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Statistical Models for Social Networks: 
Inference and Degeneracy 
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January 18, 2003 

Abstract 

This paper presents recent advances in the statistical modeling of random graphs that have 
an impact on the representation of social networks. We also consider issues related to the 
estimation of random graph models. For concreteness the focus is cross-sectional social 
networks.  

Statistical exponential family models (Wasserman and Pattison, 1996) are a generalization 
of the Markov random graph models introduced by Frank and Strauss (1986), which in turn 
derived from developments in spatial statistics (Besag, 1974). These models recognize the 
complex dependencies within relational data structures.  

To date, the use of stochastic graph models for networks has been limited by three 
interrelated factors: the complexity of realistic models, lack of use of simulation studies, and 
a poor understanding of the properties of inferential methods.  

We discuss these factors and related issues of the degeneracy of inference for commonly 
promoted models. As a cornerstone of this development we present a Markov Chain Monte 
Carlo (MCMC) algorithm for general random graph models. We also review the role of these 
MCMC algorithms in simulation, likelihood-based inference, identifying degeneracy of 
inference, and Bayesian formulations.  
 
KEYWORDS: Random graph models; Markov Chain Monte Carlo; Bayesian statistics.  

1. Introduction 

   
Networks are a form of “relational data”. Relational data arise in many social science fields 
and graph models are a natural approach to representing the structure of these relations. In 
these applications, the nodes usually represent people, and the edges represent a specified 
relationship between the people. This framework has many applications including, for 
example, the structure of social networks, the behavior of epidemics, the interconnectedness 
of the WWW, and long-distance telephone calling patterns.  
 
We consider stochastic models for such graphs that form a statistical exponential family. This 
class has been referred to as the “ p∗ ” class of models in the psychology and sociology 
literatures (Wasserman and Pattison, 1996). Given their general nature and applicability, we 
shall refer to them simply as random graph models. A much studied sub-class of models are 
the Markov random graph models introduced by Frank and Strauss (1986). These models 
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attempt to model the stochastic mechanism that produces the social ties and so represent the 
complex dependencies so induced.  There is a large social network literature on this area 
which we do not review here. See Wasserman and Faust (1994), and Pattison and Robins 
(2000) for detailed information. The topic has connections to a broad array of literatures and 
here we emphasize the links to spatial statistics, statistical exponential families, log-linear 
models and statistical physics.  
 
The exploration of the properties of graph models has been limited by three factors. First the 
complexity of realistic models has limited the insight that has been gained by analytical 
methods. Most analytical work has focused on simple one or two parameter models with 
independence between the dyads (Wasserman and Faust 1994, Frank 1997). Second 
statistical methods for the stochastic simulation from general random graph models have not 
existed. Because of this the properties of general models (e.g., range of graphs represented, 
dependence among the parameters) can not be explored though simulation studies. Third the 
properties of statistical methods for estimating the parameters based on observed networks 
are poorly understood (we consider inference in Section 3). Hence the range of parameter 
values relevant to real networks is largely unknown. In this paper we improve understanding 
of the nature and properties of graph models important to social networks by further 
considering methods for the stochastic simulation of, and inference for, random graphs.  
 
We address one aspect of modeling that has been a persistent obstacle in the work in this 
area: inferential degeneracy. Many previous attempts to develop MCMC based estimation for 
Markov models have found that the algorithms nearly always converge to degenerate graphs 
– graphs that are either empty or full, or the algorithms do not converge consistently. Using 
statistical exponential family theory, we show that this is a function of the form of the model 
and algorithm used.  
 
In the next section we review the statistical theory of social network models expressed in 
exponential form. We also consider MCMC algorithms to simulate graphs from these models. 
In Section 3 we consider forms of inference for the parameters of the models with focus on 
likelihood-based forms and Bayesian methods in particular. In Section we consider model 
degeneracy and some possible solutions to it. 

2. Review of theory 

Let the random matrix X represent the incidence matrix of an undirected graph onn  
individuals. Thus X is an n n×  symmetric matrix, each of whose entries is a Bernoulli 
random variable; we assume further that the diagonal elements of X are 0, which is to say that 
self-partnerships are disallowed. Suppose that X  denotes the set of all possible graphs on the 
given n  individuals. The multivariate distribution of X can be parameterized in the form:  

 
exp ( )

( )
c( )

T t x
P X x xθ

θ
θ

� �� �= = ∈X  (1) 

where qθ ∈Θ ⊆ ¡  is the model parameter and ( )t x  is a q -vector of statistics based on the 
graph x . (Wasserman and Pattison, 1996). The denominator c( )θ  is the constant that ensures 

the distribution sums to one: c( ) exp ( )T

y

t yθ θ
∈

� �= � �� . Note that X  contains at most 

( 1) 2N n n= − /  graphs, and { }}( )cθ θΘ = : < ∞ . The dimension of Θ  is at most 2 1N −  (for 
the “saturated” model), although is typically much smaller than this. The parameter and 
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statistics that correspond to a given model for X  can be identified using the Hammersley-
Clifford theorem (Frank and Strauss 1986). Conversely, each choice of parameter and graph 
statistics ( )t x specifies a model for X . For example, if the dyads ijX  are mutually 

independent the model can be written: log[ ( )] ( )ij ij
i j

P X x x xθ θ κ θ
<

= = − , ∈� X  where 

logit[ ( )]ij ij ijP X xθθ = =  and ( ) log[c( )] log[1 exp( )]ij
i j

κ θ θ θ
<

= = +� . Thus q=N and the 

elements of ( )t x  are just ijx . This model is often called a Bernoulli graph. In the special case 

where the dyads have a common probability, log[ ( )] ( ) ( )P X x t xθ θ κ θ= = −  where 1q = ,  
( )t x  is the number of partnerships in the graph, and θ  can be interpreted as the common log-

odds of partnership formation within a dyad. The mathematical properties of this 
homogeneous Bernoulli graph model has been extensively studied (see, e.g., Renyi and Erdos 
1959), although its simplicity and homogeneity make it less useful as a realistic model for 
social phenomena.  
An alternative specification of the model (1) clarifies the interpretation of the parameters. Let 

{ }}c
ij klX X kl ij k l= : ≠ , < , { }}c

ij klx x kl ij k l= : ≠ , < , { }}and 1c
ij ij ijx x x+ = = , and 

{ }} and 0c
ij ij ijx x x− = = . Thus, c

ijX  represents all elements in the graph excluding ijX ,  while ijx+  

and ijx−  represent the graph with the ijx  equal to 1 and 0, respectively. The full conditional 

distributions of ijX  are given by 

 logit[ ( 1 | )] ( )c c T c
ij ij ij ijpr X X x x xθ δ= = = ∈X  (2) 

where ( ) ( ) ( )c
ij ij ijx t x t xδ + −= −  (Strauss and Ikeda 1991). The statistic ( )c

ijxδ  is the change in 

the graph statistics when ijx  changes from 0 to 1. Hence θ  can be interpreted as the increase 

in the conditional log-odds of a partnership between individuals i  and j  induced by the 
formation of the partnership and conditional on all other ties remaining unchanged. In the 
homogeneous Bernoulli graph, for example,θ  is the common log-odds of individual 
partnership formation.  
Holland and Leinhardt (1981) appear to be the first to propose log-linear models for social 
networks. Suppose that the dyads are independent with  

 

if 1
Pr( ) if 0

if 0 0

ij

ij ji ij

ij

m x y l

X x X y a x y l
n x y

� = , =
�= , = = = , =�
� = , =	

 (3) 

Thus each dyad can have its own probability distribution. Thus the model can represent 
arbitrary attractiveness between individuals and degree of reciprocity within relationships. 
However the dyad independence implies specific transitivity and higher-order interactions. 
The model can be expressed in log linear form as:  
 [ ]Pr( ) ( )ij ij ji ij ij

i j i j

log X x x x x xρ θ κ θ
< ≠

= = + − ∈� � X  

They called this the 1p  model.  
Based on developments in spatial statistics (Besag 1974), Frank and Strauss (1986) extended 
this work and introduced forms of dependence with Markov structure. Further extension were 
made by Wasserman and Pattison (1996) to incorporate actor attributes (Pattison and 
Wasserman 1999) and to allow explanatory and response variables (Robins, Pattison and 
Wasserman 1999), resulting in social influence (Robins, Pattison and Elliott 2000) and social 
selection models (Robins, Elliott and Pattison, 2000). These generalizations essentially allow 
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analysis of graphs with “colors” on the nodes, the coloring indicating the attribute. Recent 
developments have included new forms of dependency structures, to take into account social 
settings, and on the other hand a relaxation of Markovian dependence assumptions, allowing 
investigation of longer range configurations, such as longer paths in the network or larger 
cycles (Pattison and Robins, 2000). Models for bipartite (Faust and Skvoretz, 1999) and 
tripartite (Mische and Robins, 2000) graph structures have also been developed.   
The incorporation of attribute information into the random graph model is straightforward. 
Suppose we wish to incorporate p exogenous covariates represented by a n n p× ×  array of 
attributes W  where the thijk  element is the covariate for the thp  attribute on the thij  dyad. 
Note that this allows the covariates to be attributes of the pairs of individuals (e.g., age 
difference) as well as specific to the individual alone. The graph statistic ( )t x  in (1) is then 
replaced by ( )t x W, ,  indicating that the statistics depend on the attribute information in 
addition to the relationship information. In this sense, the statistic ( )t ⋅  can be defined to 
reflect the attribute information.  We consider an implementation of this in the next section. 

2.1. Cross-sectional models for random graphs 

  
The most common form of random graph models exhibit Markov dependence in the sense of 
Frank and Strauss (1986). For these models, dyads that do not share an individual are 
conditional independent: an idea analogous to the nearest neighbor concept in spatial 
statistics. Typically a homogeneity condition is added: all isomorphic graphs have the same 
probability under the model. Frank and Strauss (1986) show that homogeneous Markov 
graphs are exactly those having the triangle parameterization: Nq n θ= , ∈ Θ = ¡  and  

 
0 1 0

0

1 1
( ) 1 1 ( )

6k

k

k i i i i n ij jk kl
i i i j k

t x x x k n t x x x x
k ,..., , ,

= ... = ,..., − = ,
! � �  

where ( )kt x  is called a stark −  and ( )nt x is a count of the complete triads. An equivalent 
form is the degree distribution parameterization:  
 ( ) the proportion of individuals withexactly relationships 1 1kd x k k n= = ,..., −  

1
( )

6n ij jk kl
i j k

t x x x x
, ,

= ,�  

 
in which ( )kd x  counts the proportion of individuals with degree k.  The degree distribution 
parameterization has the advantage that it is directly interpretable in terms of concurrency of 
partnerships (i.e. ( ) for 0md x m >  counts the number of individuals with m  concurrent 
partners). 
 
A form of model that may realistically represent dependent social processes, reflect the 
impact of covariates is: 
 

1

0
exp ( ) ( )

( ) (4)
( )

nT T
k kk

x Z d x t x
P X x x

c

β α θ

α β θ

−

=
� �+ +
� �= = ∈

, ,
�

X  

where x  is the N -vector of the unique elements of X , { }ij N p
Z z

×
=  is a matrix of 

(exogenous) covariates on the thij  dyad, ( )t x a q -vector of additional network statistics, β  
p -vector of regression parameters, α  g -vector of degree parameters, and θ  a q -vector of 

http://nap.nationalacademies.org/10735


Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers

Copyright National Academy of Sciences. All rights reserved.

5 

network structure parameters. 
 
This model is an extension of equation (1) and contains a number of special cases that have 
been considered in separate literatures. First the homogeneous Markov graphs of  Frank and 
Strauss (1986) correspond to the case where there are no covariates and the additional 
network statistic is the count of complete triads. Second, if there are no covariates and no 
additional network statistics the model corresponds to the random graphs with arbitrary 
degree distributions considered in Newman, Strogatz and Watts (2001). This model assumes 
that all graphs with the same degree distribution are equally likely. On particular interest are 
the various “scale-free,” preferential attachment and power-law models popular in the physics 
literature (see, e.g.,  Newman 2002). Third, if there are no degree distribution parameters and 
no additional network statistics the model corresponds to the random graphs with 
independent dyads. The model still allows differential activity levels and assortative missing 
via the covariate parameters. Such models have been traditionally specified as log-linear 
models of mass action. See Morris, Goodreau  and Koehly (2003) for an examination of the 
connections between the two. 
 
As an example, consider a random graph model for a social network based on heterosexual 
partnerships. An example of a cross-sectional model that incorporates captures both 
concurrency and the assortative mixing based on race is: 

4

h
1

( ) exp ( ) race( ) / ( , ),k k
k

P X x d x x c xθ β β θα α
=

� �= = + ∈
 �
� �
� X  

h( ) 0P X x xθ = = ∈X/ X  
where race( )x  is the proportion of partnerships where both partners say they are of the same 
race, hX is the subset of graphs in X  in which all ties are heterosexual, and 4α ∈ ¡ . The 
parameter 1α  represents the propensity to form monogamous relationships. The parameters 

2 4α α, ...,  represent the propensity to form concurrent partnerships with 2, 3 and 4 partners, 
respectively. Hence positive values for the latter parameters indicate the propensity of the 
graph toward higher degrees of concurrency. The parameter β  represents the propensity for 
partnerships to be formed between individuals of the same race. Note that the graph and 
model reflect the heterosexual nature of the graph (i.e., 0ijX =  unless i  and j  are of 

opposite sex). If 1 4α α, ...,  are zero the dyads are independent and the model is simply 
assortative mixing by race. The model can then be re-written as a contingency table form 
(Morris, Goodreau  and Koehly 2003). If β  is zero then there are no preferences for 
partnerships based on race. We consider alternative parameterizations for this model in 
Section 3. 
 
These models have a form that is flexible enough to capture the structure of many real 
networks.  However to be practically useful we need to be able to simulate graphs with these 
distributions, infer their parameters from real data and measure their overall and relative 
goodness-of-fit. We now turn to each of these topics.  

2.2. Simulating random graph models 

The mathematical form of the models (1) and (4) allow graphs to be generated from them 
using Markov Chain Monte Carlo (MCMC) algorithms. Indeed MCMC algorithms have been 
much studied and are a nature way to simulate social networks (e.g. Gilks et. al. 1996, 
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Newman and Barkema 1999). The basic idea is to construct a Markov Chain onX with 
( )P X x=  as the equilibrium distribution. This is operationalized by starting from a graph in 

X,  and making a large number of Markov transitions until approximate convergence to 
( )P X x= is reached. Subsequent transitions are sampled and form a (dependent) sample 

from the desired model. For details, see the extensive literature cited in the above books. 
Many chains are possible with vastly different statistical properties. However convergence is 
“ensured” under mild conditions on the Markov Chain (irreducibility and aperiodicity). For 
the social network representation (1) this process has been studied by Crouch, Wasserman 
and Trachtenberg (1998), Coriander et. al. (1998), and Snijders (2002).  
 
The full-conditional MCMC for the model (1) and (4) has a simple form and is motivated by 
the auto-logistic representation (2). In this algorithm each dyad is updated separately based 
on the conditional probabilities given in (2). This so-called  “Gibbs sampling” or “heat bath” 
algorithm chooses the dyads randomly, sequentially, or using some mixture of the two. Each 
update requires the difference ( ) ( ) ( )c

ij ij ijx t x t xδ + −= − to be determined. The speed of the 

calculation of ( )c
ijxδ is an important factor in the computational quality of the algorithm (i.e., 

speed of convergence to ( )P X x= , the relative frequency of producing each graph in X ). 
Alternative Metropolis algorithms propose transitions from currentx to proposedx  based on the 

unconditional probabilities require the determination of ( ) ( )proposed currentt x t x− . These tend to 
perform better for the same amount of computation. More general Metropolis-Hastings 
algorithms choose proposedx  from an ancillary stochastic process dependent on currentx  and 

aimed at either focusing the transitions or spreading them more broadly through X .  The 
behavior of these algorithms is very dependent on the choice of statistics ( )t x .  
 
The papers that use MCMC algorithms to simulate social network models report difficulties 
in convergence to realistic distributions (Crouch, Wasserman and Trachtenberg 1998, 
Coriander et al 1998, and Snijders 2002). A typical occurrence is for the algorithm to produce 
graphs that are complete, empty, or else are extreme in related ways. Coriander et. al. 1998 
consider algorithms that condition on the number of ties in the graph. This ensure that the 
realizations are not complete or empty graphs. However, in most circumstances the density of 
the graph is a product of the social process that produced it and can not be assumed to be 
known in advance. Snijders 2002 reports on a number of related odd properties. In some 
cases the sequences of realizations transition quickly between very different graphs after 
periods of minor variation. In Section 3 we indicate why these algorithms behave in this way, 
how it relates to the model and how it can be resolved. 

3. Inference for random graph models 
 
Statistical methods for estimating the parameters in a random graph model are 
underdeveloped. Developing inference with a likelihood framework has the advantage of 
being able to draw upon a statistical theory for closely related models in statistical physics 
and spatial statistics (Besag 1975, Geyer 1999). This framework is also compatible with the 
Bayesian paradigm (Gelman, Carlin, Stern and Rubin 1995). The likelihood framework 
makes available exploratory graphical tools useful for inference about the underlying random 
field (Handcock, Meier and Nychka 1994). These tools, for example, can identify when a 
maximum likelihood approach is insufficient for inferential purposes.  
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Major barrier to the application of random graph models to social networks has been the lack 
of a sound statistical theory to evaluate how closely the models capture the structure in the 
observed graphs. This has two dimensions to it: the degree to which the graph structure of the 
models matched that in the data, and second the degree to which disease propagation through 
the model matches that of the data. The likelihood-based approach allow one to measure the 
first dimension of “goodness-of-fit” using Monte-Carlo p-value statistics and Bayes Factors 
under the Bayesian paradigm (Gelfand 1996).  

3.1. Likelihood inference for random graph models 

  
In principal, likelihood inference is straightforward for exponential random graph models. In 
this section we describe the most fundamental ideas and why direct computation is difficult.  
The log-likelihood for model (1) is:  
 [ ]( ) log ( ) ( ) ( )TL x P X x t x x Xθθ θ κ θ; ≡ = = − ∈  (5) 

 where ( ) log[ ( )]cκ θ θ= .  Likelihood inference is difficult as direct evaluation of ( )L xθ ;   
requires calculating  
 {( ) exp[ ( )]T

x

c t xθ θ
∈

= �
X

 

  
For even simple and modest models this can be problematic. Table 1 gives the number of 
elements in X  (i.e., 2N ) as the number of actors grows.  

 
Table 1: Number of Graphs for Different Numbers of Actors  

 _  
Number of Actors, 

n 
Number of Elements 

in X  
3 8 
6 32,728 

10 271 24 10. ×  
25 902 307 10. ×  

 

3.2. Alternative inference for random graph models 

 
Clearly for realistic graphs direct enumeration is not feasible. Many alternatives have been 
proposed. Frank (1971) and Frank and Strauss (1986) consider (linear) approximations to the 
cumulant generating function:  
 ( )( ) log ( )C E t Xψ ψ= � �� � 

 as a means to solve the likelihood equations  
 [ ]( ) ( )observedE t X t xθ =  (6) 

 
This approach is generally difficult to apply to general multiparameter models unless 
supplemented by a means of simulation from the same network model (Coriander et al 1998).   
 
One commonly used method is pseudolikelihood originally motivated by, and developed for, 
spatial models by Besag (1975). The idea is to use an alternative local version of the 
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likelihood function  defined the pseudolikelihood. The pseudolikelihood for model (1) is 
algebraically identical to the likelihood for a logistic regression of the unique elements of X  
on the design matrix with i th row ( )c

ijxδ .  The value of the maximum pseudolikelihood 
estimator for social networks can then be expediently found by using logistic regression as a 
computational device. Explicitly, the value of the maximum likelihood estimator for the 
logistic regression will also be the maximum pseudolikelihood estimator. Note, however, that 
the other characteristics of the maximum likelihood estimator do not necessarily carry over. 
In particular the standard errors of the estimates of θ  from the logistic regression will not be 
appropriate for the maximum pseudolikelihood estimator. The statistical properties of 
pseudolikelihood estimators for social networks are only partially understood and are 
discussed in Handcock (2000). In the remainder of this paper we focus on likelihood based 
estimation. 

3.3. Existence and uniqueness of MLE 

  
The maximum likelihood estimator (MLE) for θ  is:  
 ˆ ( )observedL xargmaxθθ θ∈Θ= ;  (7) 

  
Many properties of the MLE can be derived from statistical exponential family theory. Let C  
be the closed convex support of ( )t X  - the convex hull of the discrete support points. Denote 
the interior of C  by ( )int C  and the boundary by C∂ .   
 
Result: 
 
a) If Θ  is open, the MLE exists if, and only if, ( )observedt x  is inside the interior of C.  
b) If it exists, it is unique.  In addition, when it exists, it can be found as the unique solution 

of (6) or equivalently as (7), the unique local minima of (5). 
c) As the support of ( )t X  is discrete, and ( )observedt x  is in it, a necessary and sufficient 

condition for the MLE not to exist is that ( )observedt x  falls on the boundary of the support 
and that boundary be part of C.  

 
The result is a fundamental property of statistical exponential families (Barndorff-Nielsen 
1978). 
 
In practice this means that attempt to numerically maximize the likelihood leads to 
unbounded estimates when the observed graph has statistics falling on the boundary of C.  
This typically means the optimization algorithm does not converge. Simulation studies in 
Handcock (2000) show that this is common for realistic models. If ( )observedt x  falls on the 
boundary of C  it is still possible that subsets of θ  have MLEs that exist. Let 
( ) ( ( ) ( ))observed a observed b observedt x t x t x= ,  and ( )a bθ θ θ= ,  be similar partitions of ( )observedt x  and 

θ .  Under mild conditions, if ( )a observedt x  is on the boundary of C  and ( )b observedt x  is in the 

relative interior of the convex hull of { }( ) ( ) ( )a a observedt X t X t x: =  then the MLE of bθ  exists 
and is the unique local minima of the conditional likelihood equation:  
 [ ]( ) log ( ( ) ( )) ( ) ( ( ))T

a a observed b a observedCL x P X x t X t x t x t xθθ θ κ θ; , ≡ = | = = − ,  
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 ( ) ( )a a observedx t X t x∈ : =X  

3.4. Likelihood inference based on MCMC algorithms  

 
The difficulties in determining the normalizing function for the model (1) can be overcome 
using MCMC algorithms. The approach is based on the following idea: If a large number of 
simulations from a social network in the same ballpark as that of the observed network can be 
generated then these can be used to approximate the normalization function  to a desired 
accuracy. Estimate the “population” value:  
 ( ) exp ( )T

x X

c t xθ θ
∈

� �= � ��  

 by the weighted “sample” mean:  
 }( ) exp ( ) ( )T

M sampled graphs y

c X t y w yθ θ� �= | | � ��  

 
where the sample weights }( )w y are internally normalized to sum to unity. We can use the 
MCMC approach of Section 2.2 to simulate a sample of graphs from a model similar to the 
true, but unknown, model. The approximation to the likelihood using this approach is called 
the MCMC likelihood. The MLE for the data is them approximated by the maximum of the  
of the MCMC likelihood (the MC-MLE). This idea has been made precise and studied by 
Geyer and Thompson (1992).  They show the MC-MLE converges to the true MLE as the 
number of simulations increases. The procedure also produces estimates of the asymptotic 
covariance matrix, the size of the MCMC induced error, and other related quantities.  
 
As the sampled graphs form the basis of a statistical exponential family with sample space 
the realized values and probabilities the empirical proportions, the existence and uniqueness 
of the MC-MLE can be understood: 
 
Result: 
 
Let CO  be the convex hull of sampled sufficient statistics. In practice, there are two 
situations: 
1) ( ) ( ) ( )observedt x int CO int C∈ ⊆ : The MC-MLE exists and is unique. It is found as the unique 

maximum of the MCMC likelihood. 
2) ( ) ( )observedt x int CO∈/  but is in ( )int C : The MC-MLE does not exist, even though MLE 

does. 
3) ( ) ( )observedt x int C∈/ : Neither the MC-MLE nor the MLE exists. 
 
This result explains why attempts to calculate MC-MLE estimates for social network models 
fail. If the model used to simulate the graphs is not close enough to produce realizations that 
cover the observed values of the statistics, the MC-MLE will not exist even in cases where 
the MLE does.  This behavior is quite common. As we shall see in Section 3, it is magnified 
by properties of commonly used models that do not place probability mass broadly enough. 
In sum, the MC-MLE may not exist for at least two reasons. First, the MLE itself may not 
exist (in which case neither does the MC-MLE). Second, it is difficult to specify parameter 
values for commonly used models to produce realizations that cover the observed values of 
the network statistics. In particular, simulations in Handcock (2000) show that simulations 
based on the maximum pseudolikelihood estimates usually do not produce realizations 
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sufficiently similar to those of the true values to support MC-MLE estimation. These 
properties of the models are very similar to those for spatial point processes considered in 
Geyer (1999). 

3.5.  Bayesian models and inference for random graph models 

 In random graph models of the form (1) the maximum likelihood estimator is not necessary 
optimal and, indeed, any point estimator of θ  can be very poor. As such we need to move 
away from point estimators of θ  and to frameworks for inference that naturally allow the 
uncertainty about the value of θ  to be expressed. 
 
We do this by supplementing likelihood-based inference with the Bayesian paradigm, mainly 
as it provides an elegant way of incorporating parameter uncertainty into the final inference 
and the incorporation of expert knowledge when it exists (Gelman, Carlin, Stern and Rubin 
1995). Inference with the Bayesian paradigm, implemented via the now standard Markov 
Chain Monte Carlo (MCMC) methods can address, and even solve, many very difficult 
inferential problems, often making it the only realistic option. 
 
Bayesian approaches to random graph models for social networks have received little 
attention (Wang and Wong 1987). We are in the process of developing Bayesian 
methodology for random graphs paying particular attention to the specification of prior 
distributions for the parameters that are meaningful for social networks. Under a Bayesian 
formulation, let ( )pr π  be an arbitrary prior distribution for θ .  The posterior distribution of 

θ  is then ( ; ) ( ) ( ) ( )pr X x pr P X x m xθθ θ= = = /  where ( ) ( ) ( )m x pr P X x dθφ φ
Θ

= =�  can be 

interpreted as the apriori probability that X x= .  ( ; )pr X xθ =  captures our knowledge about 
θ  after the observed data (i.e., that is X x=  ) has been taken into account. 
 
Note that ( )pr θ  may be chosen to restrict the parameter space to a subset of Θ  by placing 
zero prior mass on the excluded values. Under these circumstances the posterior mass on 
these same values will always be zero regardless of their likelihood under the model and data.   
Computationally, Bayesian inference for an arbitrary prior is straightforward if MCMC 
simulation of the process is available. Conceptually this can be achieved by sampling a value 

mθ  from the prior distribution for ( )prθ θ, , and then sampling mX  from the distribution 
( )mP X xθ =  using MCMC simulation. If this is repeated until mX  equals the observed graph 

obsx  then the corresponding value of m mθ θ,  (say), is a random sample from the posterior 
( ; )obspr X xθ = . By repeating this process, a large sample of values of θ  from 
( ; )obspr X xθ =  can be generated. The posterior mean of θ  can then be estimated by the 

mean of the sample. The posterior density corresponding to ( ; )obspr X xθ =  can be estimated 
by a non-parametric density estimate based on the sample. Note that this applies even when 
θ  is multivariate, and so the posterior dependence between the components of θ  can also be 
determined. There are alternative computational methods that are vastly superior in terms of 
computational efficiency to the above algorithm. These alternatives will almost always be 
used in practice. However, the above algorithm does show how Bayesian inference is 
achieved using MCMC simulation.  
 
The definition and properties of families of conjugate priors for exponential families has been 
addressed in Barndorff-Nielsen (1978), Diaconnis and Ylvisaker (1979) and, more recently, 
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Gutiérrez-Peña and Smith (1997). Of the many possible families possible, one of the most 
richest classes is discussed by Gutiérrez-Peña and Smith (1997). Let ( )g ν γ,  be the ( 1)q +  
parameter exponential family with distributions:   

 
exp ( )

Pr( ) 0
( )

T

c

ν θ γψ θ
θ ν γ θ γ

γ ν
� �+� �; , = ∈ Θ, ≥

,
 

           Thus ( )g ν γ,  has canonical statistics θ  and ( )ψ θ−  and is minimal unless ( )ψ ⋅  is a 
linear function of θ .  Here ( )ψ ⋅  is a prespecified function. The hyperparameters ν  and γ  
specify, respectively, the location and scale of θ .  If qΘ = ¡  then this distribution is proper if, 
and only if, ν γ/  is in the interior of the convex hull of the sample space of ( )t X  and 0γ > .  
Suppose the prior for θ  is chosen to be ( )g ν γ,  then, formally, the posterior for θ,  having 
observed X x= ,  is ( ( ) 1)g t xν γ+ , + .  That is,  

 
( ( )) ( 1) ( )

Pr( ; ) 0
( 1 ( ))

Tt x
X x

c t x

ν θ γ ψ θ
θ ν γ θ γ

γ ν
� �+ + +� �= ; , = ∈Θ, ≥

+ , +
 

            This family can be generalized to a p − variate .γ  Let ( )g ν γ,  be the ( )q p+  
parameter exponential family with distributions:  

 1

exp ( )
Pr( ) 0 0

( )

T T

p…
c

ν θ γ ψ θ
θ ν γ θ γ γ

γ ν
� �+� �; , = ∈Θ, ≥ , , >

,
 

           Here ( )ψ ⋅  is a prespecified p − variate function. Thus ( )g ν γ,  has canonical statistics 
θ  and ( )ψ θ−  and is minimal unless some component of the ( )ψ ⋅  is a linear function of θ .  
Suppose the prior for θ  is chosen to be ( )g ν γ,  then, formally, the posterior for θ,  having 
observed X x= ,  is ( ( ) 1)g t xν γ+ , + .   
While inference for this family is quite tractable it is unclear under which circumstances the 
prior can be chosen to realistically represent knowledge about θ .  It is more natural to choose 
the prior to reflect knowledge we do have and which is often quite strong. Examples include 
selectivity of graphs, degeneracy and stability. For these cases the prior family is unlikely to 
be conjugate.  

4. Identifiability, Degeneracy and Stability for social networks 
models 

The research reviews in the previous sections has allowed progress to be made in both the 
estimation and simulation of random graphs models. This work, and that of Besag (2000), has 
allowed provided insight into the properties of random graphs models. Two properties of 
random graph models that have a big impact on practice are degeneracy and stability. This 
builds on ideas of Ruelle (1969), Strauss (1986), Geyer (1999) and Baddeley (1999), Section 
4.  This work is in statistical physics and spatial point process theory.  
 
The issue of what makes a useful model for a social network is a complex one. All models 
are representations of the manifestations of the social processes that produced the social 
network. Some models represent the proximate mechanisms of the formation of ties. This can 
be done by representation the temporal dynamics of the social process that produced the 
social network, or by direct representation of the network itself through appeal to concepts 
like structural balance and transitivity. Alternatively models may only aim at describing the 
probabilistic structure of the social ties. In all cases the models will be idealizations and 
simplification of the actual processes. Ultimately the answer to the question of what is a 
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useful model is fundamentally dependent on the purpose for which the model is intended. 
Simple models are often adequate, and even desirable, if there is a simple objective (e.g., 
what is the density of ties in the network). For other purposes, such as understanding the 
dynamics of the spread of STDs over networks, more sophisticated models are necessary.  
 
Here we consider a basic property that a useful model should have. Broadly speaking, useful 
stochastic models place a significant proportion of their probability mass on graphs that have 
high probability of being produced by the underlying social process.  We define a random 
graph model to be degenerate if the model places almost all its probability mass on a small 
number of graph configurations inX . Hence degeneracy of a graph model occurs when the 
model places disproportionate probability mass on only a few of the possible graph 
configurations. A common case is where the distribution places almost all its mass on the 
empty graph (i.e., 0 )ijX i j= ∀ , ,  and/or the complete graph (i.e., 1 )ijX i j= ∀ , .  Such models 
are not useful for modeling networks as almost all realizations from these models will be 
empty or full. In addition is such a model is used for simulation and MCMC likelihood 
inference the approximations to the true model will be very poor. 

4. Discussion and future work 

  
While estimation techniques are often of little interest to non-statisticians, this case is an 
exception. The complete enumeration of all graphs required by the denominator in (1) makes 
simple maximum likelihood estimation impossible for graphs larger than about 30 nodes. In 
early applications a form of pseudo-likelihood was used to solve this problem (Besag 1974, 
Wasserman and Pattison 1996). More recent approaches, however, employ Markov Chain 
Monte Carlo (MCMC) methods (Geyer and Thompson 1992). This is particularly interesting 
for our purposes because MCMC methods effectively simulate the network over the space of 
possible graphs in order to maximize the likelihood. One can, however, just as easily use the 
MCMC algorithm to simulate the network given the parameter estimates, and this provides 
the solution to the problem of linking network data to the network simulation.  
 
This paper address the question of what is a good model and in doing so helps resolve the 
dilemma lack of convergence when estimation or simulating using MCMC. Many of the 
models that are proposed in literature suffer from degeneracy. Further algorithms used for 
inferential purposes are often inadvertently based on degenerate forms resulting in inferential 
degeneracy. One implication of these results is that the effective parameter space of 
exponentially parameterized random graph models is bounded and a small subset of the 
theoretical parameter space. The Bayesian framework for inference promises to be very 
powerful in social network modeling. It facilitates the propagation of parameter uncertainty 
into the final inference and allowing the incorporation of expert prior knowledge when it 
exists. 
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