- 7e/4- 49e2 /16 + O(e3
) 

24e3 + 79e4 /4 + O(e5
) 

24e3
- 183e4 /8 + O(e5

) 

Note: Kriging weights (A0 , A,), and presumed prediction variance are determined relative to the 
presumed variogram for the kriging situation given in Fig. 2. The actual prediction variance 
is relative to the correct variogram, y 1• All entries are in terms of the distance e, as e l 0. 
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0.1 
0.01 
0.001 

Table 3. Numerical Values of Prediction Variances 

Presumed based on the model 

2.0821 X 10-2 

2.3706 X 10-5 

2.3971 X 10-8 

Incorrect, ( 2y 112) 

2.6739 X 10-2 

2.4383 X 10-5 

2.4039 X 10-8 

Stein and Handcock 

Actual based on 
the model 

Incorrect, (2y 1; 2 ) 

2.1107 X 10-2 

2.3765 X 10-5 

2.3977 X 10- 8 

Note: Each entry gives the variance of the prediction error when predicting Z( 3E) for the situation 
described in Fig. 2. Refer to Table 2 and Example 2 for definitions of 2y 1; 2 and y 1• Actual 
prediction variances under 2y 1; 2 are relative to the correct variogram, y 1• Actual prediction 
variances under y 1 are, of course, the same as the presumed values given in the second 
column. 

is not satisfied for E sufficiently small. This could be interpreted as indicating 
that 'YI ; 2 is not "close" to 'YI for sufficiently small E. For this specific prediction 
problem (Tables 2 and 3), this is not the case. This emphasizes the essential 
role that locations of observations play in interpretation of these neighborhoods. 
Moving the observations closer together increases the condition number, so that 
Eq. (13) will not be satisfied forE sufficiently small. As this example indicates, 
predictions under two variograms can be similar even when Eq. (13) is not 
satisfied. 

Example 3 

Consider a stochastic process Z( ·) defined on [0, 1] with constant un­
known mean and variogram 'Yo(x) = x. Suppose observations are taken at 0, 
1 IN, 2 IN, · · · , (N - 1) IN and the value of Z(l) is to be predicted. The 
kriging predictor is 

il = z(N ~ 1) 
Suppose that 'Yo is misspecified by 

for 0 :5 x :5 1 

where 0 :5 C¥ :5 1 is given. Under 'Y "'' the kriging predictor is 

(N- 1) Z2 = ( 1 - (3 )Z ---;:;- + (3Z( 0) 

where (3 = C¥ I [ C¥ + N( 2 - C¥)]. By Theorem 13 (lbragimov and Rozanov 
1978, p. 99), 'Yo is compatible with 'Ya on [0, 1 ]. Hence, asymptotically similar 
predictions can be expected. As N --> oo, (3 t 0 so that Z2 becomes decreasingly 
dependent on the relatively distant Z( 0). Predictions under 'Yo and 'Y"' (Table 4) 
clearly converge quickly for any 0 :5 C¥ :5 1. All of these results are consistent 



'fable 4. A Comparison Between the True Variogram and a Misspecified Variogram 

Actual covariance 

Presumed covariance Linear ('Yo) Quadratic ( 'Y a) 

Linear 2/N 2/N- a/N2 

Quadratic 2(2 - a)2N- 2a2 + Sa 2(2- a) 

(2 - a)2N 2 + 2a(2 - a)N + a2 (2- a)N +a 

2 2a I ( I ) 
= N- (2 --a) . N 2 + 0 N 3 

2 2a
2 

I ( I ) 
= N + (2 - a)2 • N 2 + 0 N 3 

Note: Each entry gives the variance of prediction error when predicting Z( I) for the situation described in Example 3. The presumed covariance function 
is used to compute the kriging predictor [see Eq. (2)]. and the actual covariance function is used to compute the variance of the error of that 
predictor. Values in the last row are asymptotic expansions, to allow easy comparisons. 

;.. 
'J> 
'< 
3 
'a 
:a ;:;· 
::; 
0 

l 
"' 0 ... 
~ .., 
~· ::r 
~ 

..... 
"" --.l 
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with the compatibility paradigm. Using the DA neighborhood paradigm, 'Ya E 

Na;2( 'Yo) and vice versa. TheDA bounds for differences in kriging weights and 
prediction variances are compared to the actual differences for a = 0.0002 and 
N = 2, 5, 10, 25, 45 (Table 5). This small value of a is chosen so that Eq. 
(13) is satisfied and the DA bounds are defined. In this situation, the asymp­
totics give a good approximation for as few as two points (columns 3 and 5). 
The actual differences are based on the formulas 

IIAXII2 = 2(32 + a2 "=" a2(a2- 4a + 12) 
4N2 4(2 - a)2 

N 2 

2a2(N - 1) 2a2 

a 2 
- a 2 

= 2 "=" 2 
'Ya 'Yo (2 - a) N3 + 2a(2 - a)N2 + clN (2 - a) N 2 

using the notation of DA. Note that II AXIl goes to zero like 1/N and a;a 
a;o goes to zero like 1 / N 2 as N --+ oo. The comparison between bounds and 
actual differences should be made for fixed locations (i.e., fixed N). This table 
indicates that, for any particular value of N, the bounds are so conservative as 
to be meaningless and, furthermore, as N grows, the bounds tend to increase 
whereas the actual differences decrease rapidly. 

The bounds, of course, are correct and could possibly be attained by some 
member of Na; 2( 'Yo) for some set of observations and quantity to be predicted; 
the difficulty lies with the choice of a-neighborhood definition. As is noted by 
DA, these bounds can be extremely conservative. What is clear from this ex­
ample, however, is that the bounds indicate the situation gets worse as N in­
creases, whereas, in fact, the situation rapidly improves. Hence, the DA neigh­
borhood paradigm, by attempting to include all possible variograms in the a­
neighborhood, does not describe the situation correctly. It does not represent a 
meaningful partition of the variogram models; members of different a-neigh­
borhoods easily can produce similar predictions (e.g., Examples 2 and 3) and 
the bounds obtained for members of the same a-neighborhood easily can be 

Table 5. Numerical Comparison of Diamond and Armstrong Bounds to Actual Differences 

IIL1XII I a;oooo2 - a~o I 

N Bound Actual value Bound Actual value 

2 6.747 X 10-4 7.501 X 10-9 1.633 x w-' 2.5oo x w-9 

5 1.604 X 10-2 1.200 X 10-9 4.086 X 10-2 6.401 X 10-IO 

10 4.089 x w- 2 3.000 X 10-IO 1.351 X 10- 1 1.800 X 10- 10 

25 4.562 x w- 1 4.801 x w-ll 2.304 3.073 x w-ll 

45 5.871 1.482 x w- 11 3.954 X 101 9.659 x w- 12 

Note: Refer to Table 4 and Example 3 for definitions of bounds and method of calculating exact 
actual differences. 
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misleading. A more meaningful neighborhood definition is the neighborhood of 
all variograms compatible with the given variogram. Hence, when estimating 
variograms, a procedure should be used that is able to distinguish strongly be­
tween variograms that are not compatible and choose a variogram that is 
"nearly" compatible with the true variogram. 

Explanation of Examples from Warnes (1986) 

Warnes (1986) has investigated how prediction surfaces change when the 
variogram model is perturbed. His results (p. 665-669) can be explained easily 
in terms of compatibility. Let 'Ye(x; a, <T 2

) = <T 2( 1 - e-x/a) denote the ex­
ponential variogram class. Then, 'Y e(x; 2, <T~) is compatible with C)' e(x; a, <T~) 
if and only if c = (a<Ti) I (2ai). Warnes finds that the predicted smface for an 
exponential variogram with a = 2 is close to the predicted surface for an ex­
ponential variogram with other values of a. Indeed, the compatibility results in 
the second section show that predictions are asymptotically the same and pre­
diction error variances will be approximate multiples of each other. 

Let 'Yc(x; a, <T 2
) = a 2

( 1 - e-x
2
/a

2
) denote the so-called "Gaussian" 

variogram class. Then, 'Yc(x; a~> <T~) is compatible with C"fc(x; a2 , <T~) if and 
only if a1 = a2 and c = ai I <T~ (Ibragimov and Rozanov, 1978, p. 95). Gaussian 
models with different range parameters cannot be made compatible by multi­
plication by a constant, so Eq. (5) does not apply for Gaussian models with 
different range parameters. Warnes finds the predicted surface for the Gaussian 
with a = 2 and compares it to models with a varied. He finds that even small 
changes in a produce substantially different prediction surfaces, which is not 
surprising in light of the incompatibility of these models. Finally, Warnes com­
pares the exponential model with a = 2 to the Gaussian with a = 2. As these 
models are always incompatible and because one corresponds to a nondiffer·· 
entiable field and the other to an infinitely differentiable field, the predicted 
surfaces are vastly different. 

CONCLUSIONS 

The effect of using an incorrect covariance function on kriging has been inves­
tigated by an asymptotic approach in which the number of observations in some 
fixed bounded region tends to infinity. Stein (1988) showed that the impact of 
using an incorrect covariance function is asymptotically negligible if the co­
variance function used in the kriging procedure is compatible with the true co­
variance function. These general results show that the commonly used spherical 
covariance function is an inappropriate model for most three-dimensional fields. 
The perturbation paradigm of Diamond and Armstrong ( 1984) is shown to result 
in substantially different conclusions than the paradigm based on compatibility 
considerations. Finally, the compatibility approach is used to clarify some ex­
amples of W ames ( 1986). 
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