
D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
W
a
s
h
i
n
g
t
o
n
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
2
3
:
4
3
 
2
 
O
c
t
o
b
e
r
 
2
0
0
9

COMMUN. STATIST.-THEORY METH., 20(2), 417-439 (1991) 

ON CASCADING LATIN HYPERCUBE DESIGNS 
AND ADDITIVE MODELS FOR EXPERIMENTS 
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ABSTRACT 

This paper is cm,ccrned with aspects of the design anJ analysis of com· 

puler experiments It hils been motivated by issues in the experi111ental design 
or integrated-circuits. Suppose \\"C \\·ish to model the behavior of a complex 

pwcess as a function of se\eral factors .. \n appealing approach is to model 

the response of the as a stochastic process ( Sacks, Welch, I\Iit'chell and 

\Vynn (19S9)). Often much of the v:uiation in the response can be accounted 
for by an additive function in each of the fc1ctors. In this paper we consider a 
promising ndditive stocha.stic model proposed by Stein (1989). 

\Ve introduce Cascading Latin bypcrc1!bc designs as an efficient basis 

for statistical inference on the sloch<lslic structure when the number of initial 

inputs is large. Comparison:< a.re made to simple random designs, Faure ( 198:2) 
designs and ordinary La.tin hypercube designs. The results proYide insight into 

the op!.imnl deO'ign under such models. 
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418 HAND COCK 

1. INTRODUCTION 

1\fany experiments that aim to improve the quality of products can be 
placed within the framework of unclerstamling the relationship between a re-
sponse y(-) and a d-vector of input factors x. For example, y(.r) might be 
the propagation delay of an experimental logic circuit dependent upon the 
physica.l design parameters. The experimenter can choose the design points 
so as to optimize, in some sense, over the response surface or better under-

stand the influence of each of the input factors. There is an extensive and rich 
literature on this subject (Box, Hunter and Hunter (1978), Box and Draper 
(1987) ). 

Recent research has considered modeling the response y(x) as a rea.liza-
tion from a random field Y(:r). This approach integrates icleas from spatial 

statistics and response surface methodology. In the forefront of this approach i,; 
work on the design and analysis of computer experiments ( cf., Currin, 1\litcheJL 
:-Torris and Ylvisaker (1988) and Sacks, Schiller and 'Nelch (1989)). The pa-
per of Sacks, Welch, Mitchell and \Yynn (1989) and it's discussants, provide 
a introduction to the ideas. 

This paper investigates aspects of the design and analysis of experiments 

for quality improvemertt within the framework of Sacks, \\'elch, J\Titchell and 
Wynn (1989). 

2. MODELING APPROACH 

l ,r-·t y( :c) he a real-valued response to a d -vector of input factors x E 

[{ \\'e clloose to model y(Jc) as a realization from a random field Y(x) . 
. '\ltlJOugll ) mily he ;t deterministic function of .r. this approach can be 

rat iona.lized within a frame\\'Ork ( cf., Currin, .\Ii tchell, \lorris and 
Yl visaker ( 1988)). from ct pragmatic pers pcctiYe it is essential to choose a 
class of random fields tha.t is flexible enough to capture the behaYior of y(:r). 
In order to focus on other modeling issues, we will assume Y(x) is a Gaussian 
random field. 

The experiment consists of choosing n sets of values of the design factors 

x1, ... , Xn according to a design criterion, and then determining the responses 
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LATIN HYPERCUBE DESIGNS AND ADDITIVE MODELS 419 

to these set of factors: {y(:r1), ... , y( }' = Y. \Vc address only single-step 

designs, perhaps considered as one stage of a sequential design. 

A central issue in the random field approach to modeling response sur-
faces is the choice of the class of covariance structures for Y( x ). For a Gaussian 

random field \Ye need only specify a mean function and covarinnce structure 

to specify the random field cotn[Jlete!Y. Suppose Y(:r) has mean 

E{Y(:r)} = f'(.r:)3, 

where f( x) = {h ( .r ), ... , fq ( .1:) }1 is a known fnnction, ;'J is a vector 
of unknown regression coefficients. Furthermore, the cm·ariancc function is 

represented by 

cov{Y(.r), Y(w)} = of\o(:c. 11') for . wE R 

where n > 0 is a. parameter. 0 E G i:; a q x l vector of structural parameters 

and 8 is an open set in IRP The d i \'ision is purely formal as () may also 

determine aspects of scale. 

2 · 1 The :Matern Class of Covariance Functions 

In this section we describe a general class of covariance functions that can 

provide a sound foundation for tlie pa.ramet.ric modeling of Gaussian random 

ftelds. The spectra.! density on IH'1 has the getteral form 

The corresponding isotropic covilriance functioas hcn·e the form 

where ()1 > 0 is a scale parameter controlling the range of correlation and 

()2 > 0 is the parameter controlling the smoothness of the field. Ke, is the 
modified Bessel function of order fh discussed in A bramo\\'it z and Stegun 

(1964), 
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420 HANDCOCK 

This class of covariance functions is moti\'ated by smooth spectral den-

sities, a wide range of behaviors characteri;;;ecl, interpretable parameters and 

a number of interesting subclasses. The Exponential class corresponds to the 

sub-class with smoothness parc1meter (h = 1/2, that is 

The oub-class defined by fh = l was introduced \\'hittle ( as a model 

for two dimensional fields. 1\'rJtc that the cov;uiancc functiuns are always 

positive, so that the class j, >IBjJpropriatc for fields with negari,·e correlations. 

t\ general treatment is given in illrc seminal \York bv :\Iatern ( 1Uri6). 

Tl1e calcuhtwn of !Cu for non-integral 02 is difficult. "\ll cal-

culations of in t.his ''ork use Amm; (1936) ;c,igoritiJm. 'While the 

calculation is rcla.tin· to the ;,thcr forcl!S of covari;,nce functions, 

this cm:t is to the other computing costs in\'olved in the 

Consider the beh:n,ior tl''' uf titcse cova.riance ftmctious. Dt•j!nc 

c(l!l =,· !)' / 

lf 02 is an integer, 

ex; 

.I+ { 0;(0 }+ I:{:Lb]( 
;=0 

1 + -+ ;L_i + 
;=1 

where nrc functions uf 0 alonP As 02 directly 

n. it colltrols the smoothness 

of the under!yi1•g field in the scP"c that a field witl1 this coYi1riance funciion 

lS [02) times (mciHr-sqlt,JTe) rl;fl'ere!1tinble (Crami'·r and Leadbetter (l9G"7)). 
As fh incrc;,sec; ilre fidd becomr·s locally smooth. Tn addition as 

i\.ll infinitely differentiable field with correlation 
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LATIN HYPERCUBE DESIGNS AND ADDITIVE MODELS 421 

function, 

(:2.1) 

If Z(x) is a Gaussian random field on IRd with covanance function 

1\e(x) then it satisfies the stochastic partial differential equation (Whittle 

(1963)): 

where a 2 = 248'f(0z + d/2)(ftOd/f(Oz) and W(-) is the d dimensional 
Wiener random field. If 02 + d/4 is an integer then this gives a physical 

basis for the covariance. If fh + d/4 is not an integer then the interpretation 

is more problematic. This equation has motivated Jones (1989) to use the 

member with Oz = 1 to model Aquifer Head data and is commonly used in 

hydrology (Iviejia and Rodriguez Iturbe (1974), Creutin and Obled (1982)). 

2 · 2 Inference for the Structure of Y(x) 

Traditionally, one estimates o and {) by either likelihood methods or 

various ad hoc approaches. l\1arclia a.ndl\Iarshall (198'1) is a standard reference 

in the statistical literature. Usually the predictor and the behavior of the 

prediction error are tbemseh·e:o estimated by 'plugging-in· these estimates for 

the underlying values in the defining equations. 

Tbe log-likelihood of o, () and 3 having observed y· is, 

L( o, (3, 0; Y) = -( l/2) [ nln(2ii0) +Ill([ l\el) + (1/ o)(Y- Fp)' K&- 1(Y- F!3)] 

where Ke = {J\e(.ri: :r1 )}nxn• F = and the dependencies upon 11 

have been suppressed. 

L(o, j'J, 0; Y) irwoh·es llte inwTsc and determina11t of the n x 11 rnatri,, 

Ke. As I\e is a coYari<mce matri:-.: it i:; positi1'e definite aud so, in principle 

these operations present no difficulties. As the number of obsen·alions increas 

Ps the condition number of Ke increases. so that so that mllnerica[ stabilitj 

becomes importa.nt. Tn ,:a.lculating the log-likelihood it is unnecessary to im,er 

]{g directly. All that is ueeclecl is the determinant of Ke am[ a qundrati< 
form. These mny lH' determined from tl1f' factorization E:?Lcl .sulviu,f 
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422 HANDCOCK 

linear systems in the Cholesky triangle using back-substitution. This is more 
efficient and numerically stable than calculating the inverse directly. However 

the Cholesky factorization still requires n 3 /6 + 0(n2 ) operations. Unless there 

is regularity in the sampling design. inducing ii patterrwd structure in I\8 , it 

is unclear if more efficient algorithms exist. 

3. ADDITIVE MODELS FOR Y(x) 

Often the dimension of x is of the samP order a.s n, anclmodera.tely large 

( 10 100). In addition it is common for little to be known about the form of the 
relationship between the input factors ilncl the response. In such circumstances 

the detection ancl measurement of complex relationships between the response 

and the input fnctors is difficult . .-\n empirica.l observation is that. more often 

tha.n not, much of the vilrinl iott in y(:r) Ci\ll be explained by the separate 

influence of each factor C main effects"). This suggests the model 

where {Y;(xi)}f=l arc real-\·aluecl Gaussiiln rnndom fields over : :r E 
R} C IR and. Z(.r) is a Gnrtssian random field to describe the non-additinc 

components of Y(:r). This aclditi\·e model \\ils introduced h.\· Stein ( HJ8lJ). for 

dcfiniterwss. we consider ltcrc tlH' sitttiltion \':here tlte u!lidimett:,ional 1";(.r,) 

are stationary with l\lat,:Tn coY<rri;rncc functions o,l{(G,.&,j(·r, ). Hence \ "(.r) 
has covariance function 

d 
Ko( J', w) = L nJ\'o, ( :r,- tc,) +em·{ Z( .r ). Z( w)} (3.1) 

i=l 

The central issue is i 11 Cen-·ncc for t lte pa.ramcters { o,, I! 1,. 02}. It is impor-

tant to realize that the itd"onnation itt a single realize1tion IcJr {OJ,} is limited. 
Tn fact if \\·e ohscn·ccl the y( r) cH:rYwltere \\C would still nut ,,e aLlc to deter-

mine the {f) Ji} exactly. ,,\-ett tlwup,lt { o,, 01} could be dctet n,: '"d 11·ith almost 
sureh·. The infortllalion'' rationale for the optim of maximum 

1 ikelihood estimation does not hold in this setting ( lla.ndcoc:k ( 1:!89)). 

For inference abont Y(.r) and prediction we will need to explicitly L1kt: 

int() ac:cotmt the uncertainty in the model The R<tyPsian paracl js a natura] 
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LATIN HYPERCUBE DESIGNS AND ADDITIVE MODELS 423 

one for expressing this uncertainty. Using Bayesian methods it is straightfor-
ward to derive the (posterior) predictive distributions for linear functionals of 
Y(x), as in Handcock and Stein (1989). We will use such predictive distr·ibu-
tions in §5. 

4. DESIGNING EXPERIMENTS UNDER AN ADDITIVE MODEL FOR Y(x) 

There is a substantial literature on the design of computer experiments 
based on given and natural design criteria. For an overview see Sacks and 
Ylvisaker (1984, 1985). \Ve are interested in designs that exploit the additive 
structure (3.1). Our criterion is two fold: first, the efficient estimation of 
the covariance function of Y(x), and second, the optimal prediction of linear 
functionals of Y(x). Latin hypercube designs are a natural candidate under 
these conditions. They b<t\·e been shown by Stein (1987) to be appropriate for 
additive functions of inputs in the multidimensional integration setting. This 
randomized procedure is "space filling": spreading out the design points in the 
design space. 

Consider the parameters in the !\Iatern cla.ss. The response for design 
points close together will provide information useful for the estimation of the 
scale (a) and smoothness pararneters (82). The respome for design points fa.r 
apart will provide useful information for estimating the regression parameters 
and the range (01i). Hence \re expect Latin hypercube designs to provide 
information about the me<cn and range, while the sca.le and smoothness may 
be poorly estimated. Other "low discrepancy'' design such as Faure (1982) 
and Halton (1960) sequences tend to have similar properties. 

4 · 1 Cascading Latin hypercube Designs 

In this section we introduce a generalization of Latin hypercube designs 
to enhance estimation of the scale and smoothness of the additive random 
field. An example will motivaie the design. Consider the two dimensional 27 
point Latin hypercube design in Figure l. The design space [0, 1] x [0, 1] is 
divided into a 27 x 27 grid of cells. The design points a.re chosen so that 
exactly one point is in each row or column of the grid, and placed randomly 
within that cell. Here, as elsewhere, an argument can be made for placing the 
design point at the center of the cell. Such designs will be ca.lled ''centered". 
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LATIN HYPERCUBE DESIGNS AND ADDITIVE MODELS 425 

Consider the 27 point design in Figure 2. The 9 circles are a. centered 

Latin hypercube on a 9 x 9 grid in [0, 1] X [0, l]. Arouud each of these circles 

is a 3 point Latin hypercube design, based on the localized :3 x 3 square of 

cells. \\'e note that 1 his is still a Latin hypercube, as there is exactly one 

design point per row and column on the 27 x :27 grid of cells. However the 

design has the additional ad\·anta.ge of ensuring that there arc design points 

close together. 

In general a Cascading Latin hypercube design of n = Df= 1 nk 

points in d -dimensions with levels ( n1, ... , nL) is a nL Latin hypercube de-

sign about each point in the (nJ, ... , centered Cascading Latin hyper-

cube design. The usual Latin hypercube design is the special case with a 

single level. Experience indicates that two or three levels is enough and that 

the lo\\'er levels should consist of only two or three points. 1\ote that a d-
dimensional Cascading Latin hypercube is always a b -dimensional Cascading 

Latin hypercube in a projected cube in b of the original factors. The value 

of the Cascading Latin hypercube will tend to increase as the dimension d 
increases relative to n. 

5. AN EXAMPLE: PREDICTING THE OVERALL MEAN 

In this sectiou \\'C compare the performance of Cascading Latin hyper-

cube desigus with other cornlllonly used designs. As an objecti\·e we will 

predict the overall mean of the response: 

1 1 . f'Y = -
1

-, 1/(x)rl:r 
R1 n 

where )Rj is the volume of R. As py is a. linear fuuctional of Y(x) we can usc 

the mode of the predicti\·e distribution pr(p.y )Y) as a point predictor, and the 

predictive standard deviation as a measure of uncertainty in the prediction. 

We will not describe this procedure here. but refer to IIanclcock and Stein 

(1989). 

As a concrete example consider an additive :\1atern random field. Y ( x ). 

over R = [O,l]rl with O£ = 1. and ()li = 01 , i = 1, ... d. \\1e ccm generate 

a realization from Y ( x) on <1 very fine grid, so that we essentially observe 
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y( x) continuously on R. Figure 3 represents the three two-dimensional pro-
jections of a realization with (} = (!, This realization is continuous, but 
not differentiable. Under the usual standards for response surfaces, this real-
ization is quite "rough". Figure 4 represents a realization with () = a,2!). 
This realization is twice differentiable, and is "smooth" relative to the previous 
example. 

By increasing ()I, and hence the level of correlation, more realistic fields 
can be produced. Figure 5 represents a two level Cascading Latin hypercube 
sample for a realization based on (} = (1, 

5 · 1 Evaluating Cascading Latin hypercube Designs 

To explore the va.lue of Cascading Latin hypercube designs. we designed 
a simulation experiment. \Ye consider only 27 point designs in d = 10 di-
mensions generated by 

a) simple random designs 

b) Faure sequences 

c) Latin hypercube designs 

d) two level cascading Latin hyperCllbe designs 

e) three level cascading Latin hypercube designs 

Each of the procedures was used to generate design points a.ncl the re-

sponse measures for a given realization of the above additive model. Then 8 
is estimated using maximum likelihood. The results from lO repetitions of 
this process on a single realiziltion from the ·'rough" process ( e = ( 1 are 
presented graphically in Figure 6. The cross-lines represent the smoothness 
and range for the underlying randon1 fteld. It is important to nole that the 
single realization may not rellect exactly these values. In particular, note the 
strong bias in the estimates of the range, regardless of the design procedure 
used. The values with smoothneos of 10 represent particular designs where the 
maximum likelihood estimator is the limiting iufinitely diffet·entiable process 
of (2.1 ). 

\Ve see that 27 points in 10 dimensions from a non-differentiable process 
1s insufficient to rule out much smoother random fields. Table I provides a 
numerical summary of the results. 
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two dimensional projections of a 10 dimensional Additive Matern random field 
scale = 1, range = 1/2, smoothness = 2 1/2 
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432 HANDCOCK 

TABLE I 

Smnn1ary of simulation experiment for a "rough" realization 

Design Criterion 

Factor I SRS Faure Simple LHC two level LHC three level L H C Truth 

number finite 8 4 9 10 9 10 

median range 0.25 0.01 0.25 0.15 0.15 0 .) 

median smoothness 0.64 642 1.0:3 O.llO 0.5.5 0.5 

var for range 4.60 5.90 .) 06 5.47 5.04 I\' A 

var for smoothness 14.43 28.85 8.:30 13.31 3.57 'lA 

Note: The table summaries, for each design procedure, characteristics 
of 10 repetitions of the de::;ign on a single realization from a random 
field with a= (1.0.:),0 .. 5). 

All design procedures tend to m·erestimate the degree of smoothness. 
They all do about as well in estimating the range. while the three level Cas-
cading Latin hypercube does substantially better in estimating the smooth-
ness. For a given rea.lization the maximum likelihood estimates exhibit similar 
biases, although across realizations the range is both over and under estimated. 

TABLE II 

Summary of prediction based on a "rough" realization 

Design Criterion 

Factor SRS Faure Simple LIIC two level LHC three level LIIC 

mean prediction 0.45 0.-!0 0.50 0.47 0.43 

l ;>.IS predict ion error 0.22 0 18 0.11 0.12 0 06 

I\'ote: The table summaries, for each design procedure, prediction 
chc,racteristics of 10 repetitions of the design on a single realization 
from a random field with a= (1,0.5,0.5). 

Truth 

0.4.5 

NA 
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How well do these designs do when we wish to predict the overall mean? 

Figure 7 represents the predictive mode and standard cleYiation for each of 
the designs in Figure 6. The "truth" can be directly determined from the 
generated realization, p;· = 0.-1clc7. A numerical summary is given in Table II. 

The mean is the mean of the predictive mode o\·er the 10 repetitions. For 
this realization, the three level Cascading Latin hypercube does better. Typi-
cally, the two and three ]eye] Cascading Latin hypercube designs are similar. 

while the Faure and simple random design are extremely poor. 

Figure 8 graphically represents an analogous experiment on a "smooth" 

realization with ( 0 = ( ). "'I gain the smoothness and ra.nge are over-
estimated. The graphica.l summan of the prediction is in Figure 9. 
and numerical summarT in Tables II ilncl III. ,\ga.in the two and three level 
Cascading Liltin hypercube designs arc similar, while the Faure and simple 
random design ilre suhstaniia.lly wea.ker. I\ote that tbe prediction error iiie 
sullstilntially sma.ller, reficrting tlw relative: smoothness of tlw realization. 

TABLE III 

Sununary of sin1tllation experiment for a "smooth" realization 

Design Criterion 

I UIC I Truth 

number finite I 9 ·l I 1 10 
median range 1.66 I 0.01 0.5 

median smoothness 3.00 lll.Oll I 2.5 
scl for range 0.0:': 0.11 

11 

]\,\ 

sci for smoot huess I 2.fi :2 ·l .26 .\'A 

:\ote: The ta.blc .sttmmarics, l'or Pilch design procednrP, characteristics 
of 10 repetitions of i.he design on a single realization from a. random 
field witb 0 = (1, 0.5 
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TABLE IV 

Summary of prediction based on a "smooth" realization 

Design Criterion 

Factor sns Faure Simple LHC two level LHC three level LIIC 

mean prediction -2.59 -2.60 -2.59 -2.59 -2.59 

Rt-IS prediction error 0.016 0.056 0.001 0 0009 0.0007 

::-\otc: The table summ0ncs, for each design procedure, prediction 
characteristics of 10 repetitious of the design on a single realization 
from a random field with f)= (1,0 .. '!,2.5). 

6. CONCLUSION 

Additive random field l!loclels in experimental design are a promrsmg 

new approach for increasing the efliciency of experiments for product quality 

improvement. This paper introduces Cascocling Latin hypercube designs as a 

rmcans to exploit the adclili\·c natme of the models. Based on a theoretical 

arguments and a modest simulation experiment. they appear to improYe the 

efficiency of prediction arcd deserve further study. 
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