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Spatial phenomena is commonly modelled as a realization from a stochastic process. 
Even when the reality is unique such models can usefully represent the uncertainty 
the modeler has about the phenomena. This paper is concerned with predicting for 
Gaussian random fields in a way that appropriately deals with uncertainty in the 
covariance function. To this end, we analyze the best linear unbiased prediction 
procedure (kriging) within a Bayesian framework. Particular attention is paid to the 
treatment of parameters in the covariance structure and their effect on the quality, 
both real and perceived, of the prediction. We show how this model can be improved 
by accounting for the uncertainty in the model parameters. 
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1. INTRODUCTION 

In this paper we consider a modeling approach for spatially distributed data. As an 
illustration of the types of problems addressed consider the spatially distributed data 
in Figure 1 . The data are 52 topological elevations over a small area on the northern 
side of a hill. The data were measured by a surveying class, using a plane table and 
alidade. Davis (1973) was interested in the analysis of maps and used the survey to 
produce contours of the region. An important feature is the small streams running 
northward down the hill and joining together at the base of the region. 
How should we analyze the data if our objective is to predict the elevations within the 
region surveyed? The perspective taken is that the actual elevations at each possible 
survey location (i.e. northing and easting from a reference point) taken together are a 
'realization' from a particular stochastic process. The general process is described in 
the next section. Based on the observed data at the 52 locations and this statistical 
model a prediction of the elevation at unobserved locations can be made. Just as 
importantly from our perspective, a11 estimate of the uncertainty of that prediction 
can be derived from the model. 
The statistical model is usually estimated from the very same data from which the 
predictions are made. The objective of this paper is to a<;Sess the effect of the fact 
that the model is estimated, rather than known, on the prediction and the associated 
prediction uncertainty. We descri~e a method for achieving this objective. 

*The author thanks Michael Stein aJ!d a referee for numerous useful comments that have greatly 
improved the paper. 
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For example, suppose we wish to predict the ele\·ation where the streams join at the 
base of the hill. We actually have an observation there, indicating that the elevation is 
705 feet, but we will ignore it at this point except to use it to check our prediction. The 
commonly used method of maximum likelihood for estimating the best model suggests 
that the true elevation has a 95% chance of being in the interval (699, 707) feet. 
This interval only represents the uncertainty in the prediction given this particular 
estimated model and does not represent the uncertainty in estimating the model 
itself. When this is accounted for, using the method described in the ne,•<t sections, 
the Bayesian 95% prediction interval is (694, 713) feet. The posterior probability 
content, incorporating the model uncertainty, of the maximum likelihood interval is 
73%. Similar inaccuracies are to be excepted when the estimated uncertainties are 
based on alternative point estimates of the model. 
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FIGURE 1: Elevations of the north face of a hill from Davis (1973), Table 5.11. 
The aspect ratio in the figure is spatially correct. The solid lines indicate the 
small streams running down the hill. Elevations on the streams are indicated 
by x and those not on the streams are marked by o. 

We conclude that in many practical situations this uncertainty has a large impact 
on the estimated uncertainty of the prediction and a lesser effect on the predicted 
value itself. If there is little information about the model in the data the approach 
guards against gross error. In situations where substantial previous knowledge of the 
phenomena exists, the approa-ch allows the information to be incorporated easily. 
Bayesian analyses of kriging procedures are relatively new. Except for the work of 
Omre (1987), Omre and Halvarsen (1989) and Woodbury (1989) there appears to be 
no work from within the &eostatistical community using the Bayesian perspective. 
Omre and Halvarsen (1989) describe a Bayesian approach to predicting the depth of 
geologic horizons based on seismic reflection times. They note the Bayesian interpre­
tation of ordinary kriging and utilize prior information about the mean function only, 
not accounting for uncertainty in the covariance structure. Of course, the situation 
is a direct extension of standard Bayesian work in linear models where, for example, 
Box and Tiao (1973) §2.7 and Zellner (1971) §7 are textbook references. Here we will 
focus on a parametric representation of the covariance structure as its direct inter­
pretation is of interest. Non-parametric approaches have been developed by Le and 
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Zidek (1992) and Pilz (1991). An alternative non-bayesian approach to covariance 
parameter uncertainty is given by Switzer (1984). What is novel about this paper is 
the spatial setting with irregularly observed locations and the general treatment of 
parameters in the covariance structure other than location and scale. 
The framework of prediction is developed in Section 2. In Section 3 the assumption 
that the covariance structure is known is relaxed and the Bayesian formulation is 
developed. The focus is the evaluation of the performance of the traditional 'plug-in' 
kriging procedure. Section 4 illustrates this evaluation using topographical data from 
Davis (1973). 

2. METHODOLOGY 

2·1 Prediction using kriging 

In this section we present the traditional kriging procedure as the basis for the later 
developments. Suppose Z(x) is a real-valued stationary Gaussian random field on R 
with mean 

E{Z(x)} = f(x)'j3, 

where J(x) = {fr(x ), ... ,/q(x )}'is a known vector-valued function and j3 is a vector of 
unknown regression coefficients. Furthermore, the covariance function is represented 
by 

cov{Z(x), Z(y)} = cxKa(x, y) for x,y E R 

where ex > 0 is a scale parameter, 8 E 0 is a p X 1 vector of structural parameters 
and 0 is an open set in llF. The division is purely formal as 8 may also determine 
aspects of scale. In the general case, we observe {Z(x1), .•. , Z(xn.)}' = Z and will 
focus on the prediction of Z(x0 ). The kriging predictor is the best linear unbiased 
predictor of the form Z8( x 0 ) = ,\( 8)' Z; that is, the unbiased linear combination of the 
observations that minimizes the variance of the prediction error. It is straightforward 
to show that the corresponding weight vector )..(8) defining Z8 (x0 ) is given by 

(2.1) 

where 

F {Ji(x;)}n.xq, 
ka {I<a(xo,x;)}nxl, 

Ka = {Ka(x;,xj)}nxn, 

ba = f(xo)- F'K01 ka. 

In the example x = (x 1 , x2 ) and we can take h (x) = x1 and fz(x) = x2 , the northi~g 
and easting of the survey locations, respectively. A third component of the mean will 
be added in Section 4. The covariance function represents the covariance between 
the elevation at the survey locations x = (x 1 , x2 ) and y = (y 1 , y2 ). 
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2·2 Assessing Uncertainty in kriging 
The quality of the prediction is determined by the distribution of the prediction error, 
ea(x0 ) = Z(.r0)- Za(x0 ). Note that the prediction weights ,\(B)' do not depend on a 
or fJ. Under our Gaussian model, for fixed a, {3, and B, the conditional distributions 
of Z(x0 ) and ea(x0 ) given Z are 

Z(xo) I Z"" N( k~I\0 1 Z + b~fJ, a{Ka(xo, xo)- k~I\0 1 ke } ) 

ee(xo) I Z"" N( b~(fJ- ~(B)), a{Ke(xo, xo)- k~I<01 k11 } ) 

where ~(B) = (F' !{01 F)-1 F' /{01 Z and N (·, ·) denotes the Gaussian distribution. 
The sampling (or unconditional) distribution for e11 (x0 ) is 

ee(xo) ""N( 0, aVe) (2.2) 

where Ve = I<e(xo,xo)- k~I<0 1 ke +b8(F'K01F}- 1 b11 and aVe is the usual prediction 
error variance as given in Ripley (1981). 
Note that the underlying kriging procedure is motivated by sampling considerations, 
producing point predictions and associated measures of uncertainty for those predic­
tions both based on sampling distributions unconditional on the observed Z. However 
kriging, when the mean is of known regression form, can be given a Bayesian inter­
pretation. Traditionally, it is assumed that the covariance function is known exactly 
and the investigator has little knowledge about f3 prior to analyzing the data. The 
underlying kriging approach usually presumes ignorance about f3 and the unrelat­
edness of f3 to the behavior of the covariance function. This latter philosophy will 
be followed throughout the paper. Under these assumptions, an appropriate prior 
distribution has pr(fJ I a, B) locally uniform. The posterior distribution of f3 is then 

The posterior distribution of the prediction error is then 

pr(ea(xo) I a,B,Z) e< kpr(ea(xo) I a,fJ,B,Z)pr(fJI a,B,Z)dfJ, 

which is, by direct calculation, 

ea(xo) I a, B, Z ""N( 0, aVe ) (2.3) 

the same as the sampling distribution (2.2). Similarly we have 

Z(xo) I a,B,Z"" N( Za(xo), aVe) (2.4) 

where Z8 ( x0 ) = k~/{0 1 Z + b8~( B) is the usual kriging point predictor. These distribu­
tions form the basis for all inferential statements about the prediction and prediction 
error. Hence, except for the usual differences in interpretation, we end up with the 
same analysis as the traditional approach. This comparison may be loosely stated as: 
ordinary kriging is 'Bayesian' with the non-informative prior for the mean parameter. 
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3. KRIGING WITH UNKNOWN COVARIANCE 

In this section, the assumption that the covariance function is known exactly is relaxed 
to allow the covariance function to be unknown, but still a member of the parametric 
class e. 
In traditional kriging, one estimates a and B by either likelihood methods or various ad 
hoc approaches. The likelihood approach to the estimation of the covariance structure 
was first applied in the hydrological and geological fields following Kitanidis and Lane 
(1985) and Hoeksema and Kitanidis (1985). Mardia and Marshall (1984) is a standard 
reference in the statistical literature. Usually the predictor and the behavior of the 
prediction error are themselves estimated by 'plugging-in' the estimates into (2.1) and 
(2.2). If B is known so that only the location parameter f3 and the scale parameter 
a are uncertain then we are in a standard generalized least-squares setting. The 
distinction between the generalized least squares setting and the random field setting 
is the uncertainty in the structural parameter B. While the restriction to a parametric 
class is a significant assumption, it still allows great latitude. 
As f3 is a location parameter we expect that our prior opinions about /3 bear no 
relationship to those about a and a priori might expect a and /3 to be independent, 
leading to the use of Jeffreys's prior. Partly for convenience, the form of the prior 
used here will be 

pr(a, /3,B) ex pr(B)/a 

It easily follows from Zellner (1971) that the predictive distribution of Z(x0 ) condi­
tional on B and Z is 

Z(xo) I B, Z '""tn-q ( Ze(xo), _n_a(B)Va), 
n-q 

a shifted t distribution on n - q degrees of freedom. 
The marginal posterior distribution of B can be shown to be 

The Bayesian predictive distribution for Z(x0 ) is 

pr(Z(xo) I Z) ex k pr(Z(xo) I B, Z) · pr(B I Z)dB 

(3.1) 

(3.2) 

where the integrand is given by (3.1) and (3.2). As the dependence of I<e on B is not 
specified this expression can not be simplified and further exploration will in general 
require numerical computation. If prior information is available it may be directly 
incorporated into (3.2), although additional numerical integration may be necessary 
if prior dependencies among (a, /3, B) are envisaged. 
Suppose we use an estimation procedure to select the parameters (a, 0) of a covariance 
structure. These may be arrived at by any procedure, although the usual methods 
are maximum likelihood, weighted least squares or derived from empirical correlation 
functions. The distribution that an investigator would use as a basis for inference 
about Z(x0 ) would be 

Z(xo)_l a, 0, Z,..., N( Z0(xo), aV0 ), 

plugging in (a,O) for (a, B) in (2.4). 
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Depending on the influence of (} on the spread and location of pr(Z(x0 ) I (}, Z), 
the Bayesian predictive distribution might be wider or narrower than the plug-in 
predictive distribution. The location of the plug-in predictive distribution may also 
be quite different from the Bayesian predictive distribution. Typically the Bayesian 
predictive distribution will have no simple analytic form and must be determined 
numerically. The difference between the plug-in and Bayesian predictive distributions 
represents the difference in inference between the traditional kriging approach and 
the full Bayesian approach. 
Note the plug-in prediction error, ee(xo) = Z(x0 )- Za(x0 ), is just a shifted version of 
Z(x0 ), so that comparisons of performance of the plug-in estimates will be the same 
whether we consider Z(x0 ) or ee(xo). We could interpret this as a comparison between 
the plug-in distribution for ee(xo) and the actual distribution for ee(xo) under the 
full Bayesian model, although the latter distribution would not be used for inference. 

3·1 The Matern Class of Covariance Functions 

In this section we describe a general class of covariance functions that we feel provides 
a sound foundation for the parametric modeling of Gaussian random fields. The class 
is motivated by the smooth nature of the spectral density, the wide range of behaviors 
covered and the interpretability of the parameters. It will be used throughout the later 
sections. The properties of the covariance function directly determine the properties 
of the random field model. The Matern class is characterized by the parameter 
(} = (B1 , 82 ). B1 > 0 is a scale parameter controlling the range of correlation. The 
smoothness parameter B2 > 0 directly controls the smoothness of the random field. 
The Exponential class corresponds to the sub-class with smoothness parameter (}2 = 
1/2, that is 

I<e(x) = exp( -xjB~). 

The sub-class defined by (}2 = 1 was introduced by Whittle (1954) as a model for 
two dimensional fields. It is commonly used in hydrology (see e.g. Jones (1989)). As 
(}2 ~ oo, I<8( x) ~ exp( -x2 j Bi), often called the 'Gaussian' covariance function. We 
shall refer to it as the Squared Exponential model. This model forms the upper limit 
of smoothness in the class and will rarely represent natural phenomena as realiz~tions 
from it are infinitely differentiable. 
The isotropic correlation functions have the general form 

where (}~ = BI/(2ve;) and K-a2 is the modified Bessel function of order B2 discussed 
in Abramowitz and Stegun (1964), §9. 
A field with this covariance function is rB2 - 1 times (mean-square) differentiable 
where r is the integer ceiling function. The realizations will have continuous rB2 - 1 
derivatives if B2 > rB2 - ~. If the field is Gaussian the realizations will have continuous 
rB2 - 1 derivatives (almost certainly) (See Cramer and Leadbetter (1967), §4.2, §7.3, 
and §9.2-9.5). 
All calculations of K-8 in this work use the RKBESL algorithm from the SPECFUN 
library available free from NETLIB. A general treatment is given in the seminal work 
by Matern (1986). 

.. 
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4. AN ANALYSIS OF DAVIS'S TOPOGRAPHICAL DATA 

In this section we analyze the data introduced in Section 1 and originally from Davis 
(1973). It has been studied by Ripley (1981, pp. 58-72), and subsequently by Warnes 
(1986), Ripley (1988, pp. 15-21) and Mardia and Watkins (1989). The original data 
were scaled so that 50 yards in location corresponds to one map unit. We will use 
the more natural units of yards, although the later references continued the original 
scaling. The survey locations are recorded to two significant figures and the elevations 
to three significant figures. 
The major assumptions implicit in the model are stationarity of the Gaussian ran­
dom field, isotropy of the correlations and the correct specification of the mean. 
These are interdependent so that checking them individually is usually not the best 
approach. There are available methods to test if the marginal distribution of the 
observations is Gaussian. However it is difficult to determine if the joint distribution 
of the observations is Gaussian in the presence of an unknown correlation structure. 
In particular the marginal distribution of the observations is little guide to the joint 
distribution. The realizations of the random field can be assumed to be smooth, at 
least continuous and maybe even differentiable. Given the nature of the data and 
the measurement procedure it will be assumed that the measurement error is small 
so that the (observed) field is continuous. 
The Exponential model, while providing a reasonable initial covariance class, does 
not allow the field to have differentiable realizations. Given that a priori the form of 
the covariance is unknown it is unreasonable to exclude the possibility of smoother 
random fields. 
As indicated in the Section 2, the mean function should clearly include the Northing 
and Basting of the survey locations. In addition, there is information in the locations 
of the streams that should be taken into account. One crude way is to include, as 
!J(x), the horizontal distance of the survey point to the closest stream. 

4·1 Posterior Knowledge Based on a Flat Mean 

Initially we will entertain the model with a constant mean. The marginal posterior 
for the smoothness parameter based on the uniform prior for the smoothness and 
range parameters is given in Figure 2. 
The mass of the distribution is between 82 = 0.5 and 82 = 1.5. The mode is slightly 
below 82 = 1, which corresponds to Whittle's covariance function (Whittle (1954, 
1962)). Interestingly, Whittle regarded this model as the natural extension of the 
Exponential model, 82 = 1/2, from one to two dimensions. It corresponds to a 
random field with continuous realizations that are on the margin of mean-square 
differentiability. For 82 > 1 the field is mean-square differentiable. It is interesting 
to note that the ratio of the density at the mode to the density at the Exponential 
model is about 5 : 1, so that the Exponential appears too rough for this field. Such 
posterior densities are a useful tool for describing and understanding the behavior of 
the phenomena underlying the data. 
Of course, alternative prior distributions can easily be used. One could express 
prior knowledge about (/3, a) by taking the marginal prior of (;3, a) to be the usual 
Gaussian-Gamma conjugate prior from generalized least squares. An informative 
prior for 82 could deemphasize smoothnesses less than a half or much greater than 
two, the rationale being that we do not expect the realizations to be discontinuous 
or much smoother than twice differentiable. Such a prior distribution would have 
little effect on the predictive distribution as the likelihood places little weight on 
smoothness values in that range. 
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FIGURE 2: Posterior distribution for the smoothness parameter based on the 
Matern model with constant mean. 

4·2 Incorporating Additional Information in the Mean 
The model with a constant mean may be inadequate as compared to the models 
including the survey locations and distance to streams as regressors because of non­
stationarity in the mean (Mardi a and Watkins (1989) ). The location chosen to be 
predicted at is the surveyed location closest to the most northern junction of the 
stream (at (180, 300) on Figure 1). It was chosen to be reasonably close to the 
other survey locations. The models will be developed without this location and the 
elevation there will be used as a check on the predictions. 
Figure 3 is the profile log-likelihood surface under this model. Figure 4 presents 
the predictive densities based on the Matern model with this more sophisticated 
mean function and a uniform prior on the smoothness and range parameters. The 
plug-in predictive distribution based on the maximum likelihood estimate, (a, B) = 
(955, 68, 7.8), is Gaussian centered at 703 feet with a standard deviation of about 2.1 
feet. The effect of the additional regressors is to substantially reduce the variability 
of the p;edictive distributions. 
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FIGURE 3: Profile log-likelihood for the Matern model with mean based on the 
northing and the distance to closest stream. 

Also represented are three alternate plug-in predictive distributions based on the max­
imum likelihood estimators under the Exponential and Squared Exponential classes 
and the maximum a posteriori Matern value. Probability intervals based on this 
plug-in predictive distributions will markedly differ from those based on the Bayesian 
predictive distribution. The latter is a better reflection of the uncertainty in the 
covariance structure and should be regarded as a superior reference for inference. 
Smoother estimated models correspond to less perceived uncertainty in the predic­
tion. For example, the Bayesian 95% prediction interval has nominally 99.99% prob­
ability under the plug-in predictive distribution for the maximum likelihood Matern 
model. Alternatively the nominally 95% interval for this plug-in predictive distribu­
tion actually has 73% probability. 

4·3 Sensitivity to Prior Specification 
How sensitive is our inference to the choice of prior distributions? In these examples 
a prior distribution uniform on the positive values the smoothness parameter is used. 
Alternatively one could use the prior 

1 .... 
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reflecting the belief that larger smoothness values are a priori less Likely than smaller 
values. Physically the belief is that the field is more likely to be one or two times 
differentiable, rather than, say, 101 times. This prior is uniform for B2 /(1 + fJ2 ) on 
[0, 1]. 

0 
C\J 
0 

1..{) 
T""" . 
0 

Bayesian 
Exponential MLE 
Matern MAP 
Matern MLE 
Sq. Exponential MLE 

>. 
+-' 
(j) 

c 
<D 
"0 

0 
T""" . 
0 

1..{) 
b . 
0 

0 
0 

'i 
.1f 

!/: 
. ./!(·············· 

.. · 't 
.. ············· ~~ 

··································· j;' 

680 690 700 

·'·······································-········-

710 720 730 
elevation (feet) 

FIGURE 4: Predictive distributions based on the Matern model with mean using 
the northing and the distance to closest stream. The observed elevation at 
this location is represented by the small horizontal bar reflecting the recording 
accuracy. 

The effect of using this prior to deemphasize larger smoothness values relative to the 
uniform prior is to increase the uncertainty in the prediction, in line with the less 
smooth models. The inference appears to be insensitive to moderate changes in the 
prior for B2 • Based on figures not presented here, we find that using a uniform prior 
for a instead of the usual 1/ a results in a predictive distribution with slightly thinner 
tails and that the predictive distribution is insensitive to changes in the prior for (3. 
While the maximum likelihood estimate is a good representative value, the overall 
flatness of the likelihoods would suggest·against choosing any particular member as 
the 'truth'. Clearly we need additional information before we can choose between 
members of the same class. The same comments apply to the choice of mean model. 
It is tempting to base the decisions on the changes in log-likelihood. It is still an 
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open question as to the validity of this procedure in the face of the interdependence 
of the mean and covariance structures. 

5. CONCLUSION 
The kriging procedure is often described as optimal (Matheron (1965)) because it 
produces optimal predictions when the covariance structure of the random field is 
known. If the covariance structure needs to be estimated, then this primary motiva­
tion for kriging is in question. It is then necessary to assess the effect of the fact that 
the model is estimated, rather than known, on the prediction and the associated pre­
diction uncertainty. In this paper we have seen that the Bayesian paradigm provides 
a framework in which to analyze the performance of the estimated kriging predictor. 
In conclusion, a better approach would be to base inference on the Bayesian predictive 
distribution. This approach takes into account the uncertainty about the covariance 
function expressed in the likelihood surface and ignored by point estimates of the 
covariance function. It also allows the performance of the usual plug-in predictive 
distribution based on an estimated covariance structure to be critiqued within a wider 
framework. The results also suggest that fitting the empirical correlation function 
'by eye' may lead to plug-in predictive distributions that differ markedly from the 
Bayesian predictive distribution. The maximum likelihood estimate may be the best 
single representative available, but this reduction itself can be detrimental to the 
inference (See Figure 4). 
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