Comparing the real-world performance of exponential-family random graph models and latent order logistic models for social network analysis

Abstract

We assess the real-world performance of Latent Order Logistic models (LOLOG) when applied to typical networks modelled by researchers by comparing them to Exponential-family random graph models (ERGMs). We demonstrate that the LOLOG models are, in general, in qualitative agreement with the ERGM models, and provide at least as good a model fit. In addition, they are typically faster and easier to fit to data, without the tendency for degeneracy that plagues ERGMs.

Publication
Journal of the Royal Statistical Society, A