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COVARIANCE MODELS FOR 
LATENT STRUCTURE IN 
LONGITUDINAL DATA 

Marc A. Scott* 
MarkS. Handcockf 

We present several approaches to modeling latent structure in lon
gitudinal studies when the covariance itself is the primary focus of 
the analysis. This is a departure from much of the work on longi
tudinal data analysis, in which attention is focused solely on the 
cross-sectional mean and the influence of covariates on the mean. 
Such analyses are particularly important in policy-related stud
ies, in which the heterogeneity of the population is of interest. We 
describe several traditional approaches to this modeling and intro
duce a flexible, parsimonious class of covariance models appro
priate to such analyses. This class, while rooted in the tradition 
of mixed effects and random coefficient models, merges several 
disparate modeling philosophies into what we view as a hybrid 
approach to longitudinal data modeling. We discuss the implica
tions of this approach and its alternatives especially on model inter
pretation. We compare several implementations of this class to more 
commonly employed mixed effects models to describe the strengths 
and limitations of each. These alternatives are compared in an 
application to long-term trends in wage inequality for young work-
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ers. The findings provide additional guidance for the model for
mulation process in both statistical and substantive senses. 

1. INTRODUCTION AND MOTIVATION 

An increasing number of social and behavioral science studies collect infor
mation from subjects at several points in time. These longitudinal studies 
enable researchers to study changes in the phenomena of interest over the 
life-course of the subjects. At each observation time, at least one response, 
such as wages earned or the occurrence of a meaningful event, such as 
graduation from college, is recorded. As with regression, one may collect 
explanatory covariates in the hope that differences in these inputs will be 
associated with different levels of response. Each subject is thus associ
ated with his or her own time series of responses and a corresponding set 
of potentially time-varying explanatory covariates. Models for longitudi
nal data attempt to relate those individual time series to an overall group 
process. 

The focus on either individual or group processes plays a key role 
in how one models longitudinal data. For example, if we are modeling a 
continuous response, Y, in terms of explanatory covariates, X, then the 
familiar linear model, for individual i, 

Y; = X;[3 + E; (1) 

could be adopted, but Y; and E; would be n;-vectors, where n; is the num
ber of observations on individual i. Similarly, X; would be of dimension 
n; X p, where pis the number of explanatory covariates. Note that we are 
modeling a response vector, yet this distinction is not made explicitly with 
our notation. Alternatively, the model may be written 

Y;(t) = X;(t){3 + E;(t), 

where the index t identifies a specific element of the response vector Y;. If 
we were to proceed with a classical multiple regression, stacking the 
responses by individual and then by observation within individual, we 
would obscure an important feature oflongitudinal data; namely, we know 
that some set of observations come from the same individual. And obser
vations within the same individual may be correlated due to unobserved 
individual characteristics. To see this, let us return to the notation in (1), 
but now 

Y; = X; {3 + a; + Ej, (2) 
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where a; is an unobserved scalar trait for subject i, the residual varia
tion is mean zero and uncorrelated with the unobserved process, and 
E(E((t)E((t')) = 0 fort* t'. Since we do not observe a;, we tend to 
use (1) when the underlying process is accurately described by (2), so 
the residual variation structure E; is really a; + E(. The unobserved trait 
induces a correlation within individual i, since 

and al * 0 in general. Note that the unobserved a; may not correspond to 
a single measurable characteristic; instead it proxies for all unobserved 
characteristics. 

There are several different ways to think about the correlation struc
ture in longitudinal data. The different perspectives are induced by the 
nature of the unobserved trait and its relationship to the covariates and 
residual variation. If substantive interest is on the effects of the co variates 
on the response averaged over the population, then models are usually 
formulated for the mean response averaged over the unobserved traits. 
Broadly speaking, the correlation structure is modeled as a nuisance param
eter, and regression coefficients represent population-average effects 
(Liang and Zeger 1986; Zeger and Liang 1986; Prentice 1988). Alterna
tively, individual differences may be of interest and can be modeled directly 
as latent variables; for these individual-specific models, regression param
eters are to be interpreted conditionally on the value ofthe subject's latent 
variable. We will discuss these different approaches, certain variations 
thereof, and their implications in subsequent sections. Along the way, we 
will introduce a class of models for longitudinal data that merges these 
two approaches in a new hybrid form, which is conceptually linked to 
principal components and factor analysis. First, we introduce the substan
tive problem that motivates this new formulation. 

In labor market economics, a rise in cross-sectional measures of 
wage inequality that began in the 1970s and has persisted into the 1990s 
is well-documented (Levy and Murnane 1992; Danziger and Gottschalk 
1993; McMurrer and Sawhill 1998). This means that there are greater num
bers of workers making more and making less than ever before. And for 
many groups of workers, wages have remained stagnant over time. This 
stagnation is due in part to a disproportionate growth in the lower tail of 
the wage distribution. Using data from two young adult cohorts in the 
National Longitudinal Survey (NLS), we find, for example, that 30- to 
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35-year-old white men have a mean wage of $17.78 in 1979, while this 
figure is $14.27 per hour for a similarly aged group in 1992 (inflation 
adjusted, 1999 dollars). A measure of inequality is the variance in out
comes; the variance of the logged wages increased 44 percent over the 
same period. 

This dramatic rise has prompted researchers to look more closely 
at trends in inequality over the life-course of a worker. Cross-sectional 
data can document a rise in inequality, but since each cross-section is a 
random sample from the population, one cannot conclude that the same 
people are making the higher wages in each period. Statements such as 
"the rich are getting richer while the poor are getting poorer" cannot be 
definitively made. But longitudinal data can be used to address this type 
of question. To couch this in labor economic terms, we would like to exam
ine two competing hypotheses that explain the growth in inequality: 

I. Wages have become more volatile. 
II. Wages have become more stratified over time, indicating a reduction 

in economic mobility. 

The scenarios are illustrated in the three figures below. Figure 1 repre
sents an economy in which individual "profiles" fan out over time, but 
not excessively. This is our stylized image of a past economy; in Fig
ures 2 and 3, we change the covariance structure to reflect at least a 
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FIGURE 1. Stylized wage trajectories for a less stratified economy. 



COVARIANCE MODELS FOR LATENT STRUCTURE 

2.6 

2.4 

2.2 

2.0 
CD 
g> 
~ 1.8 

1.6 

1.4 

1.2 

1.0 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
Age 

FIGURE 2. Stylized wage trajectories for a more stratified economy. 
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doubling of process variance, but we do this in very different ways. In 
Figure 2, the structured variation has become more stratified, but the 
residual process is left unchanged. In Figure 3, the structured variation 
is identical to that used in Figure 1, but the residual variance of the 
process has been greatly increased. This last figure may seem exagger
ated, but the average variation between individuals is actually a bit 
smaller than in Figure 2. 
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FIGURE 3. Stylized wage trajectories for a more volatile economy. 
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Based on the figures, the difference between increased stratifica
tion (Figure 2) and increased volatility (Figure 3) seems transparent, but 
in a real application, both hypotheses may be true and the differences may 
be more subtle. Each possibility has a different substantive interpretation, 
so sorting out the extent to which each hypothesis describes the changes 
in wage structure is very important and will have different implications in 
terms of policy. 

To investigate the two hypotheses, Bernhardt et al. (1997), 
Gottschalk and Moffitt (1994), Haider (1996), and Baker (1997) decom
pose the wage into permanent and transient components as follows. Let 

w(t) = p(t) + u(t), (3) 

where w is the wage, p is its permanent portion, and u is a residual varia
tion term, capturing short-term, or transient, variation. For a specific 
worker, p ( t) can be thought of as his or her mean wage at time t, with 
residual variation u(t). Assuming independence of p(t) and u(t), we see 
that 

Var(w(t)) = Var(p(t)) + Var(u(t)), 

and that the two hypotheses can be differentiated through this variance 
decomposition: a rise in wage variance must involve a rise in at least one 
of the two variance components. Greater stratification implies an increase 
in the first term, while greater volatility involves the second. If we had a 
substantial number of observations for each individual, we could estimate 
p ( t) using separate regressions for each. The distribution of these pre
dicted curves would represent permanent variation, while the residuals 
represent transient variation. The hypotheses of interest describe differ
ences in wage trajectories without any socioeconomic controls, so the only 
explanatory covariates we include in this analysis are functions of time. 

This last point warrants further explanation. Socioeconomic vari
ables such as level of schooling, parent's education, and industry of 
employment, capture expected returns to individual (supply-side) and 
employer (demand-side) characteristics. For example, there may be 
changes in the mean return to obtaining a high school degree that reflects 
the value of that set of skills in the labor market. Including socioeconomic 
covariates also controls for compositional shifts in the labor market. The 
growth in a specific sector of the economy could induce growing inequal
ity if that sector is typically associated with lower wages. But all of these 
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explanations are necessarily focused on the permanent portion of the wage 
trajectory, since volatility is associated with residual rather than mean 
effects. The first stage in any analysis of wage inequality is the accurate 
documentation of the growth in inequality, and how it is apportioned with 
regard to permanent and transient components. Thus our focus is first on 
covariance structure, not on the socioeconomic covariates that might 
"explain" the structure. 

In many longitudinal studies, there are a relatively small number of 
observations per individual, so estimating separate regressions to assess 
wage inequality is infeasible. A variance components model (Searle et al. 
1992) using (3) can partition the variance into long-term, permanent vari
ation and short-term, transitory variation. We note that the distinction 
between long- and short-term trends is fundamentally about economic 
mobility. The variation between the individuals' permanent components 
is a measure of mobility relative to one's peers, and a variance compo
nents analysis allows one to evaluate this important economic issue. 

In matters with such strong policy implications, proper specifica
tion of a model that describes the components of variation is crucial. What 
may be less apparent is the role of the covariance structure in such an 
analysis. If we generalize the basic model (2) for longitudinal data to allow 
for more complex individual characteristics, we get the standard mixed 
effects model (Diggle, Liang, and Zeger 1994), 

(4) 

We have introduced a random-effects component, Z; O;, in which Z; is an 
n; X q known design matrix, and O; is a q-vector of unknown (latent) vari
ables. It is often assumed that O; are mean zero multivariate Gaussian. 
Under this assumption, it is seen that E(Y;) =X; {3, while E(Y; I 8;) =X; {3 + 
Z;O;. This distinction is important. The latter approach asserts that indi
viduals differ from the population average response in a systematic man
ner, which is dependent on some latent characteristics. In our application, 
the growth in wage inequality and evidence for the two competing hypoth
eses are features of the latent process, Z;O;, not the population-average 
process X;{3. If O;- Nq(O,G) and E;- Nn,(O,R), independently, then 

Cov(Y;(t),Y;(t')) = {Z;GZ/ + R}u'· 

Note that the X; {3 term is not included. In other words, the covariance 
structure of the responses, rather than the mean structure, captures the 
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nature of individual differences, and thus inequality, in the labor market. 
Strictly speaking, the covariance structure captures all extra-mean varia
tion. Since we employ only time as an explanatory covariate for the mean, 
all of the contributions to inequality are expressed in the covariance. This 
establishes a baseline level of inequality that we can later use additional 
covariates (such as education) to explain. 

Models for this covariance structure that can differentiate between 
hypotheses I and 2 will be developed in subsequent sections. 

1.1. Data 

As alluded to above, we will anchor our presentation by using an example 
from labor market economics, where proper modeling of covariance struc
ture is of paramount importance. We will be investigating two datasets 
from the NLS. The first, or original cohort, is a representative sample of 
young men aged 14-21 first interviewed in 1966 and interviewed annu
ally for the next 15 years (with the exception of 1972, 1974, 1977, and 
1979). The second dataset began with a comparable sample of young men 
in 1979 who have been interviewed yearly since then for 15 additional 
years. For comparability between cohorts, we selected only non-Hispanic 
whites, with resulting sample sizes of 2614 and 2373 respectively for the 
original and recent cohorts. For a detailed description of these datasets 
and their comparability, see Bernhardt et al. (1997). According to Topel 
and Ward (1992), "the first ten years of a career will account for 66 per
cent of lifetime wage growth for male high school graduates and almost 
exactly the same fraction of lifetime job changes," so it is important to 
understand trends manifesting themselves in this early period. 

In this paper, we present several different ways to model covari
ance structure with the ultimate goal of addressing questions such as those 
posed in hypotheses 1 and 2. One of these methods is novel in the litera
ture, so it is to be developed in some depth. We begin by discussing sev
eral different philosophical perspectives to longitudinal data modeling in 
Section 2. To address hypotheses like the ones just presented, we argue 
that a different modeling philosophy is necessary; we develop a hybrid 
framework with this in mind in Section 3 and illustrate it in Section 4. We 
apply more traditional models to our labor market data in Section 5 and 
discuss the strengths and weaknesses of each approach, including the sub
stantive implications of each choice. Section 6 summarizes the discussion 
and suggests future directions of research. 
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2. ALTERNATIVE MODELING PHILOSOPHIES 

The choice of modeling framework should depend on the substantive ques
tion of interest. For example, in many medical applications, one may be 
focused on how a treatment affects the population as a whole. However, if 
there are potentially serious risks involved in treatment, the distribution 
of outcomes, including information about the extremes, may be of impor
tance. Along with many modeling paradigms comes a modeling philoso
phy, focused on the primary goals of the research. We now describe several 
philosophies in longitudinal data modeling. 

2.1. Population-Average Analysis 

Population average models focus on describing the population, rather than 
individuals within it. Much as in classical regression, the mean response 
is modeled conditional on the observed covariates. In a linear model, 
E(YIX) = X{3, the parameter {3 describes how changes in the components 
of X affect the overall population. With longitudinal data, we have seen 
that the covariance of the responses within an individual influences the 
response trajectory. For some problems, that covariance structure is effec
tively a nuisance parameter-it must be included in the model but is of no 
intrinsic interest in and of itself. Generalized Estimating Equations (GEE) 
is a methodology that produces consistent estimates of population-average 
parameters even when the covariance structure is misspecified (Liang and 
Zeger 1986; Zeger and Liang 1986; Prentice 1988). This technique allows 
one to pursue the population-average approach to modeling, while account
ing for the dependencies due to the longitudinal nature of the data. Since 
the covariance is viewed as secondary, the method does not yield a vari
ance components analysis, which one might use to address our labor mar
ket hypotheses, for example. 

2.2. Individual-Specific Analysis 

Individual-specific effect models consist of two key components: (1) the 
fixed effects, which capture gross differences between individuals based 
on differences in their explanatory covariates; and (2) the random effects, 
which reflect the influence of unobserved covariates. These so-called 
"unobserved" co variates are just a device to capture unexplained but sys
tematic variation in outcomes. Typically there is no single covariate, such 
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as "motivation," that would replace the individual effects in our model, 
were we able to measure it. Rather, after controlling for what was mea
sured, some systematic differences between individuals are likely to exist 
for a variety of reasons. Because we are looking at longitudinal data, we 
can verify that some differences seem to persist throughout an individu
al's life-course, and that these are not simply random disturbances. 1 

Under model (4), the fixed effects are captured by the Xd3 term, 
while the random effects are modeled via Z; O;. The O; vector is indexed 
with an i to reflect the fact that every individual is expected to have 
their own value for this "parameter." These models are also referred to 
as random coefficient models (Longford 1993) because the coefficient 
on the Z; terms is allowed to vary. These coefficients introduce extra
mean variation into the response in a systematic manner mediated by 
the design matrix Z;. 

We interpret these models conditional on the individual specific 
effects, so we are modeling E(Y;IX;,Z;,o;), rather than E(Y;IX;). Using 
model ( 4 ), the interpretation of the fixed effects parameters shifts to the 
following. Given the individual specific effect O;, the expected response 
for individual i is X; f3 + Z; O;. We are making statements about individu
als, not populations; the regression coefficients reflect this distinction and 
should be interpreted in this conditional manner. In the standard linear 
mixed effects model in which all random components are assumed Gauss
ian, the distinction between population average and individual specific 
modeling is more philosophical, as the models and their parameter esti
mates are identical. This is not the case for a generalized linear mixed 
model (GLMM; see McCulloch 1997; Hu et al. 1998; Crouchley and 
Davies 1999). 

What may be less immediately apparent about this shift toward an 
individual-specific perspective is that the parameters that define the dis
tribution of the effects often represent meaningful components of varia
tion. For example, if O; is a scalar and Z; is a column of ones, then the 
individual differences are being modeled as shifts in the intercept. This 
implies that the differences between individuals are constant over the life
course. The variance of the random effect O; is an important model param
eter. If it is large, then large differences between individuals exist and 
persist throughout the life-course; if it is small, they do not. The ability to 

1Note that this modeling philosophy is agnostic toward the substantive inter
pretation assigned to the systematic differences. 
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interpret a variance component in terms of a substantive question is a key 
feature of individual-specific modeling. 

Note that not all mixed effects models are oriented toward mean
ingful variance components analyses. Beyond the fixed effects, the varia
tion is modeled in the random effects and in the residual variation structure. 
In model (4), O;- Nq(O,G) and E;- Nn,(O,R), and the residual variation 
structure, R, can be made arbitrarily complex. There is often a tension, in 
terms of modeling, between these two components. ARMA models (Box 
and Jenkins 1976) can capture a substantial portion of the within-individual 
correlation, but they do so via parameters that do not take on individual
specific values. For example, the correlation between observations may 
be given by p, but p does not vary between individuals. So we know how 
variation occurs, but we cannot directly use it to position a curve above or 
below the mean trajectory. 

Jones (1990) discusses this model formulation issue by comparing 
a classical random growth curve model to an AR(l) model for that same 
structure. He finds that these two approaches typically compete with each 
other in terms of explaining the variation in the data. We tend to favor 
models that emphasize structured variation in the Z; O; term, because these 
provide direct summaries of differences between individuals. 

In sum, mixed effects models may be based on an individual
specific philosophy, but they are not required to do so. Thus care must be 
given in the model formulation process as to which philosophical perspec
tive to adopt. 

2.3. Latent Curve Models 

A related but philosophically different approach to modeling longitudinal 
trajectories was developed by Meredith and Tisak (1990).2 They outline a 
framework in which each response is a weighted average of a fixed set of 
curves: 

Y;(t) = 2, W;k¢k(t) + E;(t), (5) 
k 

where Y;(t) represents the response for the ith individual, w;k is the 
individual-specific coefficient associated with the kth latent curve ¢k(t ), 

2We also refer the reader to Raykov (2000), in which latent curve modeling is 
developed using the structural equation modeling (SEM) approach. SEM emphasizes 
covariance structure in the model formulation. 
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and E;(t) is the residual process. The </>k capture the shape and magni
tude of the variation, and the w;k allow individuals to differ systemati
cally, much in the same way that random coefficients do in mixed effects 
models. In the above formulation, the mean process will be a specific 
weighted sum of the latent curves, but it could just as well be parameter
ized separately, as in the fixed effects portion of a mixed model. For 
the remainder of this discussion, we will ignore the mean of the pro
cess, or assume it is identically zero. 

If the latent curves are known, then the formulation is similar to a 
mixed effects model. If we stack the <f>k as columns of a design matrix 
Z(t) = { ¢> 1 (t ), <f>2(t ), ... , </>K(t)} at T design points t 1, t2, .•• , tr, then we 
can estimate a model: 

Y;(t) = Z(t)o; + E;(t), 

again, ignoring the mean process. But when model (5) was originally pre
sented, it was assumed that the latent curves were not known and would 
be estimated directly from the data. With a few additional assumptions, 
this would be a factor analysis, which is a particular decomposition of the 
covariance into structured and residual variation. The former are captured 
in the factor loadings, while the latter are summarized by the specific vari
ances. The large variability inherent in covariance estimation prompted 
researchers to impose smoothness constraints on the curves (Rice and Sil
verman 1991 ). A basic premise of the new model that we will propose is 
that smooth latent curves can go a long way toward describing systematic 
variation in longitudinal data. 

In practice, the latent curve model described above cannot be esti
mated without further assumptions. If the <f>k are known, then this can be 
estimated as a random growth curve mixed effects model. If they are left 
completely unspecified, we have a factor analysis formulation. Both of 
these model-based approaches avoid some technical problems that arise 
when an estimate of the full unspecified covariance matrix is required.3 

3 Missing data at the individual-record level is a key challenge in direct esti
mation of the covariance matrix but is surmountable. Many algorithms have been de
veloped to estimate pairwise covariances, u 11 • = E((Y, - Y,)(Y,· - f,, )). from 
all available observations. Unfortunately. the resulting full covariance matrix may not 
be positive semidefinite (Jolliffe 1986). Beale and Little (1975) impose a multivariate 
normality assumption and estimate the covariance parameters using the method of 
maximum likelihood. But it is uncertain how robust these methods are to violations of 
the normality assumption. Other methods have been developed, with similar limita
tions. For further discussion see Devlin et al. (1981 ). Locantore et al. ( 1999), and 
Arminger and Sobel (1990). 
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Moving beyond these traditional models will actually open up a whole 
new way to think about longitudinal data modeling, and we develop this 
alternative approach at length in Section 3. 

2.4. Latent Class Models 

So far, we have discussed models for which differences between individ
uals are expressed as an offset from the mean value in shifts that come 
from a continuous distribution. For example, the random coefficients in 
mixed effects models come from a multivariate Gaussian distribution, 
yielding a wide (actually, infinite) variety of outcomes. If the differences 
"clump" together in a natural way, then it might make sense to restrict the 
variation to a finite set of possibilities, in which each represents a clump 
or cluster of similar outcomes in the population. This is the approach taken 
by latent class analysis (Clagg 1995).4 The analyst divides the population 
into K distinct classes, and typically any variation that exists within a class 
is of secondary interest.5 The model can be represented as 

(6) 

where the random variable C; captures the latent class membership, and 
f3k represents the regression coefficient for class k.6 By allowing the 
regression coefficients to take on several different values, a set of dis
tinct trajectories can be captured, assuming that the data support them. 
In formulating such models, one typically models membership in one 
of the K classes as a random process following a multinomial distribu
tion, so individuals are members of exactly one class. Several features 
of the population are documented in this approach: the shape of the dif
ferent trajectories, and the probability of membership in each. Exten-

4 Strictly speaking, latent class models capture discrete outcomes, while latent 
trait models are employed with continuous responses. We view latent class modeling 
conceptually as a form of mixture modeling (Banfield and Raftery 1993, Muthen and 
Shedden 1999), and thus make no distinction as to response type for these models. 

5The model-based clustering work of Banfield and Raftery (1993) is an excep
tion; they try to capture the within-class variation using several different forms for the 
covariance. 

6 Comparing this to a standard mixed effects model, it is interesting to note 
that one can view the f3k as random coefficients governed by a multinomial distribu
tion, in which case E(f3k) may be different from zero, and Xi(t) assumes the role of 
both mean and random effects design matrices (Xi(t) and Zi(t) in (4)). Such random 
coefficients follow a discrete, rather than the more classical continuous, distribution. 
We thank an anonymous reviewer for suggesting this interpretation. 
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sions of this approach by Muthen and Shedden (1999) and Roeder et al. 
(1999) involve estimating a multinomial "choice" model for class mem
bership. For example, we might assume that membership is based on a 
multinomiallogit model in which some subset of the explanatory covari
ates play a role: 

logit[P(C; = kiX;)] = fh + X;{3b k = l, ... ,K, 

where X; are explanatory variables influencing membership and fh are 
scalars (for identifiability, we would fix 01 = 0 and {31 = 0). The full model 
combines this choice model with a model for the response, conditional on 
the class membership and the explanatory covariates. 

This modeling philosophy focuses on identifying subgroups in 
the data with similar mean structures. However, there are close links to 
approaches that model the covariance. To see this, consider the model as 
the number of latent classes increases. If there is only one latent class, 
then this approach is equivalent to regression and is not modeling covari
ance at all. As the number of classes increases, more of the covariation in 
profiles is attributed to the classification. If there are a large number of 
classes, then the covariation in the profiles is largely explained by the 
classification and the within-class variation will be reduced. There is a 
clear tradeoff between mean and covariance modeling as the number of 
classes increases. However, the present latent class models do not attempt 
to identify features shared by the entire population (the features are by 
definition disjoint), and we do not consider them here. 

2.5. Discussion 

In sum, there are several different ways to think about modeling longitu
dinal data. One can concentrate on the population average and represent 
the covariance structure as a foil. Or, one can model individual differ
ences directly by imposing a strict structure on how these differences arise. 
A relatively general framework is to decompose variation into the sum of 
curves with different weights. This could be in the form of a factor analy
sis, but a model-based approach to this is preferred over analyses based 
on the directly estimated covariance matrix. In some instances, one can 
separate the variation into similar clusters, with an explicit model for how 
these are determined by explanatory covariates. 

All of these are good ideas, depending on the substantive issues to 
be addressed. We would use the second and third to explicitly model vari-
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ation in populations that is quite general in form and consider the fourth 
when natural clusters are apparent. 

3. A HYBRID MODEL 

The theoretical approaches of Section 2 each have their value and place. 
In our labor economic example, we wish to extract permanent and tran
sient variance components. We want the permanent component to reflect 
features of the whole population while still allowing the expression of 
individual differences. A modeling class that identifies a common, pop
ulation-level pattern as distinct from short-term effects requires a hybrid 
modeling philosophy, since both population-average and individual
specific approaches are being employed. When used to address hypoth
eses 1 and 2, such an approach will provide a highly interpretable and 
novel variance components decomposition. 

3.1. The Proto-Spline Model Class 

In Scott (1998) and Scott and Handcock (2001), we introduced the hybrid 
proto-spline class of heterogeneity models. Motivated by a longitudinal 
study of wage growth, we formulated a class of models that capture long
and short-term features of the covariance structure. The models use a latent 
curve formulation to identify long-term patterns of variation, and they 
yield a meaningful variance components decomposition. The proto-spline 
class is distinguished by the data-adaptive manner in which the curves are 
estimated. We will now describe this class in detail. 

The proto-splines class is derived from the model class (5) of 
Meredith and Tisak (1990), 

K 

YJt) = JJ-Jt) + 2, W;k¢k(t) + E;(t). (7) 
k=i 

We have added a general mean process and changed the approach to mod
eling w;k as follows. What was formerly an unconstrained individual spe
cific weight, we will now view as a random coefficient from some known 
distribution. In addition, we will specify a functional form for the ¢k(t). 
However, only a functionalform and not a specific function is necessary 
for estimation of the proto-spline class. 
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We restrict the cpk to be orthonormal.7 This parallels the orthogo
nality employed in principal components analysis and allows us to inter
pret each curve's contribution as mathematically distinct from the others. 
We assume that the random coefficients, w;k are independent (for differ
ent k), which further uncouples the latent curves. This formulation mir
rors many psychological and behavioral models in which a response is the 
combination of several orthogonal shocks to the system. For the proto
spline class, the way the orthogonality of the cpk is maintained is a depar
ture from techniques used in principal component analysis and in Rice 
and Silverman (1991), in that no external constraints are placed on the 
estimation procedure. 

Consider first the case where the stochastic variation can be 
described by one curve, cp1 (this is a single latent curve model). We must 
specify the functional form of cp 1 , and this is done by choosing an appro
priate functional space.8 For example, we can assume that cp 1 is a cubic 
spline with knots at four equispaced time points. Cubic splines are smooth 
functions that have a tremendous degree of flexibility in terms of the pos
sible set of shapes that they describe (see Green and Silverman 1994 for 
details). In our theoretical development (Scott and Handcock 2001 ), we 
employed the cubic spline function space because of its smoothness fea
tures and flexibility, and this is where the "spline" portion of the proto
spline class is derived. We are not restricted to the class of cubic splines; 
for example, we can specify that cp 1 has the form of a jump process, well
described by wavelets (Ogden 1996). To keep the discussion on familiar 
ground, cp1 will come from the function space of all quadratic curves for 
most of the remainder of this paper. 

We denote the chosen function space by 7-t, and proceed with the 
specification of the proto-spline model class. Let 1/11 (t), ... , 1/Jr(t) be an 
orthogonal basis for 7-t. Then cp 1 E 1t is a specific linear combination of 
those bases, just as is an element of a vector space: 

T 

cp,(t) = 2: 17Jl/IJ(t), (8) 
j=i 

7 Orthonormal means that f<>Ow ¢>1(t )¢>k(t) dt = I(j = k). For a discussion of 
orthogonality and spline bases, see De Boor (1998). 

8 Function spaces have properties similar to vector spaces and are collections 
of curves that share a set of well-defined properties. We use them to limit the set of 
possible shapes that define the structured variation in a process (see Jain et a!. 1995 
for details of function space theory). 
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where the 1JJ are T nonrandom parameters that define the curve. If 1t is 
smooth, then so is ¢ 1(t). Extending this to the response variable, for the 
full model, we have 

T 

= ~;(t) + W;1 ~ 1J}r{fj(t) + E;(t), 
}=I 

(9) 

(10) 

where wil is a mean zero random coefficient with variance one and E;(t) 
are i.i.d. Gaussian random variables with variance a} .9 

Our model has two variance components, the variance of wil and 
the residual variance, cr}, and it is a parametric covariance model that 
defers specification of the curve ¢ 1 (t) to the estimation phase. The uncer
tainty in the form of ¢ 1(t) (until estimation) is a distinguishing feature of 
proto-spline models. Note that the parameters 1JJ define the shape of ¢I, 
which is fixed. These parameters do not represent the variance of a ran
dom coefficient, but taken as a whole, they determine the magnitude of 
the random curve ¢I and thus the variance in the process. 

The uncertainty allowed in the proto-spline class deserves fur
ther attention. In a standard mixed effects model, the random effects 
design matrix is fixed. Systematic variation takes a known form medi
ated by that design. The proto-spline class is a departure from this par
adigm because it allows the shape of the design, given by ¢I in our 
example, to be determined from all of the information in the data. In 
this sense, the curve ¢I is a population-average value-the whole pop
ulation influences its shape, and it can be considered a population "fea
ture." Individual-specific differences are directly modeled using the 
random coefficient w;I. So this model is a hybrid between population
average and individual-specific philosophies and it belongs to the latent 
curve class of models. 

In fact, the only philosophy not employed here is that of latent class 
modeling. As previously discussed, there is always a tension between mod
eling the covariance and modeling the mean, and since our emphasis is on 
covariance modeling, we do not utilize the latent class modeling philoso
phy, in which mean processes dominate. 

9 Note that the magnitude of the variation associated with ¢ 1 is contained in its 
norm, and the residual variation structure E;(t) can be made more complex. 
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3.2. Extensions 

In this section we extend the development of the single proto-spline model 
in (7) through (10) to the general multiple proto-spline model. We note 
that the choice of our function space implies that c/J 1 has a nonparametric 
interpretation, since it is a curve lying in a potentially smooth, continuous 
function space. Note that the model is not restricted to the space of any 
particular functions. Any finite-dimensional function space (or vector 
space) can be employed. An advantage to the proto-spline class of models 
is that the bases may be chosen to reflect the form expected in the substan
tive process without knowing which specific version of that form is present. 
If we choose models that result in latent curve estimates with a functional 
interpretation, features such as the derivative become available. 

We define the full proto-spline class by extending the single curve 
example to more than one curve without introducing additional param
eters. The main idea is to use only a subset of the T bases 1/lj to construct 
each curve cPk· For this development, we let 1t be a basis for cubic splines 
with an appropriate set of knots. Let Ik be an indexing function defined 
on the integers 1, ... , T, which selects the basis functions used to construct 
the eh curve. In our simple example, c/J 1 uses all T basis functions, so I 1 = 
{1, ... , T}. We construct latent curves as a deterministically weighted sum 
of the basis functions specified by the indexing function I so 

cPk(t) = ~ T/ji/Jj(t). (11) 
jEik 

In order to ensure orthogonality of the cPk> the index sets given by Ik 
must be disjoint. This restriction implies that once we decide to estimate 
more than one latent curve, the curves are highly constrained elements 
from the class 1-i, using only a subset of the bases for each. Since in the 
theoretical development 1t was chosen to be the natural cubic splines, we 
named the resulting cPk proto-splines, because they are partial versions 
of a full spline fit. This method requires T parameters to build all K curves; 
if we do not normalize the curves, then for identifiability the random coef
ficients w;k are all presumed to have variance one. 

To place this model in the context of those previously developed, 
we examine it for two extreme cases. First, if K = T, then each proto
spline is just a rescaled version of the basis function. This is essentially 
the model proposed in Brumback (1996) and Brumback and Rice (1998), 
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although the form of their model was chosen to produce cubic spline pre
dictions for individual curves. If K = 1, then we are estimating a smooth 
principal component in the presence of noise, and it is constrained to be a 
natural cubic spline. 10 

A more useful approach is to choose K to be small in relation to T, 
so that for equal-sized index sets, T/K bases are available for each latent 
curve. Equations (7) and (11) still apply, but the "proto-spline" nature of 
the curve estimates becomes more apparent. This intermediate case is sim
ilar to a principal functions analysis (Ramsay and Silverman 1997), in 
which we expect that most of the variation in the process is captured in a 
few of the largest principal functions. We are enforcing a small number of 
these by our choice of K, and we maintain the orthogonality requirement 
by the way the model is constructed. Note that this model differs from a 
principal functions analysis in that we can choose our function spaces 
with substantive features in mind, rather than simple smoothness con
straints. We then build our model directly around these structures. 

3.3. Link to Mixed Effects Models 

The standard mixed effects model can be expressed in the following form: 

YJt) = X;(t)f3 + Z;(t)o; + E;(t). (12) 

A key feature of this model is that X; (t) and Z; (t) are prespecified designs. 
The single latent curve proto-spline model is precisely the above model, 
with Z;(t) = c/> 1 (t) and 8; = wi!, only Z;(t) is specified from the data. This 
illustrates a conceptual distinction between proto-spline models and other 
mixed effects models. 

To explore the conceptual difference, we will consider three ran
dom quadratic models. For Model I, we assume that we know the exact 
quadratic curve that describes the structured covariation about the mean. 
Let Z;(t) = t + ~t 2 , so Z;(t) is a scalar-valued function describing a par
ticular growth structure. Further, let the random effect, 8;, be a Gaussian 
random variable with unknown variance (the variance is one of the mod
el's variance components). For a specific individual, 

10 Another name for smooth principal components, principal functions, comes 
from the functional data analyses arena and is discussed at length in Ramsay and Sil
verman (1997). The reader is also referred to Lindstrom (1995), who uses splines to 
model a population of curves. 
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(13) 

Every subject gets some random multiple of the fixed curvet+ 1t 2 . 

For Model II, we consider a mixed effects model in which each 
individual has their own quadratic perturbation as follows. Let the ele
ments forming the three columns of Z;(t) be given by the vector (1, t, t 2 ), 

and let O; = ( oli, 82;, 83;) be a vector of random coefficients, with a multi
variate Gaussian distribution. Then for an individual specific curve, 

(14) 

While this is quite flexible, the variance components analysis requires a 
full description ofthe estimated covariance structure of the random effects, 
which is contained in a 3 X 3 matrix that includes important covariance as 
well as variance components. We must use all of this information when 
describing any variance partitioning. 

Model I is highly inflexible in that we must impose an exact form 
for growth beyond the mean. However, the variance component for O; is 
highly interpretable-it is the variance of the coefficient of precisely deter
mined shocks to the system, so a larger variance means that there is greater 
dispersion in individual growth and that all structured growth follows the 
same form. It would be difficult to make a similar statement about Model II. 

For Model III we consider a single latent curve proto-spline model, 
which offers the interpretability of the simpler model (1), and the flexibil
ity of the more complex model (II). Let ¢ 1 (t) = ry 1 1{11 (t) + ry2 1/J2 (t) + 
ry3 1{13 (t), where 1{11(t) = 1, 1{12 (t) = t and 1{13 (t) = t 2 .11 While this might 
resemble model II, the vector (ry"ry2 ,ry3 ) is common to each individual 
and does not represent individual-specific random effects. Every individ
ual curve has the following form: 

(15) 

with the parameters ( ry 1, ry2 , ry3 ) fixed and identical across individuals; this 
is a reparameterization of (10) that keeps the notation consistent. Each of 
these models is different, and we claim that the proto-splines offer an effec
tive compromise between the rigidity and flexibility of Models I and II, 
respectively, while remaining highly interpretable from a variance com
ponents perspective. 

11 We are ignoring the orthogonality requirement in this example for illustra
tive purposes. 
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To understand the link between proto-splines and other mixed 
effects models it is important to understand their technical distinctions. 
Scott and Handcock (2001) discuss estimation for the proto-spline model 
and show that there is a likelihood-equivalent but nonstandard mixed 
effects model corresponding to the proto-spline class. In this section we 
describe the ways in which the proto-spline model is nonstandard. 

For notational convenience we suppress reference to time in the 
functions, representing r/lj(t) and Z;(t) as 1/J; and Z;, respectively. Let Z; = 
{ 1/JJ. r/12, ... , 1/JT} be a design matrix constructed using the basis functions 
for the space 1t. The coefficients T/j are assumed to be ordered so that if 
there are K different groups used in the model, with the k1h group given as 
'Yk = (TJkJ,····TlknJT, then the coefficients can be stacked into aT X K 
matrix r = Gjf=I Yk· The difference between these two models can be 
understood by examining their representations. Our proto-spline model 
class is 

Y; = XJ3 + Z;fO; + E;, (16) 

where 8; ~ NK(O, h). The likelihood-equivalent mixed effects model is 

(17) 

where o; ~ NT(O,ff 1 ). 

The proto-spline formulation (16) has K random effects, while (17) 
hasT. In (16), the random effect distribution is completely known (N(O, 1)), 
while in (17) the parameters governing the effects (the yk's), must be esti
mated for us to know the structure of the random effects. In ( 16), the design 
Z; r represents the latent curve ¢ 1 and is estimated, while in (17), the 
design Z; is prespecified. These distinctions are convenient ways to inter
pret the components of the models; they have the same likelihood and set 
of unknown parameters. In principal, the likelihood equivalence means 
that any software that can estimate a mixed effects model can be used to 
estimate the parameters of the proto-spline class. However, the covari
ance structure associated with model (17) would not be implemented in 
standard statistical software for mixed effects models, such as SAS PROC 

MIXED or lme in Splus. 

While we have some evidence that these are different models, is 
this really the case? Restricting our attention to the single proto-spline 
model, formulation (16) contains a scalar random effect, 8;, while the vec
tor o; defined in ( 17) contains T effects. It is interesting to note that the 
COVariance Structure rr I governing 8;* is degenerate, since rr I is not pos-



286 SCOTT AND HANDCOCK 

itive definite. This does not introduce problems with estimation, however, 
because the degeneracy is removed in the full likelihood, once residual 
variation is included. If one examines the structure rr' more closely, it is 
apparent that each element of the vector 8;* is linearly dependent on each 
of the others, so in essence only one random effect is generated by this 
covariance structure. 12 So the likelihood-equivalent model (17) is a non
standard mixed effects model, which is equivalent to our proto-spline 
model, even in terms of the observations that would be generated from it, 
if we consider the limit of its degenerate covariance matrix. 

What this means is that our proto-spline formulation effectively 
"corrects" the degeneracy in (17) by modeling the random effects in a 
simpler manner, without direct reference to the relationships indicated by 
the latter model's ff' covariance structure. The Yk parameters contained 
in the r matrix are essential to each formulation of the model but should 
not be confused with what is actually random in the process. By viewing 
the design as estimated, rather than prespecified, our formulation (16) cor
rectly separates the model into a portion driven by population features 
contained in the Yk and individual features represented by 8;. 

In sum, the proto-spline class provides an interpretation for an 
interesting class of nonstandard mixed effect modelsY This interpreta
tion is a philosophically distinct, hybrid modeling approach, and thus 
not only generates new knowledge with its use, but also establishes a 
new way to "allocate" the information provided in longitudinal data. The 
parameters contained in Yk partition the variance as follows: they set 
the overall level of variation, since this is given by the sum of the com
ponents' squared values; and they describe the correlation structure 
because they define a shape which relates observations at different points 
in time. This formulation thus captures two things simultaneously in a 
full modeling class-orienting a modeling class to have these philosoph
ical properties is to our knowledge novel in the literature. 14 By develop-

12 Due to the degeneracy, this analysis involves taking the limit as the covari
ance structure approaches ff' from a "nearby" positive definite structure. The depen
dent relationships correspond to the relative magnitudes of the components T/kj of "Yk· 

13 Given their degeneracies, it is unclear if they can truly be labeled as mixed 
effects models; they are certainly nonstandard. 

14 The proto-spline class is closely linked to a factor analysis model, which 
could be interpreted similarly, but we have not seen a formulation that explicitly 
attempts to guide the shape of the factors using something as flexible as a function 
space. The work of Rice and Silverman (1991) was pioneering by constraining prin
cipal components to be smooth, but it was not presented as a modeling class, and 
inferential properties were not fully developed. 
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FIGURE 4. Mean curve for single proto-spline model. 
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ing this class using likelihood-based procedures, a complete set of 
inferential tools is at the analyst's disposal. Scott and Handcock (2001) 
establish the asymptotic properties of this class and discuss inferential 
techniques. Being able to differentiate between population and individ
ual effects is crucial to the formation of comparative statements in the 
policy domain. 

4. Illustration 

For ease of exposition, we illustrate our model class by fitting a single 
latent quadratic curve proto-spline model to longitudinal wage data from 
the NLS. For the fixed effects, X;(t), we use a simple quadratic in age; 
this yields Model III of Section 3.3. In Figure 4, we display the cross
sectional mean of the process.15 It provides the center from which the 
curves deviate. In Figure 5, we superimpose 4 simulated realizations from 
the proto-spline model fit, with the residual process E;(t) suppressed. The 
fitted curve c/) 1 used in that simulation is presented in Figure 6. From this 
figure, one can see that the growth of wages near the college years of 18 
to 22 sets the extent of growth for the later years as well. The shape of the 
single latent curve describes the long-term trend in variation-strong 
growth in the twenties, followed by steady but diminished growth in the 

15 As discussed, there is no choice for the mean that does not depend on the 
choice of covariance structure. We found the mean to be fairly robust to alternative 
formulations, and chose a quadratic mean for ease of exposition. 
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FIGURE 5. Curves for random coefficients one and two standard deviations from the 
mean for a single proto-spline model. 

thirties. Each realization is simply the mean curve plus some random mul
tiple (positive or negative) of the latent curve ¢1 . 

One might be concerned that imposing a quadratic latent curve is 
overly restrictive and essentially forces the decomposition into the shape 
indicated above. However, within the class of quadratic curves there are 
pure linear and constant curves; if there were no change in the growth rate 
at early and later ages, then we would expect a different fitted latent curve. 
By forming a single latent curve spanning all ages, we are specifying that 
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FIGURE 6. Fitted latent curve for a single proto-spline model. 
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we want this curve to represent long-term structure, within the quadratic 
class. This is in part how we can model the covariance structure for the 
entire age span even though only segments of the full trajectory are 
observed for a specific individual. 16 More complex spaces may reveal more 
complicated dependencies, should they exist, and they should be consid
ered in the model formulation process. 

In Figure 5, we see that the effect of the single latent curve crosses 
the mean at age 17. The zero value for c[> 1 near this age corresponds to a 
negligible amount of permanent variance, but even this is not predeter
mined by our choice of basis. If below-mean wages at those ages were to 
lead to much larger gains later on, the "crossover" would be at some later 
age. Random quadratics do limit us to a single change in the direction of 
growth (positive or negative), while higher-order polynomials would not. 
Finally, note an important difference between this model and Model II. In 
the latter, each individual has a uniquely shaped quadratic curve, so it 
may rise quickly and not level off, or it may level off quickly. In our model, 
which is basically Model III, every individual's variation beyond the mean 
has the same shape, given by ¢1-with only the magnitude of that varia
tion allowed to vary. 

5. APPLICATION AND COMPARISON OF MODELS 

To illustrate how the models differ in practice, we apply several different 
covariance models to labor market data from the NLS. After a prelimi
nary analysis, we found that the mean structure in this data resembles a 
quadratic curve. We thus set the columns of the fixed effects design matrix 
to correspond to constant, linear and quadratic growth over time. 17 More 
complex mean structures can describe the influence of additional covari-

16 Longitudinal data are often unbalanced or incomplete, sometimes by design. 
For example, the NLS cohort aged 14-21 during the initial survey year is tracked for 
16 years, so complete individual records would span ages 14-30 and 21-37 in the 
extremes. No information on the correlation between responses at age 14 and 37 is 
available at the individual level. Estimating the covariance between ages 14 and 37 
without making further assumptions about the covariance is not possible. This con
cern and others noted by Jolliffe (1986) and Beale and Little (1975) are sufficient to 
warrant a model-based approach; the gains in precision associated with the imposition 
of a model (Altham 1984) further justify this. For a more sophisticated treatment of 
missing data issues in covariance structure estimation, the reader is also referred to 
Arrninger and Sobel (1990). 

17 Note that we orthogonalize and normalize these basis vectors; so instead of 
a vector of ones, the first column is a vector consisting entirely of I/ -{22, based on 
the 22 ages from 16 to 37. 
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ates on aggregate wage growth; our goal in this study is to understand the 
degree of long-term wage stratification, so the overall divergence of these 
curves over time in comparable samples yields important substantive infor
mation. Next, we must select a form for the structured portion of the vari
ation. For wage data, the structured portion consists of long-term, or 
permanent, differences between wage trajectories. 

We will compare three models. The first is a random quadratic 
mixed effects model similar to Model II and to that used by Bernhardt 
et al. (1997) in their analyses. The second is a single latent curve proto
spline model, similar to Model III, and the third is an extension of proto
spline models that includes a second nonorthogonallatent curve. Beyond 
the structural variation just described, the residual variation is modeled 
simply as independent with constant variance. 

5.1. Random Quadratics 

The strength of a random quadratic model such as that given by (14) is the 
flexibility provided by the three random coefficients, 8 1 i, 82i, and 83 i. Note 
that the quadratic basis we use is an orthogonalized and normalized ver
sion of (1, t, t 2 ), which is also the fixed effects basis. The random coeffi
cients are globally constrained to come from a multivariate Gaussian 
density. This choice yields a broad range of curves of various shapes and 
intensities. This distributional form does, however, require that there are 
no clusters of curves, or other multimodalities. 

We assume that the oi are distributed as N(O, G), where G is a com
pletely unspecified 3 X 3 covariance matrix defined by six distinct param
eters. We fit the model on data from the recent NLS cohort using maximum 
likelihood estimation, 18 and find that 

( 
+ 2.019 + 0.899 

{; = + 0.899 + 1.312 

-0.265 + 0.096 

-0.265 ) 
+ 0.096 

+ 0.529 

and a} = 0.0719. 19 Unfortunately, these results are somewhat hard to 
interpret. The structured portion of the covariance is given by zi GZT, 

18 All of the following results are based on recent cohort data; we make cross
cohort comparisons in Section 5.4. 

19Differences in these findings and those presented by Bernhardt et al. (1997) 
are due to a different choice for the quadratic basis, but they are otherwise comparable. 
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where Z; is the random effects design matrix. Since the rows of Z; corre
spond to the subject's age, this matrix product describes individual wage 
differences at each age and how they relate to each other. For example, the 
diagonal of Z; GZT represents the structured, or permanent, wage variance 
at each age. These values are plotted against age in Figure 7 below. The ini
tially larger variance at the earliest ages indicates some initial stratifica
tion between individual trajectories that seems to diminish by age 20, only 
to increase substantially from that point forward, with a dramatic rise after 
age 32. Had permanent differences in trajectories been limited to an inter
cept shift, this graph would have consisted of a horizontal line some dis
tance above the axis. The result above indicates that wages fan out quite 
dramatically as individuals age, and it gives some indication of how the pro
cess accelerates. We can infer that the trajectory fans out as a whole because 
the partition is based on a model employing a continuous curve for the per
manent portion of the trajectory. 

5.2. Single Latent Curve proto-spline 

In this model, we assume that most of the structured variation takes a 
specific form, but we let the exact shape be determined by the data. The 
explicit model is 
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FIGURE 7. Permanent wage variance for random quadratic model. 
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FIGURE 8. Permanent wage variance for single latent curve model. 

where cp 1 is the single latent curve, assumed to lie in the space of qua
dratic curves, and 8; is the random coefficient for the ith individual. This 
is the same model as the one used for our illustrative example in Sec
tion 4. A look again at Figure 5 reveals the strength of this model. A wide 
range of outcomes are easily represented by the mean plus a random mul
tiple of the single latent curve, c$ 1 . 

Figure 6 displays this curve for the recent cohort. In this figure, the 
interpretability of this class of longitudinal data models becomes appar
ent. The single latent curve reveals most of what we need to know about 
structured variation. Contrast this to the covariance matrix 6, which along 
with design matrix Z; provides the equivalent information in a less acces
sible form. The random coefficient on our proto-spline model is standard 
Gaussian, so we have an immediate sense of the range of impact of the 
single latent curve. 

The restriction to a single latent curve does limit our ability to model 
more complex structured variation. In Figure 8, we see that the permanent 
variation, the squared version of c$ 1, describes a very simple growth struc
ture.20 Two features stand out in comparison to random quadratic models: 
the permanent variation starts out lower at the youngest ages and it does 
not grow as dramatically as individuals age. We believe that the initial 
variation is less important from a likelihood perspective, so it is effec
tively being ignored in the estimation process. Had we used a higher order 

20 The permanent variance calculation is straightforward in this case because 
the random coefficient 8; is standard Gaussian. 
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polynomial, we might have discovered persistent initial wage differences. 
If this were the case, we would expect ~1 to begin higher, possibly decrease 
somewhat and then increase again, in a shape similar to the permanent 
variance graph from the random quadratic model. 

5.3. Double Latent Curve Model 

The limitations of a single curve model prompts us to explore a model 
with two latent curves. Fitting such a model under the pure proto-spline 
formulation would require the fitted curves to be orthogonal, and this 
restricts the function spaces in which each may lie. We propose a new 
model that effectively "reuses" the basis for each latent curve. The model, 
abstractly, is given by 

(19) 

where ~1 and ~2 are latent curves and 8u and 82; are i.i.d. standard Gauss
ian random coefficients. We construct each curve from the same basis. 

T 

~k(t) = L T/kjl/lj(t), (20) 
j=l 

with k = 1 or 2, effectively doubling the number of parameters used by the 
single latent curve model. After adding some identifiability constraints to 
our estimation procedure, we were able to fit this more complex model. 

The double latent curve model can best be understood as the com
bination of a common mean process and two independent "shocks" taking 
some functional form. We choose to continue to employ the space of qua
dratic polynomials for ease of exposition. Looking at Figure 9, we find 
that the fitted curves are quite different from each other. These are the 
forms for the two shocks, ~1 and ~2 . We see that ~1 is quite similar to its 
counterpart in the single latent curve model, although it starts out further 
below the origin. The latter feature will induce greater permanent varia
tion at the youngest ages, and then this will subside, as the curve crosses 
the origin between ages 18 and 19 (contrast this to the crossing at age 17 
in the single curve model). The second curve introduces a whole new fea
ture to the covariation. It appears that individuals who start out earning 
more are penalized as they age. This is indicated by ~2 's initially positive 
level of about 0.2 at age 16, which sinks to -0.3 by age 37. Of course, 
negative random coefficients are just as likely as positive ones, so this 
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FIGURE 9. Fitted proto-splines for double latent curve model. 

curve could also represent later growth for young workers who initially 
accept lower wages. There is mild evidence that this is capturing an "edu
cation effect," in which individuals who defer fully entering the labor mar
ket (and possibly pursue education or training) benefit with larger wage 
growth in the long run.21 

Note also the similarities and differences of our fitted model to a 
principal components analysis (PCA). The proto-spline restriction to a 
smooth function space means that short-term variability is definitely 
removed, and each curve represents a permanent component of variation. 
With a model-based approach, we can precisely describe how the latent 
curves are added to the response process. This is less immediate with the 
components in a PCA, because the PC scores have no predetermined dis
tributional form. Further, the proto-spline process is well-defined under 
the entire age range of interest without either the use of an ad hoc proce
dure or the need for a balanced design. 

The permanent variance partitioning for this model is given in Fig
ure 10. By including two curves additively and independently, this model 
allows for larger early and later year variation. The effects are permanent, 
in that they persist over the lifetime of a worker, but their independence 
points to a subtlety of these variance decompositions. Two curves, along 
with their coefficients, describe the systematic portion of a trajectory, but 

21 This effect was based on an analysis of the final level of education attained 
by each individual and the predicted value of the coefficient B2i of (/J2 . 
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FIGURE 10. Permanent wage variance for double latent curve model. 

295 

the independence of the coefficients severs any link between the two. In 
terms of generating mechanisms, this makes sense only if two different 
features of the wage growth process are being captured, such as an overall 
growth (often attributed to returns to job tenure and experience) and an 
education effect. 

The above comment also points to a limitation of the random qua
dratic model. Namely, it is hard to describe an underlying process (often 
thought of as a latent characteristic) that is driving the three coefficients 
forming the curves. One would have to propose a social or economic gen
erating mechanism that involves intercept, slope, and acceleration com
ponents. The latent curve models provide simpler explanations, which is 
an advantage in this case. 

5.4. Comparing Variance Partitions 

Although related, these three models provide different variance decompo
sitions. We display the permanent variation plots in Figure II and include 
95 percent confidence intervals at each age. We discuss the construction 
of those intervals in the appendix. Notable differences exist for the youn
gest and oldest ages, with strong agreement in the middle range. The sin
gle latent curve model does not pick up much structured wage variation at 
the youngest ages. If initial differences in wages persist during the youn
gest ages but then diminish, then this model will have to choose between 
the initial and later year effects-and since the latter are larger, they tend 
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FIGURE 11. Permanent wage variance for all three models. 

to dominate. The double proto-spline model picks up this extra variation 
in c$2 , and this is reflected in larger permanent variance for the younger 
ages. The random quadratic model picks up more variation in both youn
ger and older ages and labels it permanent. We contend that the additional 
flexibility of the random quadratic model allows it to follow the raw data 
more closely, capturing less rigid forms of variation. This is indirectly 
confirmed by examining the residual variation, which is 0.072 for random 
quadratics, and 0.078 and 0.098 for double and single latent curve mod
els, respectively. 

Below we present the variance decomposition for each cohort to 
address an important question. While each model partitions the variance 
differently, do these differences have substantive impact? That is, how 
sensitive are the answers to the substantive questions to the choice of 
model? In our application, the question of interest is whether or not the 
permanent wage variance between the cohorts differs, and if so, by how 
much. Any model we use will be only an approximation, but if the answer 
to our question is consistent across models, we can have more confidence 
in any conclusions we draw. 

In Figures 12 through 14, we make a cross-cohort comparison and 
display the model-based permanent variance for each model along with 
95 percent confidence intervals at each age. All of the models indicate a 
significantly larger permanent variance in the recent cohort, starting some
time in the mid-twenties. The difference is most dramatic in the random 
quadratic model and least so in the single latent curve model. There is 
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FIGURE 12. Permanent wage variance for random quadratic model. 

297 

some between-model discrepancy in what portion of the variance is per
manent at the youngest ages, and in how the cohorts differ. Both latent 
curve models contain a crossover, in which the original cohort starts out 
more stratified until the early twenties, at which point the opposite is true. 
In contrast, the random quadratic model posits that both cohorts are more 
permanently stratified initially and to a comparable extent. If we are inter
ested in the absolute magnitude of permanent wage stratification, we must 
look more closely at all of these models and determine which is more 
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FIGURE 13. Permanent wage variance for single latent curve model. 
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FIGURE 14. Permanent wage variance for double latent curve model. 

justified on substantive grounds. If we were concerned about wage strat
ification at the younger ages, a deeper understanding of each model's char
acteristics is warranted, since these models tell three different stories. 

5.5. Discussion of Findings 

All three of these models indicate a significant increase in permanent wage 
variation in the recent cohort for the older ages. But the magnitude of 
these differences varies greatly between models, and strong differences in 
the partitions exist at the younger ages. 

Since the random quadratic model labeled more variation as per
manent, it may be overfitting that feature in some sense. The flexibility of 
random quadratics admits even aU-shaped curve, but is it desirable to use 
such a shape to describe permanent wage gains? U-shaped curves, in which 
initial and final wages are nearly identical, involve a shift in the direction 
of wage change, from loss to gain. So in what sense is this indicative of a 
permanent, or lasting, trend? We must understand how the choice of model 
is reflected in the variance partition if we intend to make an informed 
assessment of social phenomena. 

Latent curve models stand out as a philosophically mixed approach 
to creating variance partitions. They are highly interpretable, with inde
pendent components acting as shocks to the process. The shocks may be 
readily interpretable in the context of the generating mechanisms for the 
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social processes under study. They offer a handy form of rigidity com
pared to random quadratic models, yet they are inherently adaptive to over
all patterns of structured variation. The hybrid nature of this model class 
provides a new type of analysis to which results from other classes can be 
compared. Thus these models can be viewed as excellent foils to the clas
sical random quadratic model. 

All three of the models describe the structured portion of variance 
in such a way that "permanent" is a reasonable label to apply. That is, the 
model describes smooth versions of the curves in space that are reason
able attempts to separate the analyst-defined signal from noise; and the 
signal is nonstochastic, conditional on the parameters that describe it. The 
differences in these definitions allow different aspects of variation to be 
identified. 

6. CONCLUSION 

We embarked on this analysis to determine how different models for 
covariance affect variance component partitioning. Along the way, 
we introduced a new, hybrid class of latent curve models, proto-splines, 
that offer an interpretable paradigm for describing covariation, which is 
well-suited to formulating substantive questions directly. These models 
locate population-level persistent covariance structure and reflect it in 
the shape and size of latent curves. We view proto-splines as covari
ance function smoothers; they are nonparametric in the sense that the 
estimated curve lies in a function space, yet the model formulation pro
vides a straightforward interpretation of the curves that is often missing 
in other nonparametric techniques. In the model formulation, the 
researcher imposes a class of functions to capture substantively mean
ingful structure. The restriction to a particular class of functions forces 
proto-spline models to be conservative in the way they fit the data
being less susceptible to outliers, which in other models may influence 
both prediction and fit. This makes them invaluable in comparisons with 
more traditional models; the ways in which they differ point out charac
teristics of each, with the clearly defined behavior of our models acting 
as a foil for the others. 

In future work, we will consider relaxing the independence assump
tion for the proto-spline model class. For example, our double latent curve 
model could include a term for the correlation between curves. This exten
sion would open up the possibility of very different latent curves, since 
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the independence constraint ultimately lowers the likelihood of certain 
shapes for the fitted curves. Including more complex residual structures, 
such as age-specific variances, as a check on the homogeneous variance 
assumption could prove useful. 

In many socio-economic processes, there are jump points that are 
not smooth but have important substantive meaning. Adapting the proto
spline class to allow for uncertainty in the timing of the change-point could 
prove useful. Raftery ( 1994) explores this issue; integrating his approaches 
with ours is a research direction of interest. 

Relaxing the Gaussian assumption is worth investigating, but we 
would limit this to forms that remain interpretable, such as parametric 
forms. One approach that has been suggested by several researchers is a 
latent class, or mixture formulation (see Clogg 1995, Banfield and Raf
tery 1993, Muthen and Shedden 1999, Roeder et al. 1999, Verbeke and 
Lesaffre 1997, Xu et al. 1996). Under this paradigm described earlier, 
individuals belong to one latent class, and then conditional on class mem
bership they follow a certain structure. An important point is that the 
remaining structure could be flexibly captured in the proto-spline models 
just introduced; most models currently in use do not offer such directly 
interpretable covariance formulations. 

In work in progress, we are examining diagnostics for these mod
els in greater detail. Model selection criteria such as AIC (Akaike 1974) 
and BIC (Schwarz 1978) can be applied here. These are discussed in 
Vonesh and Chinchilli (1997) and Pinheiro et al. (1994). Recent exten
sions to the AIC discussed in Simon off and Tsai ( 1999) appear to be espe
cially promising in the context of these variance component models. An 
alternative to model selection is the use of Bayesian model averaging (Hoe
ting et al. 1999). A developed set of diagnostic techniques will add to our 
understanding of how each model captures and partitions variation. 

APPENDIX: CONSTRUCTION OF CONFIDENCE 
INTERVALS 

Confidence intervals for the model-based variances, such as the perma
nent variation, are constructed from the asymptotic covariance matrix of 
the model parameters. For proto-spline models, explicit forms for these 
covariance matrices are given in Scott and Handcock (2001). The con
struction begins by finding the variance associated with each point on the 
latent curve. Each curve is a linear combination of a set of basis functions, 
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with the coefficients specified by the model parameters. If these coeffi
cients are given by COlumn VeCtOr fk = ( 17kb ... , 17kT) T, the basis functions 
by matrix Z = [ ¢ 1, ••• , 1/Jr], and the asymptotic covariance matrix of e k by 
Hb then the resulting latent curve is given by cfJk = Zfk and the covariance 
of zek is ZHkzr. So the variance of the estimate of the curve (fok at each 
time point (and their covariances) are contained in the diagonals (and off
diagonal elements) of ZHkzr. Confidence intervals for the permanent vari
ance (the squared value of the curve estimate) at a particular time point 
can be constructed via a delta-method approximation involving that same 
asymptotic covariance matrix.22 
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