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Objective: We present a likelihood based statistical framework to
test the fit of power-law and alternative social process models for the
degree distribution, and derive the sexually transmitted infection ep-
idemic predictions from each model.

Study Design: Five surveys from the United States are analyzed.
Model fit is formally compared via Akaike Information Criterion and
Bayesian Information Criterion, and substantively assessed via the
prediction of a generalized epidemic.

Results: Formal goodness-of-fit tests do not consistently identify
any model as the best all around fit to the US data. Power-law models
predict a generalized sexually transmitted infection epidemic in the
United States, while most alternative models do not.

Conclusions: Power-law models do not fit the data better than
alternative models, and they consistently make inaccurate epidemic
predictions. Better models are needed to represent the behavioral basis
of sexual networks and the structures that result, if these data are to
be used for disease transmission modeling.

THE RAPID BUT UNEVEN GLOBAL spread of human immu-
nodeficiency virus (HIV) has challenged researchers to better
understand sexually transmitted infection (STI) transmission dy-
namics and their implications for prevention. The basic compo-
nents of transmission are captured by the well-known population
summary measure, “R0,” the reproduction rate or reproduction
ratio of infection. The reproductive rate is the number of secondary
cases generated from a single infective case introduced into a
susceptible population.

R0 � �c�

where � � the probability of transmission per contact; c � the
contact rate; and � � the duration of infection.

If R0 is �1 the initial infected case produces �1 new infection
on average, transmission is below the reproductive threshold and
the disease is unlikely to persist.

Early work in the population dynamics of STI focused on the
apparent paradox that transmission persisted despite contact rates
in the general population that suggested an R0 below the epidemic
threshold. The result was the development of the core group
concept, the theory that a small group of people with large num-
bers of partners and repeated infections can maintain a reservoir of
infection within a population even when the average reproduction
rate for the population is below threshold.1,2 Such insights directed

both policy makers and health-care providers to focus on identi-
fying and treating individuals with repeat infections to reduce R0

within this highly active core group, a strategy that seeks to curtail
disease spread without the cost and coordination challenges of
broad population-based screening and intervention. Central to
these prevention efforts was the ability to use repeat infection as a
reliable marker for core group membership, allowing for accurate
intervention targeting. Treatment seeking behavior by those repeat
infections also created a natural synergy between identification and
treatment efforts.

HIV does not fit into the core group framework, in part because
there is no reinfection (so no simple marker for risk and no readily
identifiable core group), and in part because of the generalized
epidemics of HIV in many countries (which suggests transmission
is above the reproductive threshold in large sections of the popu-
lation).

An epidemic is formally defined as generalized once 1% of the
general population is infected,3 i.e., once it has spread broadly
beyond groups with traditionally defined risk factors such as
injection drug use, commercial sex, other sexually transmitted
infections, or large numbers of sex partners. These markers of risk
have typically been used to target prevention strategies, but with
HIV prevalence above 30% in some countries (not just their capital
cities), the concept of a “core group” begins to lose meaning and
relevance. Prevention strategies are therefore being rethought in
the context of HIV. If a small core group is not responsible for
persistence, then first principles dictate going back to think about
the mechanism: the transmission network. The integration of net-
work analytic theory and methods into HIV prevention research
has provided a number of new insights into STI population dy-
namics.4

In the network context, it is also possible to directly calculate R0

under some circumstances. Under the assumption of random part-
nership formation given the heterogeneity in contact rates across
persons5:

R0 �
��

�c

where �� � the average integrated probability of transmission given
a partnership; and 1/�c � the contact network epidemic potential.

The “average integrated transmissibility” is a partnership level
measure that represents the likelihood of transmission in a discordant
pair, averaged across all such pairs in the population. It is determined
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by the characteristics of partnerships (e.g., duration, coital fre-
quency), the characteristics of the pathogen (transmissibility), and
the characteristics of the host (infectivity and susceptibility). We
will refer to it below by the simpler term “transmissibility.” The
“contact network epidemic potential” is a population level measure
that summarizes the level of connectivity in the contact network. It
is determined by the network structure (e.g., the density, distribu-
tion, and clustering of partnerships), and its form depends on the
model for the network.6 As the form of the equation suggests, �c

can also be interpreted as the threshold transmissibility: the trans-
missibility needed to sustain an epidemic in this particular net-
work. We will refer to these below as “epidemic potential” (1/�c)
and “threshold transmissibility” (�c).

The key feature of this generalized R0 is that neither transmis-
sibility nor the contact network alone determine the likelihood of
an epidemic; it is the relationship between the 2 that is important.
Because of this interdependence, an extremely high level of trans-
missibility may not induce an epidemic if the epidemic potential of
the contact network is sufficiently low. By the same token, very
low levels of transmissibility may induce an epidemic if the
potential is sufficiently high. An extreme case that has garnered a
great deal of attention in the recent literature is the case of so called
“scale-free” networks. In this case, the theory defines �c � 0, so
there is no epidemic threshold. Under these conditions any level of
transmissibility is sufficient to induce an epidemic with very high
probability. The speed and the magnitude of the epidemic will be
determined by the level of transmissibility. The scale-free case is,
however, a single extreme state of the degree distribution; the
theory of network mediated transmission is considerably more
general, and more empirically useful.

In this article, we present a statistical framework that allows us
to test the fit of alternative models for the degree distribution,
estimate the resulting epidemic potential of the network, and
derive the epidemic predictions of the models in terms of R0. We
use these methods to analyze 5 different surveys of the US pop-
ulation. Using multiple surveys of the same population helps to
highlight how robust the statistical estimates and epidemic predic-
tions are to subtle changes in the survey sample, questionnaire, and
data collection method.

The original expression for R0 represents the impact of sexual
activity via the single homogeneous term, c. The simplest gener-
alization of this term is to allow for heterogeneity in contact rates
across persons: the population “degree distribution.”5,7,8 In a sex-
ual network, the degree, K, is the number of sexual partners of a
randomly chosen member of the network and the distribution of K
is referred to as the degree distribution. Empirical evidence shows
that degree distributions for sexual partnership networks are highly
right skewed.5 Although the long upper tail is important for trans-
mission, the other feature of these skewed distributions is a very
dense lower tail: the modal degree is 1 partner in the last 12
months for nearly all large representative surveys (e.g., Refs.
9–16). In the 5 survey data sets that will be used in our analysis,
64% to 76% of respondents report exactly 1 partner in the last year.

The extreme right skew of these degree distributions has led
researchers to explore whether these distributions can be repre-
sented by a “power-law” scaling function that is found in many
other physical systems. The probability mass function P(K � k) of
a degree distribution has power law behavior with scaling expo-
nent � if there exist finite constants c1, c2, and M such that
0 � c1 � P(K � k)k� � c2 for k � M. The relevant characteristic
of these models for understanding disease transmission is the scaling
parameter (�). If this parameter is between 2 and 3, the variance of the
degree distribution is theoretically infinite and the distribution is said
to be “scale free.” With infinite variance the epidemic potential,

1/�c, becomes infinite, so the infectivity �� needed for an epidemic
approaches zero. That is, an epidemic is a virtual certainty for any
pathogen that has a nonzero probability of transmission. Concor-
dantly, the critical vaccination fraction under such circumstances is
unity. There is no herd immunity—all members of the population
must be successfully vaccinated to eradicate the disease. Under
these conditions, only interventions that successfully shut down
the high-degree “hub” nodes will restore the epidemic threshold
and curtail the diffusion process.17

The scaling parameters have been estimated by several research-
ers across a range of populations including Uganda the United
States, Sweden, Britain, and Zimbabwe. The results have been
somewhat inconsistent and often counterintuitive. The results sug-
gest there should be large STI and HIV epidemics in Britain,
Zimbabwe, and potentially the United States, but not in Sweden or
Uganda.5,7,8,18,19 The results are summarized in Table 1. The
discontinuity between the model predictions and the empirical data
serve as the motivation for the current investigation.

Why do these model estimates fail to predict results consistent
with the evidence? It is our contention that the methods employed
in these studies have been inadequate in 1 or more of the following
ways. First, the amount of error in the tail of the distribution has
been underestimated. Second, models for the social process have
been bypassed in favor of simple curve fitting. Finally, models that
focus exclusively on degree distributions ignore heterogeneous
population mixing patterns, so are unlikely to provide informative
predictions of epidemic potential. As a consequence, the evidence
that power law models adequately fit the degree distributions of
empirical sexual networks has been overstated.

The typical approach to estimating the scaling parameter � of a
power-law model is to fit a regression line through the apparently
linear region of a plot of the survival function of the degree
distribution plotted against the distribution on double logarithmic
axes7,18 and the standard error of the estimated slope is used as an
estimate of uncertainty in the model. The appeal of this approach
is due to its familiarity and simplicity. There is, however, an
implicit assumption here that measurement uncertainty is not cor-
related with degree. The data suggest that this assumption is not
met, for 2 reasons. One is that there is little information in the tail
of the distribution, since so few people report large numbers of
partners. In the data sets we analyze here, for example, �1% of
respondents report �10 partners. Another source of error in the tail
is response rounding. Above 10 partners there is a tendency for
respondents to report in round numbers, and above 20 partners
over 80% of the reports are in large round numbers.20,21 As a
consequence, the precision of the model approximation becomes
more dependent on less accurate data as it fits the higher degree
values. And because the distribution tail has a disproportionate
effect on the slope of any line fit, the scaling parameter estimates
tend to be very unstable. Approaches that use data only from the
upper tail of the distribution8 simply exacerbate the problem. In
this context, the simple regression methodology is inappropriate. It
yields biased estimates of the scaling parameter, and greatly un-
derestimates model uncertainty.22 A more sophisticated form of
curve fitting is used in.8 They fit a curve to P(K � k) of the form
ck�� using a form of maximum likelihood. It has the disadvantage
of neither using a social process model nor adjusting for the
selection of the upper tail as is done here.

The curve fit approach raises another problem as well—the
assessment of alternative hypotheses regarding the underlying
process that gives rise to the observed degree distribution. This
kind of statistical evaluation requires a theory of the mechanism of
partner acquisition, represented in the form of a stochastic model
that can then be fit to the data and compared to alternatives. As
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others have noted, power law behavior is consistent with a “pref-
erential attachment” mechanism.23–26 In the context of sexual
partner selection, this would imply that people chose partners with
a probability proportional to the partner’s degree: the more part-
ners that person has, the more likely you would be to choose them.
Although this may be a plausible mechanism for link formation in
the World Wide Web—where the goal is to minimize steps to all
other nodes—it is a questionable representation of how people
choose their sexual partners. Indeed most social norms would
suggest the opposite; that having many partners makes one socially
undesirable. In any case, to move this discussion from speculation
to empirical assessment, it is necessary to define and test alterna-
tive models of the process.

We identify several plausible alternative models and compare
how well they fit the data from 5 surveys. In testing several
alternative models on several different data sets, we hope to gain
some leverage on identifying the range of processes that describe
partnership distributions. If one model fits better than the others in
a wide variety of cases, this suggests a commonality of processes.
If the best-fit model varies from one data set to the next, this
suggests that the partnership acquisition process is too complex to
capture with a simple model based exclusively on degree. In that
case, the reported fits of individual models would most likely be
idiosyncratic and not particularly informative. In addition, if dif-
ferent models fit the different measures from the same data set, this
would suggest the results are very sensitive to the measure used,
and this should limit the inferences made. Finally, the sample data
themselves may be inadequate and fail to accurately capture the
true degree distribution in the population. Previous research how-
ever, has shown remarkable consistency in reported sexual behav-
ior27 and there is no a priori reason to believe the data are not
representative.

Regardless of which model fits the data best, a good model must
also predict the epidemic behavior we empirically observe. The
ultimate goal of analyzing degree distributions is to develop a
methodology that sheds light on disease transmission dynamics in

different populations. So in addition to comparing the fit of each
model, we also examine the epidemic potentials predicted by
each.5 If the best fitting model for the degree distribution still
produces nonsensical epidemic predictions, this again implies that
a degree-based model is too simple to capture the true underlying
transmission networks.

Materials and Methods

Data

The degree distribution measures we will examine are drawn
from questions about the number of partners in the last year. It is
worth a brief discussion on the rationale for that choice. The
appropriate time slice to use for estimating network epidemic
potential is not obvious, an issue often ignored in the literature.
Because partnerships have duration and sequence, the true trans-
mission network does not exist during a single time period, but is
instead a concatenation of periods that defines the possible infec-
tion path, given the duration (and/or stages) of infection. Outside
of computer simulations, we generally can not observe this net-
work. Our goal here, however, is to capture the degree distribution
this transmission network would have if we could see it. Consider
the degree distributions based on lifetime partners and current
partners. Both of these choices are useful in certain contexts, but
neither is likely to provide a good representation of the underlying
transmission network. The use of lifetime partnerships ignores the
impact of partnership sequence and dramatically overestimates the
density of the transmission network. Current partnerships select
disproportionately on long relationships and are likely to underes-
timate the density of a transmission network.

Using partners over the last year as a proxy for the transmission
network is not perfect, but it has some merits. The longer-term
partnerships are balanced by observation of some shorter-term
partnerships, and the time window is a reasonable compromise for
a range of STI infection durations. Treated STIs probably have
shorter infection windows than a year, but this may be balanced by

TABLE 1. Reported Power-Law Scaling Parameters and Confidence Intervals From Studies of the Degree Distributions of Sexual
Networks in 5 Countries

Country Authors Data Source Study Population � Estimate

England Schneeberger et al.,
2004

National Survey of
Sexual Attitudes and
Lifestyles (1990 and
2000)

A household-based probability
sample of adults in Britain

1990—males: 2.85*, CI (2.8–2.91);
females: 3.68, CI (3.59–3.78)
2000—males: 2.48*, CI (2.43–2.53);
females: 3.1, CI (3.03–3.17)

London Gay Men’s
Sexual Health
Survey

A convenience sample of gay
men in London

Males: 1.87*, CI (1.8–1.94)

Sweden Handcock and Jones
2004

Sex in Sweden Survey
(1996)

National probability sample of
adults in Sweden

Males: 3.25, CI (3.01–3.63); females:
4.23, CI (3.60–5.21)

Uganda Handcock and
Jones, 2004

Rakai Project Sexual
Network Survey
(1995)

Rakai District adults 16–45 Males: 5.43, CI (4.32–6.53); females:
17.04, CI (12.58–25.19)

United States Handcock and
Jones, 2004

National Health and
Social Life Survey
(1992)

Nationally representative
sample of US adults 18–55

Males: 3.03†, CI (2.8–3.32); females:
3.84, CI (3.34–4.55)

Zimbabwe Schneeberger et al.,
2004

Population-based
survey of rural
Zimbabwe reported
by Gregson et al.
2000

Adults in rural Zimbabwe Males: 3.07†, CI (2.87–3.29); females:
2.51*, CI (2.12–2.97)

*Scaling parameters imply a degree distribution with infinite variance.
†Point estimates �3, but with confidence intervals that include values �3.
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some level of asymptomatic and thus longer infections. Untreat-
able infections often have periods of peak infectivity, like recent
infection with HIV,28 and the flare-ups of herpes simplex virus.
Finally, the yearly degree distribution allows for comparability
with previous literature, and it is a time period commonly used in
sexual behavior surveys. Further discussion of this issue is given in
Ref. 59.

We analyze data from 5 different sexual behavior surveys with
probability samples collected in the United States during the
1990s: the National Health and Social Life Survey (NHSLS), the
General Social Survey (GSS), the National Survey of Men (NSM)
and the National Survey of Women (NSW) and the Behavioral
Risk Factor Surveillance Survey (BRFS). A brief overview of the
data are provided in Table 2.

The GSS is conducted by the National Opinion Research Center
(NORC) and is designed as part of an ongoing program of social
indicator research to gather repeated measures on a broad range of
data. The GSS uses the NORC national probability sample, which
includes all noninstitutionalized English-speaking persons 18
years of age or older living in the United States. The samples are
designed to give each English-speaking household in the United
States an equal probability of inclusion. The GSS asked questions
about the number of sexual partners in the last year in 1988–1991,
1993, 1994, 1996, 1998 and 2000. Pooling across years, there is a
total of 16,159 respondents who reported the number of sexual
partners in the last year.14 GSS response codes for the number of
sex partners in the last year are categorical and top-coded (1, 2, 3,
4, 5–10, 11–21, 21–100, 100�).

The NHSLS is a comprehensive survey of the sexual behavior
of US adults 18 to 59 conducted in 1992 by NORC.29 The survey
employed a multistage area stratified probability sample designed

to give each household an equal probability of inclusion. The
sample size is 3332. Several different measures of the number of
partners in the last year are available in this survey: direct response
to an interviewer, response to a self-administered questionnaire,
and a constructed variable provided by the study investigators that
is based on consistency checks across several measures. These 3
measures will allow us to determine whether model fits are robust
to small changes in reporting within the same survey.

The NSM was conducted in 1991 and was designed to examine
sexual behavior and condom use among young adult men 20 to 39
years old. The survey was based on a multistage, stratified, clus-
tered, disproportionate-area probability sample of households
within the contiguous United States.15 The sample includes 3321
noninstitutionalized men. Respondents are asked to report the
number of vaginal sex partners and anal sex partners in separate
questions. There is no way to ascertain how many partners are
represented in both categories, so we define the number of partners
as the maximum of the 2 categories, which may be lower than the
actual number of unique partners. A total of 586 (19%) of the men
reported anal sex. Of these, 18 report no vaginal sex partners, and
35 report more anal than vaginal sex partners.

The NSW was also conducted in 1991 and was designed to
examine sexual, contraceptive, and fertility behaviors among
young adult women 20 to 29 years old. The sample includes 1669
respondents from 2 subsamples. The first subsample (n � 929)
consisted of follow-up cases from the 1983 National Survey of
Unmarried Women, which surveyed 1314 never-married women
between 20 and 29 years of age. The second subsample (n � 740)
is from a different probability sample of 20 to 27 year old women
of unspecified marital status selected in 1991.16 The NSW uses a

TABLE 2. An Overview of the 5 Population Based Surveys Used in This Study

Survey Years Age Sex Interview Method Question Data Adjustments

BRFS 1996–2000 18� M/F Telephone During the past 12 mo, with
how many people have
you had sexual
intercourse?

No adjustments. Responses
top-coded at 76�. Three
respondents reported
76� partners

GSS 1988–1991, 1993, 1994,
1996, 1998, 2000

18� M/F Self-administered
questionnaire

How many sex partners
have you had in the last
12 mo?

Responses were categorical
for values greater than 4
so all responses greater
than 4 were coded as 5.
These data were only
used in the truncated
analysis

NHSLS 1992 18–59 M/F Face-to-face
interview

Thinking back over the past
12 mo, how many
people, including men
and women, have you
had sexual activity with,
even if only 1 time?

An additional question was
asked on the SAQ portion
of the questionnaire
which is also used as is a
variable constructed by
the original researchers

NSM 1991 19–41 M Face-to-face
interview

Since January 1990, how
many different women
have you had vaginal
intercourse with? Since
January 1990, how many
different partners have
you had anal sex with?

Constructed from the
greater of vaginal sex
partners in 1990 and anal
sex partners in 1990

NSW 1991 19–38 F Face-to-face
interview

With how many different
men did you have vaginal
intercourse since January
1990? With how many
different men did you
have vaginal intercourse
since January 1990?

Constructed as the greater
of vaginal sex partners in
1990 or anal sex partners
in 1990
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very similar instrument to the NSM, so the same adjustment
strategy is used.

The BRFS is a part of the state-based Behavioral Risk Factor
Surveillance System initiated in 1984 by the Center for Disease
Control to collect data on risk behaviors and preventative health
practices of the US population age �18.14 The BRFS includes
questions about sexual behavior as part of a supplement started in
1996. States make the decision whether to include the supplement
in each year. We use data for the 5 years from 1996 to 2000. The
number of states electing to include the supplement during this
period varied from a low of 2 in 1996 to a high of 25 in 1997. The
variation makes it impossible to aggregate these data into a true
national probability sample. We did not want exclude the BRFS
since it has a large sample size (n � 72,280), but the results should
be interpreted with care. The variable for the number of sex
partners in the last year is top coded at 76�. Only 3 respondents
reported the top-coded value.

In order to make these data comparable, we restrict our focus to
the age range common to all surveys, 20 to 39. In addition, each of
the data sets is resampled with an adjusted weight that combines
both the post stratification weight and a renormalizing factor so
that all of the data sets have the same age distribution in this range
as the United States in 2000. Since the variable of interest here is
partners in the last year, rather than partners over the lifetime, the
restriction to the 20 to 39 range is likely to understate the fraction
of the overall population with 0 or 1 partner. Data from the GSS,
for example, indicate that only 8% of the population in this age
range had no partners in the last year compared to 30% of respon-
dents outside this range. Similarly, 20% of respondents aged 20 to
39 reported �1 partner in the last year compared to �10% of
respondents outside this age range.

Once the data are adjusted to make them more comparable we
have 12 different distributions to analyze. The NHSLS has 3
different measures of partners in the last year, so contributes a total
of 6 distributions (3 measures by 2 sexes). The remaining surveys
have 1 measure. GSS and BRFS each provide 2 distributions, 1 for
each sex, and the NSM and NSW each provide 1 distribution for
males and females respectively.

Social Process Models for Partnership Formation

We examine 4 general types of mechanisms that may describe
the process of partnership formation: fixed rate, a search process
with a stopping rule, preferential attachment, and a two-stage
vetting process. In each case, there is �1 model that can be defined
for that mechanism, so in all, we examine 11 different models: the
Poisson, Yule, Waring, Discrete Pareto, Negative Binomial, Geo-
metric, Discrete Pareto Exponential, Geometric Yule, Negative
Binomial Yule, Anchored Negative Binomial and the Poisson-
lognormal. These models are drawn largely from5 but also include
the Poisson-lognormal model described by.30

The Poisson is a fixed rate model and is the natural null hypoth-
esis in this context. All persons are assumed to acquire partners at
a fixed homogeneous rate (�) over time. The assumption that
everyone in the population has the same propensity to form ties is
both strong and unrealistic. We do not expect this model to fit the
data, but it is the most appropriate basis for comparison.

The Poisson lognormal and Negative Binomial models are sim-
ple generalizations of the Poisson, retaining the assumption that
people have a fixed rate of partner acquisition, but relaxing the
homogeneity assumption. Individual propensities to form ties (�i)
are drawn from a lognormal distribution (for the Poisson-lognor-
mal) or a � distribution (for the Negative Binomial). The Negative
Binomial is sometimes referred to as a Poisson-� mixture model

and is often used in the biologic sciences. Both models are used to
capture overdispersion relative to the Poisson.

The Negative Binomial and Geometric can also be interpreted as
search process (or waiting time) models with stopping rules. For
both, the process is represented as a sequential search with param-
eters (n, r, p): over n trials, partners are acquired with probability
p until the search is stopped when r suitable partners are found. For
the geometric model, r � 1, and the search stops after the first
suitable partner is found. For the Negative Binomial model the
search stops after the specified number (r) of suitable partners are
found.

The Yule5,23 and the Waring24 are degree distributions that
result from preferential attachment models.25 Under these models
the degree distributions are generated as the accumulation of
partners over time where the probability that a contact is made
with any particular individual is a function of that individual’s
current degree. These preferential attachment models are often
referred to as “the rich get richer” models. The Yule model also
has an alternative interpretation, as an exponential mixture of
geometric distributions. The Waring is a generalization of the Yule
that includes an additional parameter for the probability of recruit-
ing an individual with no partners into the network. We include the
Discrete Pareto here for comparisons with previous literature. The
Discrete Pareto is the power law model with P(K � k) � k��, often
found in the physics literature. It appears to lack a plausible
stochastic mechanism for partnership formation, so is perhaps best
understood as an approximation to the Yule. The “power law”
specifications used in the prior literature are typically defined over
the positive integers. They therefore exclude zero, although the
latter is a valid response, which is often the modal value in the
data.

The Negative Binomial-Yule, Geometric-Yule and Discrete Pa-
reto Exponential are vetting models that represent partnership
formation as a two-stage process. First, a person generates an
acquaintance list that serves as the eligible partner pool. People
then choose their sexual partners from the acquaintance list. This
class of model is extremely flexible in that practically any proba-
bility distribution can be specified for each stage of the process.
The vetting process may be used to represent a latent clustering of
potential partners due to social networking, geographic, temporal,
or other factors. The mechanism can also be used to represent a
selection process designed to satisfy multiple criteria. Individuals
may choose partners with a fixed probability from acquaintances
that independently satisfy some criteria, for example, sex, age,
marital status, and sexual preference. The accumulation process
continues until they meet a quota of people that satisfy the criteria.
The Yule-vetting models can also be interpreted as generalizations
of the Yule distribution that recognize that the formation of sexual
partnerships is not costless.

All of these models can be generalized to allow for the possi-
bility that the process may provide poor predictions for the lower
degrees, but still accurately predict the tail behavior. To isolate the
upper regions of the degree distribution we allow separate param-
eters to fit the probabilities of lower degrees (below a given cutoff
value) and fit the parametric model only to those values at or above
this cutoff. This is particularly useful for comparisons to the power-
law models, since they do not make predictions for k � 0.

If the cutoff is above zero the Geometric, Negative Binomial,
and Poisson models start their search process after the cutoff
partner. As an alternative to this, the last model, the Anchored
Negative Binomial fits the values below the cutoff with additional
parameters but assumes the search process started with the first
partner regardless of the cutoff above one. For a more in-depth
description of all of these models, see Refs. 5 and 30.
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Model Estimation

We use maximum likelihood to estimate the parameters of these
models from the 5 different survey data sets. Maximum likelihood
estimation (MLE) has many desirable statistical properties in this
context.31 The likelihood functions are computed from the proba-
bility mass functions of the models. If the observations were
categorical or top-coded, then the likelihood is modified to reflect
this. For example, if the degree of an individual is only know to be
between 5 and 10, then the likelihood of observing this is the sum
of the probabilities of observing a degree of exactly 5, a degree of
exactly 6, . . . , and a degree of exactly 10. In this way, the
probabilities of categorical or top-coded observations can be de-
rived from the probability mass functions of each degree. The
resulting likelihood function is referred to as a grouped likelihood
as the individual’s probabilities are grouped together.22

Since the power-law models do not provide predictions for k �
0, model comparisons can only be based on the fits for degrees
above zero. We use 3 cutoff values in our tests: 1, 2, and 3. This
produces a total of 33 � 11 � 3 models per distribution. The
number of parameters for a model, d, is the number of parameters
when the cutoff is zero plus the cutoff value. When using a MLE
the natural comparison between 2 nested models is a likelihood
ratio test. For nonnested models, as most of our comparisons are,
there are several alternative methods for comparing goodness of
fit. We use 2: (1) the Akaike Information Criterion (AIC)32,33 and
(2) the Bayesian Information Criterion (BIC).34 For a simple
random sample of n people with data K1, . . . Kn, the AIC is defined
as AIC � � 2log likelihood�K1 � kn, . . . Kn � kn] � 2d, and
BIC � � 2log likelihood�K1 � kn, . . . Kn � kn] � d log n. The 2
approaches are similar but the BIC has the benefit of incorporating
model uncertainty and sample size into the decision. The AIC has the
advantage of efficiency.33 If the complexity of the true model does not
increase with the size of the data set, the BIC is usually preferred,
otherwise AIC is preferred. For both, a well-fitting model will be
indicated by a low value. When comparing models using BIC, the
general rule is that a difference of 2 to 6 is moderate evidence of
superior fit, 6 to 10 is strong evidence, and 10� is very strong.

Results

We start by employing the simple curve-fitting approach used in
the previous literature to estimate the scaling parameter for a
power-law model. This is a helpful benchmark estimate, establish-
ing what a naı̈ve analysis of the degree distribution from the 5

surveys would produce. For samples with degree �1 the estimates
of the scaling parameters are below 3 in 10 of the 12 fits, implying
the distributions are scale free. In the other 2 cases, the confidence
interval generated by the standard error incorporates values that
indicate a scale-free distribution. When we restrict the sample to
degree �2, all but 1 of the scaling parameter estimates are below
three. This approach consistently produces estimates that predict a
generalized HIV/AIDS epidemic in the United States, as well as
generalized epidemics of all other STI.

Comparisons Based on Goodness of Fit

Using MLE to fit the 11 social process models to these data, no
one model emerges as the best fit across the different surveys.
Table 3 shows the top 3 model fits to each data set as ranked by
BIC. The top-ranked model reports the associated BIC; the second
and third best fits show the sequential differences in the BIC.
Scanning across the different samples in Table 3, the variation in
model ranking is clear. Four of the 11 proposed models rank as the
best fit in at least 1 instance across the 12 distributions; 5 of these
are variants of the power law models, 5 are a search/stop rule
model (the Negative Binomial), and 2 are a vetting model (the
Negative Binomial Yule). Only 6 of the 11 models ever show up
the top 3 ranking. Of these, the majority are power law (19 of the
36); the remainder nearly evenly split between vetting (10) and
search/stop rules (7). One model that never shows up in the top 3
ranking for any data set is the null—the Poisson model of a single
homogeneous rate of partnership formation over time.

The difference in BIC across the top 3 ranked models for any
survey is typically large enough to indicate strong or very strong
evidence of superior fit at each rank. An example of the fits of the
different models to the observed data are illustrated in Figure 1,
which shows the predicted distributions under each model plotted
over the observed data from the NSM and NSW. The fit of several
different models to the same data is almost indistinguishable. This
suggests that the information in the distributions can not discrim-
inate among these models.

The variations in fit display some systematic patterns by sex. For
the male degree distributions, the top-ranked models are mostly
search/stop rule and vetting models, though power-law models ac-
count for half of the models in the top three ranking (9 out of 18). For
the females, by contrast, the power-law models are slightly more
likely to provide the best fit: 4 of the top 6, and 10 of the 18 top three.

There are also systematic differences in model fits by survey.
The GSS and 2 of the 3 distributions from the NHSLS (categorical

TABLE 3. The 3 Best-Fitting Models to Each of the 6 Distributions in Order of Rank By BIC

Rank of Fit NHSLS Constructed NHSLS Continuous NHSLS Categorical GSS BRFS NSM–NSW

Males 1 NB DP* NB NB NBY NBY
3,328.4 3,446.5 3,225.4 7,425.1 40,891.2 9,024.5

2 NBY War DP DP NB NB
62.7 6.4 60.8 274.1 61.6 20.5

3 War DPE War War War War
82.4 7.1 65.4 275.4 85.5 26.5

Females 1 DP NB DP War War NB
3,264.4 3,113.1 3,240.9 6,751.8 35,559.9 3,884.0

2 War War War DP DP DPE
0.1 17.9 4.5 4.2 10.2 1.0

3 NBY NBY NBY Yule NBY NBY
5.3 18.7 15.3 4.9 14.1 8.5

Dark grey, power law; light grey, vetting; white, search/stoprule.
1st ranked: NB, DP NBY, War.
2/3 ranked: DPE, Yule.
NB indicates negative binomial; DP, discrete pareto; NBY, negative binomial yule; War, Waring; DPE, discrete pareto-exponential.
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and constructed) produce identical model rankings for men and
nearly identical rankings for women. The ranking is somewhat
different for men and women but both have the Discrete Pareto and
Waring power law models in the top 3. The similarity in the fits is
not altogether surprising—the two NHSLS distributions come
from different measures in the same survey and both the GSS and
NHSLS use a true nationally representative sampling frame drawn
by the same organization, NORC. What is surprising is that the
continuous measure from the NHSLS is best fit by a different set
of models. This indicates that the model fits are not robust to
changes in question design, even within the same survey. The
BRFS and NSM have identical model rankings for men, though
not for women, and again share a number of models in the top 3.

How robust are these findings to fits based on the upper tail of
the survey distributions? The AIC, BIC and log-likelihood for the
3 best-fit models to all 12 distributions at the three different cutoffs
are shown in Appendix 1. Here again, only a few models find their
way into the top rank. Five of the 11 proposed models rank as best
at least once among the 24 distributions defined by the 2 upper-tail
cutoffs: Half are power-law models; most of the rest are search/
stop rule models. Nine of the 11 models eventually show up in the
top 3: Half are power-law models, and the other half are split
between search/stop rule and vetting, with a few Poisson-lognor-
mal (PLN) mixtures.

There is little consistency in the specific model rankings within
a survey across the cutoff values, but there is some consistency in
the types of models that fit across cutoffs. If a power law model fit
the distribution best for the full distribution, a power law also
tended to fit the distribution best at cutoffs 2 and 3. And full
distributions best fit by search/stop rule models were also fit best
by these at cutoffs 2 and 3. The NSM was an exception; for this
survey, there was almost no consistency at any level.

Validation with Epidemic Potential Predictions

The goodness-of-fit tests do not identify any specific model, or
even a class of model, as the best all-around fit to the data. A
comparison of the epidemic potential predicted by each model
offers a different perspective. The predicted threshold transmissi-
bility �c and the 95% confidence interval around the threshold,
gives us a direct estimate of the probability of an epidemic for any

given level of integrated transmissibility ��. We know that there is
no generalized HIV/AIDS epidemic in the United States,35 while
the prevalence of other STI varies substantially: from under 1% for
gonorrhea,36 and about 4% for chlamydia,36 to over 20% for
human papilloma virus (HPV)37 and herpes simplex virus-2 (HSV-
2).38 This allows us to evaluate our estimates of �c in 2 ways. First,
if the predicted transmissibility threshold is zero such that any �� is
likely to produce a generalized epidemic, we can conclude that the
predictive model fails. Second, if the predicted transmissibility
threshold is greater than zero, the potential for a generalized
epidemic depends on ��. The value of �� varies by pathogen, so in
principle, if the estimated �c lies below �� for that pathogen, we
would expect generalized spread of that pathogen in the United
States, and if it lies above ��, we would not. Our estimates of �c can
be evaluated accordingly.

There are a variety of transmissibility estimates in the literature
for different pathogens, although there is considerable uncertainty
about most of these, and considerable variability in what they
represent (e.g., per coital act vs. per partnership and varying time
periods for the partnership estimates). For reference, we show a
generally accepted estimate of ��HIV here that is drawn from a study
of discordant couples in Uganda, 0.162.28 For a number of reasons
reviewed in the discussion, this is likely to be an overestimate for
the United States, but it is not out of line with older US estimates
of ��HIV based on transmission from transfusion recipients to their
partners.39 The analysis and presentation of the results allow the
reader to make comparisons to alternative values.

The results can be seen in Figure 2. For the power law models
(top panel) the predicted epidemic potential of these networks is
infinite: the transmissibility thresholds are all zero and the 95%
confidence intervals do not include any nonzero values. As with
the naı̈ve estimates based on linear regression, the more accurate
estimates from these models predict generalized epidemics of all
STIs in the United States. The predictions from the power law
models simply do not fit the evidence.

Notes: The black line indicates no epidemic threshold exists; the
grey line indicates the estimated network epidemic potential re-
quired to produce an epidemic of HIV, based on a published
estimate of from Uganda.29 The grey band is defined by HIV
transmissibility estimates from the United States.39 NHSLS-Cont

Fig. 1. The predicted probability mass
functions from 8 models fit to the ob-
served data from a survey of US men and
women aged 20 to 39 years.
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is data from the continuous response question; -Cat is data from
the categorical response question; -Cons is data from the con-
structed variable.

For the best fit nonpower-law models (bottom panel), the pre-
dicted epidemic potentials are much lower, and the predicted
transmissibility thresholds correspondingly higher. All of the
threshold transmissibility estimates are above 0.2 and 3 of the 6 are
above 0.5. None of the 95% confidence intervals includes zero. As
a result, these models predict that an epidemic threshold does exist,
and the value of R0 will depend on the transmissibility �� of the STI.
The implications for any specific STI can be read off of the graph
directly: for R0 to be at least 1, the integrated transmissibility �� for
that STI would have to be larger than the predicted threshold �c

shown on the vertical axis. For reference, we plot an estimate of
��HIV drawn from a study of discordant couples in Uganda, 0.162,28

in the grey line. All of the predicted thresholds under the best
fitting nonpower-law models lie above this line, and only one of
the confidence intervals includes it. Based on this estimate of ��HIV,
none of these models would predict a generalized epidemic of HIV
in the United States. Alternative lines can be drawn for other
values of transmissibility.

Discussion

The results of this study are threefold. First, when tested against
alternatives, power law models do not enjoy consistent support
from the data. Using goodness of fit to the degree distributions as
the criteria, several plausible social process models, representing
either a search and stop rule mechanism or a 2-stage vetting model,
are as likely to be the best fitting model or ranked in the top 3.
These 2 model classes are flexible and have several very natural
and intuitive interpretations. The search and stop rule models, for
example, can be thought of as selecting new partners until some set
of criteria are satisfied, for example, dating until a spouse is found

or dating until enough experience in the social world has been
acquired. The 2-stage vetting models can be interpreted as meeting
some number of people and selecting a partner from those ac-
quaintances or selecting a partner from the people who live in the
same area. The best overall fitting social process model was the
Negative Binomial, which has can be interpreted in 1 of 2 ways:
Either people use a search and stop rule, or they acquire partners
at a fixed, but heterogeneous, rate.

Second, using the prediction of the epidemic threshold in the
United States as the criteria, all of the power law models fail
completely: All predict a generalized epidemic of HIV—and of
every other sexually transmitted infection—based on every data
set examined here. It is worth emphasizing that the estimates of the
power law models generate this prediction regardless of the level
of pathogen transmissibility: Any pathogen with a nonzero prob-
ability of transmission is expected to cause an epidemic.

All of the best-fitting social process models, by contrast, predict
epidemics only if transmissibility is sufficiently high, on the order
of 0.3 to 0.6, with 1 outlier at 0.8. The implication is that the
epidemic potential in this network is probably too low to sustain a
generalized epidemic for STI with average integrated transmissi-
bility per partnership below 20% to 30%. HIV is thought to have
a transmissibility in this range, so the social process model esti-
mates are consistent with the observed low prevalence of HIV in
the United States. By contrast, the HPV is estimated to have a per
partnership transmissibility of about 60%,40 and HPV prevalence
in the United States is about 25%. So here too, the social process
model estimates are consistent with the data.

Many (if not all) of the curable STI (e.g., chlamydia, gonorrhea,
syphilis, trichomoniasis) are estimated to have similarly high trans-
missibilities—50% to 70% per partnership.41–45 As the social
process models would predict, all these STIs are also endemic in
the United States, though at relatively low prevalences, ranging
from 0.05% for syphilis46 to 4% for chlamydia.36,47 The low

Fig. 2. The threshold transmissibility
and 95% confidence intervals pre-
dicted for each of the 6 degree distri-
butions by the best fit power-law
model (top panel) and nonpower-law
models (bottom panel).
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observed prevalence, given the very high transmissibility, may
seem inconsistent with our estimate of the epidemic potential, but
lower prevalence would be expected given the shorter duration of
infection. For these STI, it may also be more appropriate to base
the estimate of �c on partners in the last month rather than the last
year. This would lead to substantially lower estimates of epidemic
potential and be more consistent with the observed prevalence.

In the main, the social process model estimates seem to be
consistent with what we know about STI transmissibilities and
prevalence in the United States. The only exception we can find is
HSV-2. HSV-2 is thought to have a low transmissibility similar to
HIV,48 yet the prevalence of HSV-2 in the United States is over
20%.38 So, that is a bit of a puzzle. It is not simply a problem with
the social process models, however, as this is a pattern that is not
consistent with the basic transmission dynamic modeling frame-
work.

The complete failure of the scale-free models to make reason-
able epidemic predictions is striking, particularly in light of the
very strong public policy relevance claimed for these models. For
example,7 write that their “. . . most important finding is the scale-
free nature of the connectivity of an objectively defined nonpro-
fessional social network.” The public health implications, they
explain, are that:

“. . . the measures adopted to contain or stop the propagation of
diseases in a network need to be radically different for scale-free
networks. Single-scale networks are not susceptible to attack at
even the most connected nodes, whereas scale-free networks are
resilient to random failure but are highly susceptible to destruction
of the most connected nodes.”

It is claims like these on the deep relevance of the previous scale
free estimates for STD prevention that we criticize here. Other
examples of such claims are given in Ref. 6.

The third, and perhaps more important finding, is that none of
the models tested here consistently provide the best fit to the data.
Model rankings varied by survey, by measure within survey, by
sex, and by the upper-tail cutoff used to restrict the data used to fit
the models. One interpretation of this finding is that none of these
models does a good job capturing the underlying mechanism that
generates sexual partnership networks. The large confidence inter-
vals around the predicted thresholds, even by the best fit models,
illustrate just how little leverage degree distributions alone provide
in establishing the likelihood of an epidemic.

A good empirical example of the predictive limitations of the
degree-based model is the pervasive and long standing racial
disparity in STI prevalences. Among non-Hispanic blacks in the
United States, the relative risk of infection ranges from about 6 for
chlamydia36 to over 20 for gonorrhea36 and HIV.35 These dispar-
ities are not explained by group differences in rates of partnership
acquisition49 so would not be produced by any of the simple
degree-based heterogeneity models considered here. One of the
most important features of STI prevalence in the United States is
thus beyond the explanatory capacity of these models.

To inform and guide public health, network-based approaches to
epidemic modeling must take in to account the key structural
features of networks that influence transmission, and the behaviors
that generate these structures. This kind of research is being done,
albeit with less publicity. An example is the work on “assortative
mixing,” the tendency for people to choose partners like them-
selves in terms of age,50 race/ethnicity,51,52 sexual role,53 and
possibly activity level.54 Assortative mixing can lead to patchy
clusters in the network with little connection between them, and it
is possible to obtain analytic solutions for the effect of such mixing
on epidemic thresholds.55,56 Another important form of heteroge-
neity is in the timing and sequence of partnerships. This includes

the impact of variations in monogamous partnership duration57 and
the prevalence of concurrent partnerships.58 Lon-term serial mo-
nogamy can dramatically reduce epidemic potential, but even
small amounts of concurrency can reestablish connectivity and
substantially increase the potential for spread. A good review of
these patterns and their impacts on transmission can be found in
Ref. 59. The implication of this body of work is not that the
simpler models should be abandoned, just that they should be
properly evaluated and their limitations properly communicated.

The public health implications of our results are clear: The
radical implications of the “scale-free” models are theoretically
intriguing, but in all likelihood empirically irrelevant for general-
ized HIV epidemics. Broad population-based prevention strategies
such as education programs risk behavior reduction efforts, con-
dom distribution, and antiretroviral therapies may therefore be
effective in reducing the spread of HIV and other incurable STI
and should not be abandoned in favor of exclusive targeting of
high-degree hubs.
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Appendix: Model Fit to the Degree Distribution of the US Population Age 20–39 Based on BIC

Cutoff

Males Females

Model Log-lik AICC BIC Model Log-lik AICC BIC

Data: BRFS
1 NBY �20426 40,860 40,891 Waring �17765 35,536 35,560

NB �20462 40,929 40,953 DP �17775 35,554 35,570
Waring �20474 40,953 40,977 NBY �17767 35,542 35,574

2 PLN �20367 40,742 40,773 DP �17765 35,536 35,560
Waring �20399 40,806 40,838 Yule �17769 35,545 35,569
NBY �20412 40,834 40,873 DPE �17765 35,537 35,570

3 PLN �20367 40,744 40,783 DP �17763 35,535 35,567
Yule �20392 40,791 40,823 Yule �17767 35,542 35,575
DP �20396 40,801 40,832 DPE �17763 35,537 35,577

Data: GSS
1 NB �3700 7,407 7,425 Waring �3364 6,733 6,752

DP �3842 7,687 7,699 DP �3370 6,743 6,756
Waring �3838 7,682 7,700 Yule �3370 6,744 6,757

2 NB �3744 7,495 7,519 Yule �3363 6,732 6,751
Geo �3753 7,512 7,530 DP �3366 6,738 6,757
DPE �3823 7,653 7,677 PLN �3362 6,732 6,757

3 NB �3736 7,483 7,513 Yule �3363 6,734 6,759
Geo �3766 7,540 7,564 DP �3363 6,735 6,760
DP �3809 7,625 7,649 PLN �3362 6,734 6,765

Data: NSM/NSW
1 NBY �4496 9,000 9,024 NB �1931 3,868 3,884

NB �4510 9,027 9,045 Yule �1935 3,874 3,885
Waring �4513 9,033 9,051 DPE �1931 3,869 3,885

2 PLN �4474 8,955 8,980 Geo �1931 3,868 3,884
Waring �4483 8,973 8,998 Yule �1934 3,874 3,890
DPE �4493 8,994 9,018 PLN �1930 3,868 3,890

3 Yule �4476 8,960 8,984 DP �1928 3,863 3,885
DP �4477 8,962 8,987 Yule �1928 3,864 3,886
PLN �4473 8,957 8,987 NB �1925 3,861 3,888

Data: NHSLS, 1 open-ended
question

1 DP �1716 3,436 3,446 NB �1545 3,097 3,113
Waring �1716 3,437 3,453 Waring �1554 3,115 3,131
DPE �1716 3,438 3,454 NBY �1551 3,110 3,132

2 Yule �1715 3,436 3,452 Geo �1544 3,093 3,110
DP �1716 3,438 3,453 NB �1544 3,095 3,117
Waring �1715 3,438 3,459 DPE �1544 3,095 3,117

3 DP �1715 3,437 3,458 Geo �1543 3,095 3,117
Yule �1715 3,438 3,459 Yule �1547 3,101 3,123
Waring �1715 3,439 3,465 DPE �1543 3,097 3,124

Data: NHSLS, 1 Categorical
question

1 NB �1602 3,210 3,225 DP �1613 3,230 3,241
DP �1636 3,276 3,286 Waring �1611 3,229 3,245
Waring �1634 3,275 3,291 NBY �1613 3,234 3,256

2 Geo �1610 3,225 3,241 DP �1611 3,228 3,245
NB �1608 3,223 3,244 Yule �1613 3,232 3,249
Yule �1633 3,272 3,288 Waring �1611 3,231 3,253

3 Geo �1611 3,230 3,251 DP �1611 3,230 3,252
NB �1610 3,229 3,255 Yule �1613 3,234 3,256
DP �1631 3,270 3,291 Waring �1611 3,231 3,259

Data: NHSLS, Constructed by
Laumann et al., 1995

1 NB �1653 3,313 3,328 DP �1625 3,253 3,264
NBY �1681 3,370 3,391 Waring �1621 3,248 3,265
DP �1697 3,397 3,408 NBY �1620 3,248 3,270

2 NB �1656 3,320 3,341 Yule �1619 3,245 3,261
PLN �1680 3,367 3,388 DP �1621 3,247 3,264
Waring �1680 3,368 3,389 Waring �1619 3,247 3,269

3 Geo �1658 3,324 3,345 DP �1618 3,245 3,267
NB �1658 3,326 3,352 Yule �1619 3,246 3,268
PLN �1677 3,364 3,390 Waring �1618 3,247 3,274
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