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This article is concerned with predicting for Gaussian random fields in a way that appropriately 
deals with uncertainty in the covariance function. To this end, we analyze the best linear 
unbiased prediction procedure within a Bayesian framework. Particular attention is paid to 
the treatment of parameters in the covariance structure and their effect on the quality, both 
real and perceived, of the prediction. These ideas are implemented using topographical data 
from Davis. 
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1. INTRODUCTION 

In this article we consider a modeling approach 
for spatially distributed data. As an illustration of 
the types of problems addressed, consider the spa­
tially distributed data in Figure 1. The data are 52 
topological elevations over a small area on the north­
ern side of a hill. The data were measured by a sur­
veying class, using a plane table and alidade. Davis 
(1973) was interested in the analysis of maps and 
used the survey to produce contours of the region. 
An important feature is the small streams running 
northward down the hill and joining together at the 
base of the region. 

How should we analyze the data if our objective 
is to predict the elevations within the region sur­
veyed? The perspective taken is that the actual el­
evations at each possible survey location (i.e., north­
ing and easting from a reference point) taken together 
are a realization from a particular stochastic process. 
The general process is described in Section 2. Based 
on the observed data at the 52 locations and this 
statistical model, a prediction of the elevation at 
unobserved locations can be made. Just as important 
from our perspective, an estimate of the uncertainty 
of that prediction can be derived from the model. 

The statistical model is seldom exactly known be­
forehand and is usually estimated from the very same 
data from which the predictions are made. The ob­
jective of this article is to assess the effect of the fact 
that the model is estimated rather than known on 
the prediction and the associated prediction uncer­
tainty. We describe a method for achieving this 
objective. 

For example, suppose that we wish to predict the 
elevation at which the streams join at the base of the 
hill. We actually have an observation there, indicat-
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ing that the elevation is 705 feet, but we will ignore 
it at this point except to use it to check our prediction. 
The commonly used method of maximum likelihood 
for estimating the best model suggests that the true 
elevation has a 95% chance of being in the interval 
( 699, 707) feet. This interval only represents the un­
certainty in the prediction given this particular esti­
mated model and does not represent the uncertainty 
in estimating the model itself. When this is accounted 
for, using the method described in the next sections, 
the Bayesian 95% prediction interval is (694, 713) 
feet. The posterior probability content, incorporat­
ing the model uncertainty, of the maximum likeli­
hood interval is 73%. Similar inaccuracies are to be 
expected when the estimated uncertainties are based 
on alternative point estimates of the model. 

We conclude that in many practical situations this 
uncertainty has a large impact on the estimated un­
certainty of the prediction and a lesser effect on the 
predicted value itself. If there is little information 
about the model in the data the approach guards 
against gross error. In situations in which substantial 
previous knowledge of the phenomena exists, the 
approach allows the information to be incorporated 
easily. 

Bayesian analyses of kriging procedures are rela­
tively new. Except for the work of Omre (1987), 
Omre and Halvarsen (1989), and Woodbury (1989), 
there appears to be no work from within the geo­
statistical community using the Bayesian perspective. 
Omre and Halvarsen (1989) described a Bayesian 
approach to predicting the depth of geologic horizons 
based on seismic reflection times. They noted the 
Bayesian interpretation of ordinary kriging and used 
prior information about the mean function only, not 
accounting for uncertainty in the covariance struc­
ture. Of course, the situation is a direct extension of 
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Figure 1. Elevations of the North Face of a Hill From Davis 
(1973), Table 5.11. The aspect ratio in the figure is spatially 
correct. The solid lines indicate the small streams running 
down the hill. Elevations on the streams are indicated by x 
and those not on the streams are marked by a. 

standard Bayesian work in linear models, on which, 
for example, Box and Tiao (1973, sec. 2.7) and Zell­
ner (1971, sec. 7) are textbook references. Both 
sketched results using natural vague prior distribu­
tions for the parameters. Much of the work in Bayes­
ian time series focuses on the estimation of the pa­
rameters of particular autoregressive moving average 
(ARMA) models. Zellner (1971, sec. 5) derived the 
predictive distribution of a future observation from 
a not necessarily stationary AR(1) process. Broemeling 
(1985) gave a discussion of standard regression and 
mixed models. His section 5 extended Zellner's (1971) 
work by using the proper conjugate prior distribu­
tions for autoregressive series. He did not extend the 
work on prediction. All of these analyses assume that 
the ARMA orders are known. The work of Harrison 
and Stevens (1976) and West and Harrison (1986) 
on forecasting using dynamic fully Bayesian models 
is also of interest. The last few years have seen an 
explosion of work in Bayesian time series, especially 
on state-space approaches using the Kalman filter. 
For a summary, consider the essay by Broemeling 
and Shaarawy (1986). Here we will focus on a par­
ametric representation of the covariance structure as 
its direct interpretation is of interest. Nonparametric 
approaches were developed by Le and Zidek (1992) 
and Pilz (1991). An alternative non-Bayesian ap­
proach to covariance parameter uncertainty was given 
by Switzer (1984). What is novel about this article is 
the spatial setting with irregularly observed locations 
and the general treatment of parameters in the co­
variance structure other than location and scale. 

The framework of prediction is developed in Sec­
tion 2. The assumption that the covariance structure 
is known is relaxed and the Bayesian formulation is 
developed in Section 3. The focus is the evaluation 
of the performance of the traditional plug-in kriging 
procedure. This evaluation is illustrated in Section 4 
using topographical data from Davis (1973). 
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2. METHODOLOGY 

2.1 Prediction Using Kriging 

In this section, we present the traditional kriging 
procedure as the basis for the later developments. 
Suppose that Z(x) is a real-valued stationary Gaus­
sian random field on R with mean E{Z(x)} = f(x)'{3, 
where f(x) = {f1(x), ... ,fq(x)}' is a known vector­
valued function and {3 is a vector of unknown regres­
sion coefficients. Furthermore, the covariance func­
tion is represented by cov{Z(x), Z(y)} = aKe(x, y) 
for x, y E R, where a > 0 is a scale parameter, e E 
0 is a p x 1 vector of structural parameters, and 0 
is an open set in [RP. The division is purely formal 
because e may also determine aspects of scale. In 
the general case, we observe {Z(x1), ... , Z(xn)}' = 

z and will focus on the prediction of Z(x0). The 
kriging predictor is the best linear unbiased predictor 
of the form Z8(x0 ) = A( e)' Z-that is, the unbiased 
linear combination of the observations that mini­
mizes the variance of the prediction error. It is 
straightforward to show that the corresponding weight 
vector A( e) defining Ze(xo) is given by 

A(e)' = b~(F'Ki 1 F)- 1F'K0 1 + k~K0 1 , (2.1) 

where F = {.fj(xJ}nxq' ke = {Ke(Xo, xJ}nx1, Ke = 

{K8 (x,, xJ}nxn' and b8 = f(xo) - F' Kf! 1ke. 
In the example, x = (x1, x2 ), and we can take / 1 (x) 

= x1 and fz(x) = x2 , the northing and easting of the 
survey locations, respectively. A third component of 
the mean will be added in Section 4. The covariance 
function represents the covariance between the el­
evation at the survey locations x = (x1, x2 ) andy = 
(yl, y2). 

2.2 Assessing Uncertainty in Kriging 

The quality of the prediction is determined by 
the distribution of the prediction error, e8(x0 ) 

Z(x0) - Z8(x0). Note that the prediction weights 
A( e)' do not depend on a or {3. Under our Gaussian 
model, for fixed a, {3, and e, the conditional distri­
bution of Z(x0) and e8(x0 ) given Z are 

Z(xo)IZ ~ N(k~Ke- 1 Z + b~{3, 

a{Ke(x0 , x0 ) - k~Ki 1 k 8}) 

and 

ee(xo)IZ ~ N(b~({3 - ~(e)), 

a{K0(x0 , x0 ) - k~K; 1 k0}), 

where ~(e) = (F'K; 1F)- 1F'K; 1Z and N(-, ·)de­
notes the Gaussian distribution. The sampling (or 
unconditional) distribution for e0(x0 ) is 

(2.2) 
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whereV8 = K 8(x0 ,x0)- k~Ki 1 k8 +b~(F'K0 1 F)- 1b8 
and a V8 is the usual prediction error variance as given 
by Ripley (1981). 

Note that the underlying kriging procedure is mo­
tivated by sampling considerations, producing point 
predictions and associated measures of uncertainty 
for those predictions both based on sampling distri­
butions unconditional on the observed Z. Kriging, 
however, when the mean is of known regression form, 
can be given a Bayesian interpretation. Tradition­
ally, it is assumed that the covariance function is 
known exactly and the investigator has little knowl­
edge about f3 prior to analyzing the data. The under­
lying kriging approach usually presumes ignorance 
about f3 and the unrelatedness of {3 to the behavior 
of the covariance function. This latter philosophy will 
be followed throughout the article. Under these as­
sumptions, an appropriate prior distribution has 
pr(f3ia, 8) locally uniform. The posterior distribution 
of {3 is then 

f3la, e, z ~ Nq({3(e), a(F' KH-IF)- 1). 

The posterior distribution of the prediction error is 
then 

pr( ee(x0 )la, 8, Z) 

ex J/3 pr(ee(x0)la, {3, 8, Z) pr(f3ia, (}, Z)df3, 

which is, by direct calculation, 

e8 (x0 )la, 8, Z ~ N(O, aV8 ), (2.3) 

the same as the sampling distribution (2.2). Similarly 
we have 

Z(x0)la, 8, Z ~ N(Z8(x0 ), aV8), (2.4) 

where Ze(x0) = k~Ki 1 Z + b~{3( 8) is the usual krig­
ing point predictor. These distributions form the ba­
sis for all inferential statements about the prediction 
and prediction error. Hence, except for the usual 
differences in interpretation, we end up with the same 
analysis as the traditional approach. This comparison 
may be loosely stated as follows: Ordinary kriging is 
"Bayesian" with the noninformative prior for the 
mean parameter. 

3. KRIGING WITH UNKNOWN 
COVARIANCE PARAMETERS 

In this section, the assumption that the covariance 
function is known exactly is relaxed to allow the co­
variance function to be unknown but still a member 
of the parametric class 0. 

In traditional kriging, one estimates a and (} by 
either likelihood methods or various ad hoc ap­
proaches. The likelihood approach to the estimation 
of the covariance structure was first applied in the 

hydrological and geological fields following Kitanidis 
(1983), Kitanidis and Lane (1985), and Hoeksema 
and Kitanidis (1985). An article by Mardia and Mar­
shall (1984) is a standard reference in the statistical 
literature. Usually the predictor and the behavior of 
the prediction error are themselves estimated by 
"plugging in" the estimates to (2.1) and (2.2). If(} 

is known so that only the location parameter f3 and 
the scale parameter a are uncertain, then we are in 
a standard generalized least squares setting. The dis­
tinction between the generalized least squares setting 
and the random field setting is the uncertainty in the 
structural parameter 8. Although the restriction to a 
parametric class is a significant assumption, it still 
allows great latitude. 

Because f3 is a location parameter, we expect that 
our prior opinions about {3 bear no relationship to 
those about a and a priori might expect a and {3 to 
be independent, leading to the use of Jeffreys's prior. 
Partly for convenience, the form of the prior used 
here will be 

pr( a, f3, 8) x pr( 8)/ a. 

It easily follows from Zellner ( 1971) that the predic­
tive distribution of Z(x0 ) conditional on (} and Z is 

Z(x0)IB, Z ~ tn-q(ze(x0 ), _n_ a(8)V8), (3.1) 
n - q 

a shifted t distribution on n - q df. 
The marginal posterior distribution of (} can be 

shown to be 

pr( BIZ) x pr( 8) 

·IKei- 112IF'Ki 1FI- 112a(e)-<n-q)!2 • (3.2) 

The Bayesian predictive distribution for Z(x0 ) is 
pr(Z(xo)IZ) x fepr(Z(x0)le. Z) · pr(BIZ)de, where 
the integrand is given by (3.1) and (3.2). Because 
the dependence of K 8 on (} is not specified, this 
expression cannot be simplified, and further explo­
ration will in general require numerical computation. 
If prior information is available, it may be directly 
incorporated into (3.2), although additional numer­
ical integration may be necessary if prior dependen­
cies among (a, {3, 8) are envisaged. 

Suppose that we use an estimation procedure to 
select the parameters (a, 0) of a covariance struc­
ture. These may be arrived at by any procedure, 
although the usual methods are maximum likelihood 
weighted least squares or one derived from empirical 
correlation functions. The distribution that an in­
vestigator would use as a basis for inference about 
Z(xo) would_be Z(x0)la, 8, Z ~ N(Z0(x0 ), aV8), plug­
ging in (a, 8) for (a, e) in (2.4). 

Depending on the influence of (}on the spread and 
location of pr(Z(x0 )IB. Z), the Bayesian predictive 
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distribution might be wider or narrower than the 
plug-in predictive distribution. The location of the 
plug-in predictive distribution may also be quite dif­
ferent from the Bayesian predictive distribution. 
Typically, the Bayesian predictive distribution will 
have no simple analytic form and must be determined 
numerically. The difference between the plug-in and 
Bayesian predictive distributions represents the dif­
ference in inference between the traditional kriging 
approach and the full Bayesian approach. 

Note that the plug-in prediction error, eo(x0 ) 

Z(x0 ) - Z0(x0), is just a shifted version of Z(x0), so 
comparisons of performance of the plug-in estimates 
will be the same whether we consider Z(x0 ) or eo(Xo)­
We could interpret this as a comparison between the 
plug-in distribution for e0(x0 ) and the actual distri­
bution for eo(x0 ) under the full Bayesian model, al­
though the latter distribution would not be used for 
inference. 

The Matern Class of Covariance Functions 

In this section, we describe a general class of co­
variance functions that we feel provides a sound 
foundation for the parametric modeling of Gaussian 
random fields. The class is motivated by the smooth 
nature of the spectral density, the wide range of be­
haviors covered, and the interpretability of the pa­
rameters. It will be used throughout the later sec­
tions. The properties of the covariance function 
directly determine the properties of the random-field 
model. The Matern class is characterized by the pa­
rameter (} = ( (}1 , (}2). (} 1 > 0 is a scale parameter 
controlling the range of correlation. The smoothness 
parameter (}2 > 0 directly controls the smoothness 
of the random field. The Exponential class corre­
sponds to the subclass with smoothness parameter 
(}2 = t that is KE(x) = exp(- x!e;). The subclass 
defined by (}2 = 1 was introduced by Whittle (1954) 
as a model for two-dimensional fields. It is commonly 
used in hydrology (Creutin and Obled 1982; Jones 
1989; Mejia and Rodriguez-lturbe 1974). As (}2 ~ 

c:YJ, K 0(x) ~ exp(- x2/(}T), often called the "Gaussian" 
covariance function. We shall refer to it as the Squared 
Exponential model. This model forms the upper limit 
of smoothness in the class and will rarely represent 
natural phenomena because realizations from it are 
infinitely differentiable. 

The isotropic correlation functions have the gen­
eral form 

Ko(x) = 2e,- 1
1f(e2 ) • (:;)

8

' 'Xo, (;J, 
where e; = (}1/(2v'8;) and 'X8 , is the modified Bessel 
function of order (} 2 discussed by Abramowitz and 
Stegun (1964, sec. 9). 
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A field with this covariance function is f (}2 - 1 
times (mean-squared) differentiable, where r is the 
integer ceiling function. The realizations will have 
continuous r (}2 - 1 derivatives if (}2 > r (}2 - ~- If the 
field is Gaussian, the realizations will have contin­
uous I (}2 - 1 derivatives (almost certainly) (see Cramer 
and Leadbetter 1967, sees. 4.2, 7.3, and 9.2-9.5). 

All calculations of 'X0, in this work use the RKBESL 
algorithm from the SP"ECFUN (Cody 1987) library 
available from NETLIB (Dongarra and Du Croz 
1985). A general treatment was given in the seminal 
work by Matern (1986). 

4. AN ANALYSIS OF DAVIS'S 
TOPOGRAPHICAL DATA 

In this section, we analyze the data introduced in 
Section 1, originally from Davis (1973). It was stud­
ied by Ripley (1981, pp. 58-72) and subsequently 
by Warnes (1986), Warnes and Ripley (1987), Ripley 
(1988, pp. 15-21), and Mardia and Watkins (1989). 
The original data were scaled so that 50 yards in 
location correspond to one map unit. We will use 
the more natural units of yards, although the later 
references continued the original scaling. The survey 
locations are recorded to two significant figures and 
the elevations to three significant figures. 

The major assumptions implicit in the model are 
stationarity of the Gaussian random field, isotropy 
of the correlations, and the correct specification of 
the mean. These are interdependent so that checking 
them individually is usually not the best approach. 
There are available methods to test if the marginal 
distribution of the observations is Gaussian. It is dif­
ficult to determine, however, if the joint distribution 
of the observations is Gaussian in the presence of an 
unknown correlation structure. In particular, the 
marginal distribution of the observations give little 
guidance to the joint distribution. The realizations 
of the random field can be assumed to be smooth, 
at least continuous, and maybe even differentiable. 
Given the nature of the data and the measurement 
procedure, it will be assumed that the measure­
ment error is small so that the (observed) field is 
continuous. 

As indicated in Section 2, the mean function should 
clearly include the northing and easting of the survey 
locations. In addition, there is information in the 
locations of the streams that should be taken into 
account. One crude way is to include, as f 3(x), the 
horizontal distance of the survey point to the closest 
stream. 

One of the most common methods for fitting a 
covariance model to data is to match by eye a the­
oretical curve to the empirical correlation plot of the 
detrended observations. This guide to intuition is 
very dubious for four reasons. First, the values in 
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the plot are very highly correlated so that the addi­
tional information in the latter points is very small. 
Second, each point is based on the average of greatly 
differing numbers of pairs of points. Third, misspeci­
fication of the mean function will have a big effect 
on the points at medium to large lags. Fourth, fitting 
by eye is particularly inappropriate for smooth pro­
cesses. If the field is differentiable, ()2 > 1, then the 
slope at the origin of the correlation function will be 
zero. Thus the smoothness of an underlying differ­
entiable field will be difficult to determine based on 
the empirical correlation plot. 

The Exponential model, although providing a rea­
sonable initial covariance class, does not allow the 
field to have differentiable realizations. Given that 
a priori the form of the covariance is unknown, it is 
unreasonable to exclude the possibility of smoother 
random fields. Handcock (1989) undertook an anal­
ysis based on the much richer Matern class. It was 
shown that the corresponding likelihood surfaces were 
unimodal, and the class appears to be an appropriate 
model for this topographical data when the mean 
function included the northing and the distance to 
the closest stream. As the model for the mean func­
tion became more sophisticated, the estimated co­
variance structures became shorter ranged and 
smoother. In addition, the uncertainty in the parame­
ters increases. 

4.1 Posterior Knowledge Based on a 
Flat Mean 

Initially we will entertain the model with a constant 
mean. The marginal posterior for the smoothness pa­
rameter based on the uniform prior for the smoothness 
and range parameters is given in Figure 2. 
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Figure 2. Posterior Distribution for the Smoothness Pa­
rameter Based on the Matern Model With Constant Mean. 

The mass of the distribution is between ()2 = 0.5 
and ()2 = 1.5. The mode is slightly below ()2 = 1, 
which corresponds to Whittle's covariance function 
(Whittle 1954, 1962). Interestingly, Whittle regarded 
this model as the natural extension of the Exponential 
model, ()2 = L from one to two dimensions. It cor­
responds to a random field with continuous reali­
zations that are on the margin of mean-squared dif­
ferentiability. For ()2 > 1 the field is mean squared 
differentiable. It is interesting to note that the ratio 
of the density at the mode to the density at the Ex­
ponential model is about 5:1, so the Exponential 
appears too rough for this field. Such posterior den­
sities are a useful tool for describing and understand­
ing the behavior of the phenomena underlying the 
data. 

Of course, alternative prior distributions can easily 
be used. One could express prior knowledge about 
({3, a) by taking the marginal prior of ({3, a) to be 
the usual Gaussian-gamma conjugate prior from 
generalized least squares. An informative prior for 
()2 could deemphasize smoothnesses less than a half 
or much greater than two, the rationale being that 
we do not expect the realizations to be discontinuous 
or much smoother than twice differentiable. Such a 
prior distribution would have little effect on the pre­
dictive distribution as the likelihood places little weight 
on smoothness values in that range. 

4.2 Bayesian Prediction Based on the 
Matern Class 

The location chosen to be predicted is the center 
of the region [at (150, 150) on Fig. 1]. It was chosen 
to be reasonably distant from the survey locations. 

Figure 3 presents the predictive densities based on 
the Matern model with constant mean function. The 
plug-in predictive distribution based on the maxi­
mum likelihood estimator (MLE) (a, 0) = (3900, 
192, 0.97), is Gaussian centered at 817 feet with a 
standard deviation of about 20 feet. It is quite close 
in shape to the Bayesian predictive distribution under 
the model. Hence probability regions based on this 
plug-in predictive distribution will be similar to those 
under the Bayesian predictive distribution. 

4.3 Assessing Particular Covariance Functions 

Ripley (1981) investigated covariance functions 
based on fitting by eye the empirical correlation func­
tion. The model suggested by Warnes and Ripley 
(1987) and Ripley (1988), again based on empirical 
correlation plots, is Exponential with standard de­
viation 65 feet and range 2 units [ (a, 8) = ( 4225, 
141, 0.5) in our notation] and constant mean. The 
plug-in predictive distribution based on this estimate 
is Gaussian centered at 820 feet with a standard de­
viation of about 39 feet (Fig. 3). Probability intervals 
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Figure 3. Predictive Distributions Based on the Matern Model 
With Constant Mean: --, Bayesian · · · -, Based on a Fit 
by Eye; - · -, Based on the MLE. The plug-in distributions are 
based on the MLE and the value suggested by Warnes and 
Ripley (1987). 

based on this plug-in predictive distribution will 
markedly differ from those based on the Bayesian 
predictive distribution. The latter is a better reflec­
tion of the uncertainty in the covariance structure 
and should be regarded as a superior reference for 
inference. For example, the Bayesian 95% predic­
tion interval has nominally 71% probability under 
the plug-in predictive distribution. Alternatively, the 
nominally 95% interval for the plug-in predictive dis­
tribution actually has 99.96% probability. 

4.4 Incorporating Additional Information in 
the Mean 

The model with a constant mean may be inade­
quate as compared to the models including the survey 
locations and distance to streams as regressors be­
cause of nonstationarity in the mean (Mardia and 
Watkins 1989). The location chosen to be predicted 
at is the surveyed location closest to the most north­
ern junction of the stream [at (180, 300) on Fig. 1]. 
It was chosen to be reasonably close to the other 
survey locations. The models will be developed with­
out this location, and the elevation there will be used 
as a check on the predictions. 

Figure 4 is the profile log-likelihood surface under 
this model. Figure 5 presents the predictive densities 
based on the Matern model with this more sophis­
ticated mean function and a uniform prior on the 
smoothness and range parameters. The plug-in pre­
dictive distribution based on the MLE, (a, e) = (955, 
68, 7.8), is Gaussian centered at 703 feet with a stan­
dard deviation of about 2.1 feet. The effect of the 
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Figure 4. Profile Log-likelihood for the Matern Model With 
Mean Based on the Northing and the Distance to Closest 
Stream: +,Matern MLE,· x, Squared Exponential MLE. The 
observed elevation at this location is represented by the small 
horizontal bar reflecting the recording accuracy. 

additional regressors is to substantially reduce the 
variability of the predictive distributions. 

Three alternate plug-in predictive distributions 
based on the MLE's under the Exponential and 
Squared Exponential classes and the maximum a pos­
teriori (MAP) Matern value are also represented. The 
plug-in distributions differ substantially from the 
Bayesian predictive distribution. Smoother esti­
mated models correspond to less perceived uncer­
tainty in the prediction. For example, the nominally 
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Figure 5. Predictive Distributions Based on the Matern Model 
With Mean Using the Northing and the Distance to Closest 
Stream: -, Bayesian; ····, Exponential MLE; -·-, Matern 
MAP,·--, Matern MLE; -···,Squared Exponential MLE. 
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95% confidence interval under the maximum like­
lihood Matern model has 73% posterior probability 
content. 

4.5 Sensitivity to Prior Specification 

How sensitive is our inference to the choice of 
prior distributions? In these examples a prior distri­
bution uniform on the positive values of the smooth­
ness parameter is used. Alternatively one could use 
the prior 

1 
pr( 8z) = ( 1 + 8z)2 

reflecting the belief that larger smoothness values 
are a priori less likely than smaller values. Physically, 
the belief is that the field is more likely to be one or 
two times differentiable rather than, say, 101 times. 
This prior is uniform for 82/(1 + 82 ) on [0, 1]. 

Figure 6 compares the Bayesian predictive distri­
bution using this prior deemphasizing larger smooth­
ness values to the uniform prior used in Figure 5. 
The effect is to increase the uncertainty in the pre­
diction, in line with the less smooth models. The 
influence appears to be insensitive to moderate changes 
in the prior for 82 • Based on figures not presented 
here, we find that using a uniform prior for a instead 
of the usual 1/a results in a predictive distribution 
with slightly thinner tails and that the predictive dis­
tribution is insensitive to changes in the prior for {3. 

Although the MLE is a good representative value, 
the overall flatness of the likelihoods would suggest 
against choosing any particular member as the "truth." 
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Figure 6. Predictive Distributions Based on the Matern Model 
Under a Uniform Prior and a Prior Deemphasizing Larger 
Smoothness Values: · · · ·, Prior Deemphasizing Smoothness; 
-, Based on Uniform Prior. The observed elevation at this 
location is represented by the small horizontal bar reflecting 
the recording accuracy. 

Clearly we need additional information before we 
can choose between members of the same class. The 
same comments apply to the choice of mean model. 
It is tempting to base the decisions on the changes 
in log-likelihood. It is still an open question as to the 
validity of this procedure in the face of the interde­
pendence of the mean and covariance structures. 

5. CONCLUSION 

The kriging procedure is often described as opti­
mal (Matheron 1965) because it produces optimal 
predictions when the covariance structure of the ran­
dom field is known. If the covariance structure is not 
known and needs to be estimated, then this primary 
motivation for kriging is in question. It is then nec­
essary to assess the effect of the fact that the model 
is estimated rather than known on the prediction and 
the associated prediction uncertainty. In this article, 
we have seen that the Bayesian paradigm provides 
a framework in which to analyze the performance of 
the estimated kriging predictor. 

In conclusion, a better approach would be to base 
inference on the Bayesian predictive distribution. This 
approach takes into account the uncertainty about 
the covariance function expressed in the likelihood 
surface and ignored by point estimates of the covari­
ance function. It also allows the performance of the 
usual plug-in predictive distribution based on an es­
timated covariance structure to be critiqued within 
a wider framework. The results also suggest that fit­
ting the empirical correlation function by eye may 
lead to plug-in predictive distributions that differ 
markedly from the Bayesian predictive distribution. 
The MLE may be the best single representative avail­
able, but this reduction itself can be detrimental to 
the inference (see Fig. 5). 

(Received March 1990. Revised December 1992.] 
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