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ABSTRACT

This paper is concerned with aspects of the design and analysis of com-
puter experiments. It has been motivated by issues in the experimental design
of integrated-circnits. Suppose we wish to model the behavior of a complex
process as a function of several factors. An appealing approach is to model
the response of the system as a stochastic process ( Sacks, Welch, Mitchell and
Wynn (1989)). Often much of the variation in the response can be accounted
for by an additive function in each of the factors. In this paper we consider a
promising additive stochastic model proposed by Siein (1989).

We introduce Cascading Latin hyperciube designs as an efficient basis
for statistical inference on the stochastic structure when the number of initial
inputs is large. Comparisons are made to simple random designs, Faure (1932)
designs and ordinary Latin hypercube designs. The results provide insight into

the optimal design under such models.
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1. INTRODUCTION

Many experiments that aim to improve the quality of products can be
placed within the framework of understanding the relationship between a re-
sponse y(-) and a d-vector of input factors z. For example, y{x) might be
the propagation delay of an experimental logic circuit dependent upon the
physical design parameters. The experimenter can choose the design points
so as to optimize, in some sensc, over the response swrface or better under-
stand the influence of each of the input factors. There is an extensive and rich
literature on this subject (Box, Hunter and Hunter (1978}, Box and Draper
(1987)).

Recent research has considered modeling the response y(z) as a realiza-
tion from a random field Y'(xz). This approach integrates ideas from spatial
statistics and response surface methodology. In the {orefront of this approach is
work on the design and analysis of comnputer experiments (cf., Currin, Mitchell,
Morris and Ylvisaker (1988) and Sacks, Schiller and Welch (1989)). The pa-
per of Sacks, Welch, Mitchell and Wynn (1989) and it’s discussants, provide

a introduction to the ideas.

This paper investigates aspects of the design and analysis of experiments
for quality improvement within the framework of Sacks, Welch, Mitchell and

Wynn (1989).

2. MODELING APPROACH

Let y(x) be a real-valued response to a d-vector of input factors z €
R ¢ Y. We choose to model y(z) as a realization from a random field Y(z).
Although y(z) may be a deterministic function of x, this approach can be
rationalized within a Bayesian framework (cf., Currin, Mitchell, Morris and
Ylvisaker (1988)). Irom a pragmnatic perspective it is essential to choose a
class of random fields that is flexible enough to capture the behavior of y(a).
In order to focus on other modeling issues, we will assume Y (z) is a Gaussian
random field.

The experiment consists of choosing n. sets of values of the design factors

z1,...,%, according to a design criterion, and then determining the responses
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to these set of factors: {y(x1),....y(x,)} = Y. We address only single-step
designs, perhaps considered as one stage of a sequential design.

A central issue in the random field approach to modeling response sur-
faces is the choice of the class of covariance structures for Y(z). For a Gaussian
random field we need only specify a mean function and covariance structure

to specify the random field completely. Suppose Y(z) has mean
E{Y(2)} = f'(x)8,

- ~ P L .
where f(z) = {fi(z),..., f,(z)} is a known vector function, & is a vector
of unknown regression coefficients. Furthermore, the covariance function is

represented by
cov{Y'(2),V{(w)} = aNg(a,w) for z,w € R

where a > 0 is a parameter, 0 € © isa ¢ x1 vector of structural parameters
and © is an open set in IR”. The division is purely formal as é may also

determine aspects of scale.

2.1 The Matérn Class of Covariance Functions

In this section we describe a general class of covariance functions that can
provide a sound foundation for the parametric modeling of Gaussian random

fields. The spectral density on IR? has the general form
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The corresponding isotropic covariance functions have the form
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where 7 > 0 is a scale parameter controlling the range of correlation and
65 > 0 is the parameter controlling the smoothness of the field. Ky, is the
modified Bessel function of order @, discussed in Abramowitz and Stegun
(1964), §9.
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This class of covariance functions is motivated by smooth spectral den-
sities, a wide range of behaviors characterized, interpretable parameters and
a number of interesting subclasses. The Exponential class corresponds to the

sub-class with smoothuess parameter ¢y = 1/2, that is

Kp(r) = exp(—z/t1).

The sub-class defined by 82 = 1 was introduced by Whittle (1954) as a model
for two dimensional fields. Note that the covariance functions are always
positive, so that the class is inappropriate for fields with negative correlations.
A general treatment is given in the seminal work by Matérn (1936).

The calculation of Ky, for non-integral 0 is quite difficult. All cal-
culations of K, in this work use the Amos (1936) algorithm. While the
calculation is evpensive relative to the other forms of covariance functions,
this cost is negligible compared to the other computing costs involved in the
analysis.

Consider the behavior at the origin of these covariance functions. Define
() = 00 /[ 67T (6,)T (0, + 1) |-
If #9 is an integer,

jas]
o

2

a;(0). ”}+7 2 g ogz{ \()_7‘(0).‘1'2"}
j=0

Ko(x) =1 =1 0) 2 oy a +{

where {a;(0)}%2, and 16;(8)1 72 ave functions of 0 alove. If #, is not an
integer then,
[s:9]

e}
K(z) =1+ 7c(0) - 2% jsin () + ‘) A0) % ¢ .”52“7?+2{Z 1506 %
r:] =1

where {d;(9)}%, and {/;(#)}°C, arc functions of ¢ alone. As 02 directly

(4]
controls the alLOlJHIIl(".SS of [a{z) at the origin. it controls the smoothness
of the underlying field in the sense that a field with this covariance function
is [02) times {mean-square) differentiable (Uramer and Leadbetter (1967)).
As #y increases the field becomes increasingly locally smooth. In addition as

0 — oo, the field approaches an infinitely differentiable field with correlation
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function,
Ry oof) = 7510 (2.1)

If Z(z) is a Gaussian random field on IR with covariance function
Ky(z) then it satisfies the stochastic partial differential equation (Whittle
(1963)):

¢ 6,+d/4
[63 3(8%)0%)) — 46, )"

=1
where % = 24:T(0; + d/2)(\/761)?/T(0;) and W(.) is the d dimensional
Wiener random field. 1f 65 + d/4 is an integer then this gives a physical
basis for the covariance. If €2 4+ d/4 is not an integer then the interpretation

Z(z) = odW(a)

is more problematic. This equation has motivated Jones (1989) to use the
member with 82 = 1 to model Aquifer Head data and is commonly used 1n

hydrology (Mejia and Rodriguez-Tturbe (1974), Creutin and Obled (1982)).

2-2 Inference for the Structure of ¥(z)

Traditionally, one estimates o and # by either likelihood methods or
various ad hoc approaches. Mardia and Marshall (1984) is a standard reference
in the statistical literature. Usually the predictor and the behavior of the
prediction error are themselves estimated by ‘plugging-in’ these estimates for

the underlying values in the defining equations.

The log-likelihood of «,8 and § having observed Y is,

L(a, 3,0;Y) = —(1/2)| nln(2ra) + In([K3]) + (1/a)(Y — FBY Ky (Y — F) }

(22)

where Ky = {Ko(zi,2;) baxn, F = {fi(2:)}1x, and the dependencies upon n
have been suppressed.

L{a, 3,0;Y) involves the inverse and determinant of the n x n matri

Ky. As Ky is a covariance matrix it is positive definite and so, in principle

these operations present no difficulties. As the number of observations increas

es the condition number of Ky increases, so that so that nurnerical stability

becomes important. In calculating the log-likelihood it is unnecessary to inver

Ky directly. All that is needed is the log determinant of Ky and a quadratic

form. These may be determined from the Cholesky factorization and solving
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linear systems in the Cholesky triangle using back-substitution. This is more
efficient and numerically stable than calculating the inverse directly. However
the Cholesky factorization still requires n?/6+0(n?) operations. Unless there
is regularity in the sampling design, inducing a patterned structure in Ky, it

is unclear if more efficient algorithms exist.

3. ADDITIVE MODELS FOR Y (z)

Often the dimension of @ is of the same order as n, and moderately large
(10—-100). In addition it is common for little to be known about the form of the
relationship between the input factors and the response. In such cir¢umstances
the detection and measurement of complex relationships between the response
and the input factors is difficult. An empirical observation is that, more often
than not, much of the variation in y(2) can be explained by the separate

influence of each factor ("main effects™). This suggests the model
Yiz) =Yiler) + ...+ Yy(ea) + Z(a)

where {Yi(z;)}L, arc real-valued Gaussian random fields over {z; : = €
R} C IR and, Z(z) is a Gaussian random field to describe the non-additive
components of Y (x). This additive model was introduced by Stein (1989). Tor
definiteness, we consider here the situation where the umcllmenmonal Yi(z;)
are stationary with Matérn covariance functions a; Ky, g,)(z:). Hence Y(x)

has covariance function

Ky(a Z(s Ko (v — w;) + covi{Z(z), Z(w)} (3.1)

=]

The central issuc is inference for the parameters {a;, 0, f2}. It is impor-
tant to realize that the information in a single realization for {0y,} is limited.
In fact if we observed the y(x) everywhere we would still not be able to deter-

with almost

mine the {#1;} exactly, even though {a,, 0} could be deterniined
surely. The “increasing information” rationale for the optimality of maximum
likelihood estimation does not hold in this setting (Handcock {1939))

For inference about Y(r) and prediction we will need to explicitly take

into account the uncertainty in the model. The Bayesian pavadigm is a natural
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one for expressing this uncertainty. Using Bayesian methods it is straightfor-
ward to derive the (posterior) predictive distributions for linear functionals of
Y(z), as in Handcock and Stein (1989). We will use such predictive distribu-

tions in §5.

4. DESIGNING EXPERIMENTS UNDER AN ADDITIVE MODEL FOR Y(z)

There is a substantial literature on the design of computer experiments
based on given and natural design criteria. For an overview see Sacks and
Ylvisaker (1984, 1985). We are interested in designs that exploit the additive
structure (3.1). Our criterion is two fold: first, the efficient estimation of
the covariance function of ¥ (x), and second, the optimal prediction of linear
functionals of Y(z). Latin hypercube designs are a natural candidate under
these conditions. They have been shown by Stein (1987) to be appropriate for
additive functions of inputs in the multidimensional integration setting. This

“©

randomized procedure is “space filling”: spreading out the design points in the

design space.

Consider the parameters in the Matérn class. The response for design
points close together will provide information useful for the estimation of the
scale (@) and smoothness parameters (f3). The response for design points far
apart will provide useful information for estimating the regression parameters
and the range (f1;). Hence we expect Latin hypercube designs to provide
information about the mean and range, while the scale and smoothness may
be poorly estimated. Other “low discrepancy” design such as Faure (1982)

and Halton (1960) sequences tend to have similar properties.

4.1 Cascading Latin hypercube Designs

In this section we introduce a generalization of Latin hypercube designs
to enhance estimation of the scale and smoothness of the additive random
field. An example will motivate the design. Consider the two dimensional 27
point Latin hypercube design in Figure 1. The design space [0,1] x [0,1] is
divided into a 27 x 27 grid of cells. The design points are chosen so that
exactly one point is in each row or column of the grid, and placed randomly
within that cell. Here, as elsewhere, an argument can be made for placing the

design point at the center of the cell. Such designs will be called “centered”.
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Consider the 27 point design in Figure 2. The 9 circles are a centered
Latin hypercube on a 9 x 9 erid in [0,1] x [0,1]. Around each of these circles
is a 3 point Latin hypercube design, based on the localized 3 x 3 square of
cells. We note that this is still a Latin hypercube, as there is exactly one
design point per row and column on the 27 x 27 grid of cells. However the
design has the additional advantage of ensuring that there are design points
close together.

In general a Cascading Latin hypercube design of n = [If_, ny
points in d-dimensions with levels (ni,...,n.) 1s a np Latin hypercube de-
sign about each point in the (n1,...,mp—1) centered Cascading Latin hyper-
cube design. The usual Latin hypercube design is the special case with a
single level. Experience indicates that two or three levels is enough and that
the lower levels should consist of only two or three points. Note that a d-
dimensional Cascading Latin hypercube is always a b-dimensional Cascading
Latin hypercube in a projected cube in b of the original factors. The value
of the Cascading Latin hypercube will tend to increase as the dimension d

increases relative to n.

5. AN EXAMPLE: PREDICTING THE OVERALL MEAN

In this section we compare the performance of Cascading Latin hyper-
cube designs with other commonly used designs. As an objective we will

predict the overall mean of the response:

1 /
py = E] /R V(z)dx

where |R| is the volumecof R. As uy is alinear functional of Y(z) we can usc

the mode of the predictive distribution pr(uy|Y’) as a point predictor, and the
predictive standard deviation as a measure of uncertainty in the prediction.
We will not describe this procedure here, but refer to Handcock and Stein
(1989).

As a concrete example consider an additive Matérn random field, Y(z),
over R = [0,1]% with a; = 1, and 0y; = 01, ¢ = 1,...d. We can gencrate

a realization from Y(2) on a very fine grid, so that we essentially observe
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y(z) continuously on R. Figure 3 represents the three two-dimensional pro-
jections of a realization with § = (2, %). This realization is continuous, but
not differentiable. Under the usual standards for response surfaces, this real-
ization is quite “rough”. Figure 4 represents a realization with 6 = (},,2%)
This realization is twice differentiable, and is “smooth” relative to the previous
example.

By increasing 81, and hence the level of correlation, more realistic fields
can be produced. Figure 5 represents a two level Cascading Latin hypercube

sample for a realization based on 8 = (1, %)

5.1 Evaluating Cascading Latin hypercube Designs

To explore the value of Cascading Latin hypercube designs, we designed
a simulation experiment. We consider only 27 point designs in d = 10 di-

mensions generated by
a) simple random designs
b) Faure sequences
¢} Latin hypercube designs
d) two level cascading Latin hypercube designs
e) three level cascading Latin hypercube designs

Each of the procedures was used to generate design points and the re-
sponse measures for a given realization of the above additive model. Then #
is estimated using maximum likelthood. The results from 10 repetitions of
this process on a single realization from the “rough” process (8 = (77 1)) are
presented graphically in Figure 6. The cross-lines represent the smoothness
and range for the underlying random field. It is important to note that the
single realization may not reflect exactly these values. In particular, note the
strong bias in the estimates of the range, regardless of the design procedure
used. The values with smoothness of 10 represent particular designs where the
maximum likelihood estimator is the limiting infinitely differentiable process
of (2.1).

We see that 27 points in 10 dimensions from a non-differentiable process
is insufficient to rule out much smoother random fields. Table I provides a

numerical summary of the results.
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TABLE I

Summary of simulation experiment for a "rough” realization

Design Criterion

Factor| SRS | Faure | Simple LHC | two level LHC| three level LHC | Truth
number finite| 8 4 9 10 9 10
median range | 0.25 | 0.01 0.25 0.15 0.15 0.5
median smoothness| 0.64 | 6.42 1.03 0.90 0.55 0.5
var for range| 4.60 | 5.90 5.06 5.47 5.04 NA
var for smoothness | 14.43| 28.85 8.30 13.31 3.57 NA

Note: The table summaries, for each design procedure, characteristics
of 10 repetitions of the design on a single realization from a random
field with § = (1,0.5,0.5).

All design procedures tend to overestimate the degree of smoothness.
They all do about as well in estimating the range, while the three level Cas-
cading Latin hypercube does substantially better in estimating the smooth-
ness. For a given realization the maximum likelihood estimates exhibit similar

biases, although across realizations the range is both over and under estimated.

TABLE II

Summary of prediction based on a ”rough” realization

Design Criterion

Factor | SRS | Faure | Simple LHC | two level LHC | three level LIIC | Truth
mean prediction | 0.45 | 0.40 0.50 0.47 0.43 0.45
RAMS prediction error | 0.22 ] 0.18 0.11 0.12 0.06 NA

Note: The table summaries, for each design procedure, prediction
characteristics of 10 repetitions of the design on a single realization
from a random field with # = (1,0.5,0.5).
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How well do these designs do when we wish to predict the overall mean?
Figure 7 represents the predictive mode and standard deviation for each of
the designs in Figure 6. The “truth” can be directly determined from the
generated realization, gy = 0.447. A numerical summary is given in Table II.

The mean is the mean of the predictive mode over the 10 repetitions. For
this realization, the three level Cascading Latin hypercube does better. Typi-
cally, the two and three level Cascading Latin hypercube designs are similar,

while the Faure and simple random design are extremely poor.

Figure 8 graphically represents an analogous experiment on a “smooth”
realization with (0 = (%,?%)) Again the smoothness and range are over-
estimated. The graphical summary of the prediction is given in Figure 9,
and numerical summary in Tables 1T and 111, Again the two and three level
Cascading Latin hypercube designs arve similar, while the Faure and simple
random. design are substantially weaker. Note that the prediction error are

substantially smaller, reflecling the relative smoothness of the realization.

TABLE TII

Summary of simulation experiment for a ”smooth” realization

Design Criterion

Factor | SRS | Faure ( Stmple LHC 1 two level LHC t three level LHC 4 Truth
number finite 9 4 10 \ 9 9 10
median range | 1.66 | 0.01 1.66 [ 2.01 1.79 0.5
median smoothness | 3.00 | 10.00 2.47 i 2.52 2.66 2.5
sd for vange | 0.93 | 0.11 0.6%8 } 0.92 0.43 NA
sd for smoothness | 2.62 | 4.26 .55 { 2.59 2.38 NA

Note: The table summaries, for each design procedure, characteristics
of 10 repetitions of the design on a single realization from a random
field with ¢ = (1,0.5,2.5).
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TABLE 1V

437

Summary of prediction based on a "smooth” realization

Design Criterion

Factor | SRS | Faure | Simple LHC | two level LHC | three level LHC | Truth
mean prediction | -2.59 | -2.60 -2.59 -2.59 -2.59 -2.59
RMS prediction error | 0.016 | 0.056 0.001 0.0009 0.0007 NA

Note: The table summaries, for each design procedure, prediction

characteristics of 10 repetitions of the design on a single realization

from a random field with ¢ = (1,0.5,2.5).

6. CONCLUSION

Additive random field models in experimental design are a promising

new approach for increasing the efficiency of experiments for product quality

improvement. This paper introdices Cascading Latin hypercube designs as a

means to exploit the additive nature of the models. Based on a theoretical

arguments and a modest simulation experiment, they appear to improve the

efficiency of prediction and deserve further study.
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