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A B S T R A C T

Selection of an optimal ground motion intensity measure (IM) is one of the preliminary yet integral steps
in minimizing uncertainty propagation through the probabilistic performance-based earthquake engineering
framework. The optimal IM is evaluated and selected based on two widely known evaluation metrics: efficiency
and sufficiency. In this study, the univariate regression- and entropy-based methods that are currently available
to compute efficiency and sufficiency are presented. More importantly, the existing methods are expanded to
account for multivariate relationships between various engineering demand parameters (EDPs), the IM, and the
causal parameters. Finally, a comparative assessment of alternative methods is performed based on 10 different
IMs and 10 woodframe archetype buildings. The univariate and multivariate methods produce comparable
results for the efficiency-based assessment with SaT1 and ASI performing comparably well. Also, for all IMs,
both the dispersion and joint entropy are found to be lower in the single-family dwellings (SFDs) compared
to the multi-family dwellings (MFDs). This observation can be explained by the higher ductility demands in
the latter of the two building types. Similar results are also obtained between the univariate and multivariate
entropy-based sufficiency evaluations. In both cases (univariate and multivariate), SaT1 and PGA are the most
sufficient IMs for SFDs and MFDs with Saavg also performing well for the MFDs.
1. Introduction

In modern performance-based earthquake engineering (PBEE) [1],
seismic hazard analysis is systematically and probabilistically associ-
ated with loss estimation by utilizing the total probability theorem:

𝜆(DV) = ∭ G⟨DV|𝐷𝑀⟩𝑑𝐺⟨𝐷𝑀|EDP⟩𝑑𝐺⟨EDP|IM ⟩𝑑𝜆(IM) (1)

where 𝜆(DV) and 𝜆(IM) are the annual exceedance rates for the decision
variable of interest and ground motion intensity measure (IM), respec-
tively. The ‘‘triple integral’’ also utilizes the conditional probability of
exceeding (i) the decision variable given the damage measure (DM),
G⟨DV|𝐷𝑀⟩, (ii) the damage measure given the engineering demand
parameter (EDP), 𝐺⟨𝐷𝑀|EDP⟩, and (iii) EDP given an IM, 𝐺⟨EDP|IM ⟩.
The latter of the three conditional probabilities is obtained from proba-
bilistic seismic demand analysis (PSDA), which computes the structural
response, ideally using nonlinear response history analyses. The for-
mulation shown in Eq. (1) is based on an underlying assumption that
the EDP of interest is conditionally independent of the ground motion
causal parameters such as magnitude (M) and source-to-site distance
(R). Preferably, all the predictor variables used in the ground motion
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model (GMM) (e.g., shear-wave velocity (Vs30), fault type, average
depth (ZTOR), average dip angle (𝛿)) would be included as causal
parameters. In this study, only M and R are discussed because their
contributions are dominant in the GMM and seismic hazard deaggrega-
tion [2,3]. Hereafter, the term ‘‘causal parameters’’ jointly refers to M
and R.

The independence of the conditional distribution of an EDP with re-
spect to the causal parameters can be regarded as a ‘‘weak’’ assumption
in the sense that it is not absolutely essential in the PBEE framework. In
other words, the dependence on the causal parameters can be explicitly
considered by conditioning the EDP on IM, M, and R instead of just
the IM. As highlighted in Luco and Cornell [2] (Equation 12), the
explicit consideration of the causal parameters in Eq. (1) increases
the computational cost as one has to integrate over all the causal
parameters in addition to the triple integral, but it is within the realm
of possibility. However, while possible, the explicit consideration of
causal parameters is not always practical. This approach would require
the suite of ground motion records to be consistent with 𝐺⟨𝑅,𝑀|IM ⟩,
which essentially means that the selected records need to come from
the earthquake events that govern the hazard at all the IM levels.
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Realistically, ground motion suites that are consistent with respect to
the causal parameters would be rare because it is unlikely that an
event with specific characteristics (e.g., M, R) would dominate the
IMs at all hazard levels. It is noted that the consistency issue can be
countered by selecting site- and intensity-specific ground motions. The
targeted ground motion selection, however, might not be a universal
solution to this consistency issue because in applications such as re-
gional studies, cloud analysis might be preferred. The bottom line is
that the explicit consideration of conditional dependence imposes an
immense limitation on the PBEE framework. Hence, to ease the limita-
tion and increase computational viability, the PBEE framework adopts
a simplifying conditional independence assumption. The assumption
emphasizes the identification, selection, and evaluation of an ‘‘optimal’’
IM which is the focus of the paper.

Recognizing the importance of IM selection in quantifying and
propagating uncertainty in the PBEE methodology, there has been a
body of research work investigating different facets of the optimality of
an IM. The most widely accepted metrics to assess the effectiveness of
an IM are ‘‘efficiency’’ and ‘‘sufficiency’’[2,4]. Efficiency is a measure of
an IM’s ability to define the relationship between seismic response and
hazard with minimal dispersion. In other words, the efficiency of an IM
quantifies the uncertainty of the conditional structural response (EDP |

IM). On the other hand, an IM is said to be sufficient if the conditional
distribution of the EDP of interest is independent of the causal param-
eters. This serves as an indication that the IM alone can adequately
estimate the structural response with no additional information from
the causal parameters. The earliest attempts to quantify efficiency
and sufficiency were based on ordinary least squares (OLS) regression
(referred to as the ‘‘traditional’’ approach henceforth). Specifically,
the conditional distribution of the response demands is estimated by
regressing the EDP against the IM. The EDPs are obtained from nonlin-
ear response history analysis (NRHA) under a suite of ground motion
records. The standard error obtained from the OLS is then taken as
the efficiency measure. The residual of the first OLS model is further
regressed on the causal parameter in a one-at-a-time fashion to de-
termine the sufficiency of the IM. The sufficiency criterion relies on
statistical significance testing under a pre-specified significance level
(𝛼). If the regression coefficient corresponding to the causal parameter
is statistically insignificant at the desired confidence level (𝑝-value > 𝛼),
the IM is deemed sufficient. Other metrics such as ‘‘predictability’’,
‘‘scaling robustness’’, ‘‘practicality’’, and ‘‘proficiency’’ [5,6] have also
been proposed, but for generality, this study only focuses on efficiency
and sufficiency as the primary evaluation metrics.

An intrinsic assumption in the one-parameter linear model approach
to quantifying efficiency is that the EDPs are independent and thus fol-
low a univariate distribution. This assumption, which is usually made
as a matter of convenience, has three primary implications: (1) intra-
EDP joint distribution (e.g., EDP profile along the story height) cannot
be considered, (2) inter-EDP (e.g., peak story drift ratio (SDR) and
peak floor acceleration (PFA)) dependence and interactions cannot be
incorporated, and (3) multivariate effects of multiple causal parameters
cannot be addressed. It is well understood that the nonlinear behavior
of a structure under dynamic loading is a consequence of complex
interactions between displacements, velocities, and accelerations of
structural and nonstructural components. It is a common practice to
assume that EDPs jointly follow a lognormal distribution [1]. Notably,
in the PBEE framework, the Monte Carlo algorithm is used to simu-
late jointly lognormal demand samples to assess losses. The simulated
demand samples include direction-dependent EDPs and their profiles
along the building height. This enables the framework to conveniently
consider intra- and inter-EDP dependence. However, in IM evaluation
studies, the optimality of an IM has been investigated assuming that the
EDPs follow independent lognormal distributions. Although the major-
ity of prior IM studies [7–9] have used the maximum value of the EDP
profile along the story height, a limited number of studies have utilized
2

three-dimensional models [10] and considered the EDP profile [11] in s
analyzing the effectiveness of an IM. Recent studies have also proposed
an entropy-based evaluation metric for site-specific risk assessment [12,
13]. Du and Padgett [13] proposed a joint entropy-based procedure
to evaluate IMs by considering the multivariate distribution of the
demand parameters for a bridge structure. However, to the best of
our knowledge, there has not been a similar study for buildings where
multiple EDPs are considered.

This paper is guided by two primary motivations: (1) to perform
a comparative analysis of the currently available methods and (2) to
advance the current methods by explicitly considering multivariate
relationships in building structural responses. Fig. 1 summarizes a host
of existing and new methods covered throughout this paper. First, we
present the OLS-based efficiency assessment approach and the joint
entropy-based measure as alternative criteria. The joint entropy ap-
proach was originally proposed by Du and Padgett [13] as a singular
measure of the optimality of an IM. Under the assumption that EDPs
are jointly lognormal, we implement a multi-target generalized addi-
tive model (GAM) [14] with smooth functions to effectively capture
the multivariate and nonlinear relationships between the EDPs and
IM. Ultimately, we use the estimated covariance matrix to assess the
efficiency of the IM based on joint entropy. Similarly for sufficiency,
we start by presenting the univariate OLS approach. Staying within
the significance testing domain, we also implement a multivariate
GAM to determine sufficiency while accounting for the multivariate
relationships within and between EDPs, and causal parameters. We
present the relative sufficiency measure as an alternative approach
for both the univariate and multivariate cases. The relative sufficiency
measure presented here is inspired by two previous studies [12,15].
Finally, we implement these approaches on a set of 10 residential wood-
frame buildings consisting of four single-family dwellings (SFD) and six
multi-family dwellings (MFD). Although there has been a large body
of research on IM evaluation for a variety of structures, woodframe
buildings have garnered much less attention. Heresi and Miranda [16]
investigated the efficiency of 10 different IMs for regional-based risk
assessment of low-rise woodframe buildings. However, the sufficiency
criterion was not considered in their study. To the best of our knowl-
edge, this study is the first of its kind to evaluate IMs for woodframe
buildings using entropy-based efficiency and sufficiency measures.

2. Quantifying IM optimality

We perform a comparative assessment of IM optimality using the
various metrics shown in Fig. 1. Acknowledging the availability of other
evaluation metrics (e.g., robustness, predictability, etc.), this paper
focuses on efficiency and sufficiency. In the subsequent subsections, a
wide variety of methods ranging from univariate OLS to multivariate
entropy-based techniques are discussed as measures to evaluate the
effectiveness of an IM.

2.1. Methods to quantify the efficiency

The efficiency of an IM is a measure of the dispersion of an esti-
mated EDP in PSDA. It is one of the most straightforward evaluation
metrics that reflects the predictive performance of the demand model
based on the measure of uncertainty in the conditional distribution of
the EDP.

2.1.1. Univariate OLS-based efficiency
Historically, efficiency has been assessed by evaluating the residual

standard error obtained from one-parameter regression of the EDP
against the IM [2,17]. The functional form of the univariate log–log
linear model is shown in Eq. (2)

ln EDP|IM = 𝛽0 + 𝛽1 ⋅ ln IM + ln(𝜖|IM) (2)

here ln(𝜖|IM) is a normally distributed noise term with mean zero and

tandard deviation 𝜎EDP|IM, 𝛽0 is an intercept, and 𝛽1 is a slope in log
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Fig. 1. Summary of the various methods used to evaluate the effectiveness of IM.
scale. The use of the log–log model ensures the validity of the normality
assumption since the EDP and IM are expected to be linearly related
in log space [17,18]. The normality enables the residual standard error
(RSE), 𝜎EDP|IM, can be directly used as a measure of efficiency. The RSE
in Eq. (2) does not need to be transformed to log space because it is
an estimate of the standard deviation of the residuals in log space. It is
evident from Eq. (2) that an efficient IM would require fewer NRHAs to
estimate the structural response as compared to one that is less efficient.

2.1.2. Multivariate entropy-based efficiency
The OLS model is limited to a univariate relationship between the

EDP and IM. In reality, different EDPs within a structure follow a joint
distribution. Additionally, the relationship between the log-transformed
EDP and IM is often more complex than simply linear. To account for
this nonlinear multivariate relationship, a multi-target GAM model is
proposed. The GAM is a smooth extension of the generalized linear
model (GLM) where the linear form in GLM is replaced by a sum of
smooth functions [14]. These smooth functions are represented via
splines and inferred from the data. It is highly flexible and designed to
capture the nonlinear relationship between the response and predictor
variable via the smooth function (𝑠(⋅)). The smooth functions for each
response-predictor variable pair are estimated simultaneously via the
maximized penalized likelihood method [19]. Ultimately, the smooth
functions are all added together to formulate a simple yet powerful
GAM model as shown in Eq. (3). For detailed mathematical information
on the algorithm, the reader is referred to Hastie and Tibshirani [14]
and Friedman and Stuetzle [19]. The model can be expressed as:

ln𝐄𝐃𝐏|IM = 𝐬𝟏(ln IM) + ln(𝝐|IM) (3)

In Eq. (3), ln𝐄𝐃𝐏 is a vector of EDPs within the structure, 𝐬(⋅)
is a vector of non-parametric smooth functions, and ln(𝝐|IM) is a
multivariate normal error distribution with mean zero and diagonal
covariance matrix. The output of the fitted model is RSE in the form
of a covariance matrix (Σ). To properly account for the covariances
between all the EDPs, the concept of joint entropy from information
theory is leveraged. The use of joint entropy in the context of IM
evaluation was first proposed by Du and Padgett [13]. However, in
this study, we reframe entropy as an alternative measure of efficiency
because it is a measure of ‘‘surprise’’ or uncertainty in a random
variable’s possible outcomes. Assuming that the EDPs roughly follow
3

a multivariate normal distribution in log space [1], their joint entropy
can be computed using the analytical solution in Eq. (4). An IM is
regarded as the most efficient if it has the lowest joint entropy among
the IMs that are considered. Intuitively, the most efficient IM induces
the least uncertainty in PSDA.

ℎ
(

⟨ln EDP1|IM ⟩, ⟨ln EDP2|IM ⟩,… , ⟨ln EDP𝑛|IM ⟩

)

= 1
2
log

(

(2𝜋𝑒)𝑑 det(Σ)
)

(4)

where det() is the determinant of a matrix. It is noted that this formu-
lation assumes the bias to be zero.

2.2. Methods to quantify sufficiency

The idea of sufficiency follows from the assumed independence
between the structural response and the ground motion causal param-
eters after conditioning on the IM. At its core, sufficiency is a measure
of the simplifying assumption that an IM is adequate in defining the
conditional distribution of the EDP without any additional information
from the causal parameters. A sufficient IM also simplifies the ground
motion selection process because the suite of selected records does
not necessarily need to be consistent with the causal parameters at
each hazard level. In other words, a sufficient IM is less reliant on
the decisions made during the ground motion selection process. Thus,
it can be argued that a sufficient IM results in a more robust EDP
distribution [9,16].

2.2.1. Univariate OLS-based significance testing
Traditionally, the sufficiency of an IM is determined via a null

hypothesis significance test characterized by a 𝑝-value [2]. A multiple
linear regression model outlining the relationship between an EDP, IM,
and a causal parameter is formulated for hypothesis testing. Equiv-
alently, the normally distributed residuals (ln (𝜖|IM) obtained from
Eq. (2) can also be regressed on the causal parameter directly. The two
variations of regressions are highlighted in Eq. (5) where 𝑥 represents
a causal parameter (either M or R) considered individually. If the
observed 𝑝-value for the causal parameter (i.e. 𝑝-value of 𝛽2 in Eq. (5a)
or 𝛽1 in Eq. (5b)) is higher than the pre-defined significance level (typ-
ically 𝛼 = 5%), then the null hypothesis cannot be rejected, suggesting
that the IM is sufficient. However, a 𝑝-value lower than the specified
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threshold signifies that the causal parameter is statistically significant
in establishing the conditional distribution of the EDP. The statistical
significance of the causal parameter makes an IM insufficient because
it implies that the information from the causal parameter is essential in
defining the structural response. Interested readers are referred to the
following literature [2,5] for a more elaborate description of hypothesis
testing and sufficiency.

ln EDP = 𝛽0 + 𝛽1 ⋅ ln IM + 𝛽2 ⋅ 𝑥 + ln(𝜖|IM, 𝑥) (5a)

n(𝜖|IM) = 𝛽0 + 𝛽1 ⋅ 𝑥 + ln(𝜖|IM, 𝑥) (5b)

.2.2. Multivariate GAM-based significance testing
As discussed earlier, the OLS-based sufficiency model disregards

he nonlinear and multivariate relationship between the conditional
tructural response distribution and causal parameters. In GAMs, a
calar IM is derived based on interdependence between various causal
arameters. Thus, to render an IM sufficient, a multivariate relationship
etween the causal parameters should also be considered. The multi-
arget multivariate GAM presented in Eq. (3) can be used to consider
he causal parameters as follows

n𝐄𝐃𝐏|IM = 𝐬𝟏(ln IM) + 𝐬𝟐(ln𝑀) + 𝐬𝟑(ln𝑅) + ln(𝝐|IM,𝑀,𝑅) (6)

where, ln𝐄𝐃𝐏 is a vector of EDPs, 𝐬𝐢(⋅)’s are vectors of non-parametric
smooth functions and ln(𝝐|IM) is the jointly distributed error. Like the
OLS-based significant testing, the sufficiency of an IM is determined
based on the significance of the smooth terms for M and R. The GAM
can be viewed as a non-parametric extension of OLS as it provides
flexibility to consider multivariate EDPs and multivariate causal param-
eters. Eq. (6) is a highly flexible formulation that can be simplified by
only considering one causal parameter at a time. On the other hand, it
can also be modified to account for two-way or three-way interactions
between the IM and the causal parameters as described in Eq. (7)

ln𝐄𝐃𝐏|IM = 𝐬𝟏(ln IM, ln𝑀) + 𝐬𝟐(ln IM, ln𝑅) + ln(𝝐|IM,𝑀,𝑅) (7a)

ln𝐄𝐃𝐏|IM = 𝐬𝟏(ln IM, ln𝑀, ln𝑅) + ln(𝝐|IM,𝑀,𝑅) (7b)

2.2.3. Univariate entropy-based sufficiency
The GAM-based sufficiency measure addresses the need to con-

sider multivariate relationships within and between the EDPs and
causal parameters. It is noted that Kazantzi and Vamvatsikos [11]
proposed dispersion-based metrics that negate subjectivity while stay-
ing within the realm of OLS. The idea is to compare the mean and
maximum dispersion explained by the causal parameters to determine
sufficient IM. This paper uses the Kullback–Leibler divergence (com-
monly known as KL divergence) as an alternative measure to quantify
the degree of sufficiency. KL divergence (equivalently, relative entropy)
has previously been implemented as a measure of sufficiency [12,15].
In particular, Dhulipala et al. [12] used KL divergence to calculate
total information gain by comparing the site-consistent conditional
distribution of an IM with and without including a causal parameter
i.e. 𝑓𝑅 𝑜𝑟 𝑀 (IM |EDP > edp) and 𝑓 (IM |EDP > edp). The conditional
distribution of an IM is computed by applying Bayes rule to the proba-
bility of demand exceedance (𝑃 (EDP > edp|IM)). The transformation of
the probability of demand exceedance into the conditional distribution
of the IM warrants hazard deaggregation. However, since the assumed
context in this study is a site-agnostic regional-based assessment, the
KL divergence can be computed between the conditional distributions
without seismic hazard deaggregation.

Suppose, 𝑃 and 𝑄 are, respectively, the distributions of EDP condi-
tioned on IM with and without the causal parameter (𝑥). Let 𝑝(ln EDP|IM
and 𝑞(ln EDP|IM, 𝑥) be the corresponding densities of 𝑃 and 𝑄. The
causal parameter can be considered one-at-a-time (either M or R) or
all-at-once (M and R). Given the univariate conditional distributions, 𝑃 ,
and 𝑄, the KL divergence is computed using Eq. (8). The KL divergence
effectively becomes a sufficiency measure that quantifies the degree
4

to which an IM can render the conditional distribution of the EDP
independent of the causal parameter.

𝐷KL(𝑃 ∥ 𝑄) = ∫ 𝑝(ln EDP|IM) log
(

𝑝(ln EDP|IM)
𝑞(ln EDP|IM, 𝑥)

)

𝑑 ln EDP (8)

Under the assumption that 𝑃 and 𝑄 are normally distributed, the KL
ivergence formulation in Eq. (8) simplifies to the analytical solution
iven by Eq. (9). For each IM, the KL divergence between the condi-
ional distribution of the EDP with and without the causal parameter
re compared. The IM with the least KL divergence indicates that the
ausal parameters contribute the smallest amount of additional infor-
ation in defining the conditional distribution of the EDP (i.e., 𝑃 ≈ 𝑄)

nd is, hence, deemed the most sufficient.

KL(𝑃 ∥ 𝑄) = log
𝜎𝑄
𝜎𝑃

+
𝜎2𝑃 +

(

𝜇𝑃 − 𝜇𝑄
)2

2𝜎2𝑄
− 1

2
(9)

2.2.4. Multivariate entropy-based sufficiency
The relative entropy-based measure presented in subsection Sec-

tion 2.2.3 is an alternative to the significance testing-based approach
within the univariate EDP space. In this subsection, we present a gener-
alizable method to consider the multivariate conditional distributions
of EDPs with and without causal parameters. Particularly, we compute
the KL divergence between residuals obtained by regressing ln EDP on
n IM (i.e., ln(𝜖|IM) from Eq. (2)) and residuals obtained by regressing
n EDP on ln IM and the causal parameters (i.e., ln(𝜖|IM, 𝑥) from Eq. (5)).
he distribution of the residuals is preferred over the predicted con-
itional distribution of the EDP because the former follows a normal
istribution which validates the use of the analytical KL divergence
ormulation in Eq. (9). The results of the normality tests on the residuals
ave been provided as supplementary material [20].

Another advantage of using residuals is the flexibility to incorporate
ultivariate EDP distributions. Consistent with the FEMA P-58 frame-
ork, the log-transformed SDR and PFA (or equivalently their residuals

rom Eq. (2)) are assumed to follow a multivariate normal distribu-
ion [1]. To compute the KL divergence between two jointly normal
istributions, let 0 ∼  (𝝁0,Σ0) be the joint conditional distribution
f the EDPs without causal parameters and 1 ∼  (𝝁1,Σ1) be the joint
onditional distribution of the same EDPs with the causal parameter.
he generic formulation of KL divergence is simply an extension of
q. (8) but for normally distributed multivariate distributions, there is
closed-form solution as show below

KL(0 ∥ 1)

= 1
2

{

tr
(

Σ−1
1 Σ0

)

− 𝑑 + (𝝁1 − 𝝁0)𝑇Σ−1
1 (𝝁1 − 𝝁0) + log

det
(

Σ1
)

det
(

Σ0
)

}

(10)

where tr() is the trace of a matrix, 𝝁0 and 𝝁1 are the mean vectors, 𝑑 is
the dimension of 0 and 1, Σ0 and Σ1 are the correlation matrices.
For illustration, suppose SDR and PFA are jointly lognormal. The
two multivariate distributions (0,1) then might take the follow-
ing functional forms: 0 ∼  ([𝜇ln𝑆𝐷𝑅|IM, 𝜇ln𝑃𝐹𝐴|IM],Σ0) and 1 ∼
 ([𝜇ln𝑆𝐷𝑅|IM,𝑥, 𝜇ln𝑃𝐹𝐴|IM,𝑥],Σ1). The KL divergence between 0 and
1 quantifies the amount of information gained due to the inclusion
of a causal parameter (𝑥) in 1. Identical to the univariate case, the
IM with minimal KL divergence is regarded as the most sufficient IM.

3. Ground motion records and intensity measures

For the IM evaluation, 826 pairs of site-agnostic ground motion
records from 63 crustal earthquakes recorded by far-field strong motion
stations are used. The records were utilized by Heresi and Miranda
[16] to evaluate IMs for low-rise woodframe buildings at a regional
scale. The authors originally selected 831 record pairs but due to
periodic updates of the PEER NGA-West2 ground motion database [21],

only 826 pairs of records were available for download at the time of



Soil Dynamics and Earthquake Engineering 173 (2023) 108084L. Dahal et al.

ent
this study. The details about the entire suite of records can be found
in Heresi et al. [22]. The 826 ground motion pairs were recorded
between 1942 and 2011 and have a minimum, average, and maximum
moment magnitude of 5.1, 6.8, and 7.9 respectively. Similarly, the suite
of records has a mean Joyner-Boore distance of 77.2 km while the
minimum and maximum distances were 0, and 315.9 km, respectively.
The records correspond to NEHRP site class D with 266.7 m/s average
shear wave velocity. Fig. 8 in Appendix A shows additional ground
motion information such as the pairwise relationship between the
causal parameters and response spectrum of the suite of selected ground
motions.

The unscaled acceleration histories are used to avoid the possibility
of bias being induced due to scaling. Large scale factors have been
found to produce a biased estimation of structural response in short-
period buildings [23,24]. In the PBEE framework, it is customary
to scale ground motions to match pre-specified spectral acceleration
levels. Moreover, IM-based ground motion scaling would likely produce
results that are biased for that specific IM. We acknowledge that the
use of unscaled records also has its limitations (i) ground motions
with higher intensity levels are less common, and (ii) two ends of
IM distribution might be dominated by a highly specific set of causal
parameters. A number of studies [23–25] have explored the idea of
the capped scale factor to minimize bias induced due to amplitude
scaling. The limitations posed by unscaled ground motion are viewed
as a trade-off to minimizing bias.

3.1. Intensity measures

Over the last two decades, a wide range of IMs has been proposed,
from vector IMs to advanced frequency-based IMs [7,16,26–28]. How-
ever, in this study, a total of 10 IMs that range from acceleration-based
to displacement-based are considered. Each ground motion pair consists
of two horizontal time series records (H1 and H2) with their respective
orientation in which the acceleration was recorded. The 50th percentile
rotated spectrum (RotD50) is computed [29] by rotating the spectrum
through 180 degrees and taking the 50th percentile. The details of the
10 IMs are presented as follows:

1. Spectral acceleration (SaT1): The SaT1 represents the maximum
acceleration that a ground motion will cause in a linear oscillator
with a specified period (oftentimes the same fundamental period
as a building) and damping level. An accurate representation
is pseudospectral acceleration which is given by a product of
spectral displacement with the squared natural frequency. As
discussed in Baker and Cornell [30], the difference between
the spectral and pseudospectral acceleration is negligible which
is why the term ‘‘spectral acceleration’’ is used hereafter. The
spectral accelerations for all 826 ground motions are computed
using a Python library that employs the discrete fast Fourier
transformation [31].

2. Peak ground acceleration (PGA): The PGA is a period-independ
measure of the maximum acceleration recorded during an earth-
quake. It is the maximum absolute acceleration from the time
series.

3. Peak ground velocity (PGV): The PGV is the maximum velocity
of an earthquake ground motion. PGV is computed by taking the
first-order integral of an acceleration time series with respect to
time.

4. Cumulative absolute velocity (CAV): The CAV [32] is one of
the frequently studied IMs that is intended to capture the cu-
mulative effects of ground motion shaking. Mathematically, it is
defined as the integral of the absolute value of the acceleration,

∫ 𝑡𝑚𝑎𝑥
5

𝐶𝐴𝑉 = 𝑡0
|𝑎(𝑡)|𝑑𝑡.
5. Average spectral acceleration (Saavg): The Saavg is the geo-
metric mean of the spectral acceleration for a range of peri-
ods [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥] [9,33,34]. Saavg aims to capture ground motion
effects in cases where the structure responds to a range of
frequencies due to period elongation during inelastic response or
multi-modal response. Conceptually, it is an ideal IM for regional
assessment where the fundamental periods of the buildings are
bounded within 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥. It is computed as,

𝑆𝑎𝑎𝑣𝑔(𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥) =

[ 𝑇𝑚𝑎𝑥
∏

𝑡=𝑇𝑚𝑖𝑛

𝑆𝑎(𝑇 = 𝑡)

]

1
𝑁

(11)

where 𝑁 is the total number of periods between equally spaced
values between 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥. The period range is taken as
[0.1𝑇1,𝑚𝑖𝑛, 2𝑇1,𝑚𝑎𝑥] where 𝑇1,𝑚𝑖𝑛 and 𝑇1,𝑚𝑎𝑥 are the minimum and
maximum fundamental periods among 10 archetypes.

6. Spectrum intensity (SI): The SI, also commonly known as re-
sponse spectrum intensity is computed by taking the area under
the velocity spectrum curve between periods 0.1 and 2.5 s [35].
SI was proposed to characterize the response of a broad class
of structures whose fundamental periods are expected to be
between 0.1 and 2.5 s. SI is computed using 𝑆𝐼 = ∫ 2.5

0.1 𝑆𝑉 (𝑇 )𝑑𝑇
where, 𝑆𝑉 (𝑇 ) is the spectral velocity at period, 𝑇 .

7. Acceleration spectrum intensity (ASI): The ASI is conceptu-
ally similar to SI, but it is most widely used as an intensity
measure in stiff structures (e.g., dams) where the first-mode
fundamental period is typically less than 0.5 s [36]. Although
residential woodframe buildings are not stiff by design, ASI, in
principle, would be a very appropriate measure considering the
fundamental period typically ranges from 0.1 to 0.5 s. To the
best of our knowledge, ASI has not been considered in the IM
optimality literature discussed above. It is computed by, 𝐴𝑆𝐼 =
∫ 0.5
0.1 𝑆𝑎(𝑇 )𝑑𝑇

8. Displacement spectrum intensity (DSI): The DSI is a spectral
displacement-based measure that is intended to capture the im-
pact of the long-period content of a ground motion on structural
performance [37]. It is computed as the area under the spectral
displacement curve between periods of 2 and 5 s using 𝐷𝑆𝐼 =
∫ 5
2 𝑆𝐷(𝑇 )𝑑𝑇 where 𝑆𝐷(𝑇 ) is the spectral displacement at period
𝑇 .

9. Significant duration (DS): The DS is a measure of the cumula-
tive energy dissipated by the acceleration time series. The energy
dissipation, also commonly known as Arias Intensity (AI) [38],
is captured by integrating the squared acceleration time series,
i.e., 𝐴𝐼(𝑡) = ∫ 𝑡𝑚𝑎𝑥

0 𝑎(𝑡)2𝑑𝑡. DS defines the time a ground motion
takes to dissipate a pre-specified amount of energy. For instance,
DS5-95 is the time it takes to dissipate 90% of the total energy
(𝐴𝐼(𝑡)∕𝐴𝐼𝑚𝑎𝑥) between 5% and 95% intervals. The two most
widely used duration ranges, DS5-75 and DS5-95 are considered
as IMs.

4. Building description

A total of 10 woodframe building archetypes are used. They were
developed as a part of the FEMA P-2139-2 project [39] to study the
short-period (fundamental period < 0.5 s) wood light-frame building
performance paradox. The paradox was a contradictory seismic col-
lapse performance obtained from numerical simulations that did not
support the actual performance observed during historical earthquakes.
Based on the numerical models, short-period buildings were believed
to have a higher collapse risk than long-period buildings. However,
the observed collapse risk from historical earthquakes was much lower
than what was predicted by structural response simulation. To address
this discrepancy, enhanced numerical models were employed in a bid
to create a realistic representation of the observed performance. The

FEMA P-2139-2 project studied 28 baseline archetypes that comprised
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Table 1
Summary of the basic building information for the set of considered archetypes.

Archetype
ID

No of
stories

Seismic
weight(kips)

Design
level

SDC Cs Plan
dimensions (ft)

Story
height (ft)

SFD1B 1 [51] High Dmax 0.154 32 × 48 10
SFD3B 1 [51] Very high 1.5 × Dmax 0.231 32 × 48 10
SFD2B 2 [53, 70] High Dmax 0.154 32 × 48 10
SFD4B 2 [53, 70] Very high 1.5 × Dmax 0.231 32 × 48 10
MFD1B 1 [141] High Dmax 0.154 48 × 96 10
MFD4B 1 [141] Very high 1.5 × Dmax 0.231 48 × 96 10
MFD2B 2 [182, 144] High Dmax 0.154 48 × 96 10
MFD5B 2 [182, 144] Very high 1.5 × Dmax 0.231 48 × 96 10
MFD3B 4 [237, 237,

237, 149]
High Dmax 0.154 48 × 96 10

MFD6B 4 [237, 237,
237, 149]

Very high 1.5 × Dmax 0.231 48 × 96 10
commercial (COM), single-family dwellings (SFD), and multi-family
dwellings (MFD) with either one, two, or four-story variants.

Table 1 outlines the naming convention and general design informa-
tion about the archetypes. As shown, the 10-building set contains four
SFDs and six MFDs. The buildings are designed for ‘‘High’’ and ‘‘Very
high’’ seismic design levels. The ‘‘High’’ design level corresponds to the
seismic design category (SDC) Dmax with a seismic response coefficient
Cs value of 0.154. It is intended to mimic the seismic demand produced
by MCER-level ground motions in regions with high seismicity. Table 1
contains the complete set of response coefficients, floor layouts, and
story heights of all the archetypes. The interested reader is referred
to the FEMA P-2139-2 document [39] which contains design details
including the graphical renderings of the archetypes.

4.1. Numerical modeling and analysis

Three-dimensional (3D) OpenSees [40] models are constructed for
all 10 archetypes where X- and Z- axes are used to denote the two
horizontal directions. In FEMA P-2139-2, a modified seismic analysis
of woodframe structures (SAWS) [41] hysteresis material model is
used to capture the nonlinear behavior of different components of
the building including the light-frame wood shear wall and nonstruc-
tural partitions. The 10-parameter SAWS material model is limited
in its ability to capture the residual strength and stiffness of the
panels. The residual capacity is one of the key contributing factors in
determining the performance of structures that undergo large deforma-
tions (e.g., woodframe buildings). To overcome these shortcomings, a
versatile 22-parameter Pinching4 hysteresis model is used. Originally
developed to model the highly nonlinear behavior of two-dimensional
beam–column joints [42], the Pinching4 hysteretic model has since
been adopted to model the cyclic degradation of strength and stiffness
in a variety of components such as the cripple wall, light-frame wood
wall, and steel moment frames [43–45].

4.1.1. Pinching4 material parameter calibration
One of the drawbacks of using the Pinching4 model is that the

parameters are not readily available in the literature as compared to
the SAWS parameters. The 22-parameter Pinching4 hysteresis model
is composed of eight backbone and 14 cyclic parameters that can
be calibrated based on either the experimental data or the SAWS
parameters. In this study, the pinching4 parameters for wood shear
walls are calibrated based on the SAWS hysteresis model. The calibra-
tion process involves two distinct steps: backbone curve fit (backbone
parameters calibration) and hysteresis pseudo-energy match (cyclic
parameters calibration). The backbone parameters (e.g., initial stiffness,
peak strength, drift at peak strength, etc.) are simply extracted based
on the backbone curve presented in the FEMA P-2139-2. For cyclic
parameters, two single-degree-of-freedom (SDOF) OpenSees models are
created representing the SAWS and Pinching4 material model, respec-
tively. The SAWS model directly uses the SAWS parameters as reported
in FEMA P-2139-2. The Pinching4 model utilizes eight known backbone
6

parameters and 14 best-guess cyclic parameters which are iterated until
the pseudo-energy matches closely. The models are then subjected to a
quasi-static cyclic loading protocol and the resulting force–deformation
curve is generated as shown in Fig. 2(a). Fig. 2(b) compares the energy
dissipation between the SAWS (red) and Pinching4 (blue) models. The
near-identical curves indicate that the SAWS and calibrated Pinching4
material model are equivalent. In parameter calibration, it is standard
to compare the strength loss only up to 40% strength to declare a
‘‘good fit’’. Interested readers are referred to Welch et al. [43] for a
more thorough description of the calibration process and criteria. Fig. 2
demonstrates the Pinching4 parameter calibration of a wood shear wall
assembly labeled ‘‘OSB-Med’’ in FEMA P-2139-2.

4.2. Nonlinear static analysis

To verify the OpenSees models, Table 2 compares the results from
nonlinear static analysis against the values documented in the FEMA
P-2139-2 report.

As outlined in Table 2, the fundamental periods for all 10 archetypes
are in alignment with the FEMA P-2139 results. On average, the periods
differ by 7% which is expected when two entirely different modeling
software are used (Timber3D in FEMA P-2139 and OpenSees in this
study). Similarly, the normalized base strengths (maximum base shear
normalized by the seismic weight) are comparable with an average dif-
ference of 9%. The ultimate drift capacity (drift at 80% peak strength)
was found to differ by 24% on average. Again, considering the fact
that two different hysteresis models were used to represent the cyclic
strength degradation, a 24% variability is considered acceptable. The
table also reports the displacement ductility demand [46] as a measure
of inelastic deformation experienced by the building under dynamic
excitation. Note that the ductility demand was not computed in the
FEMA P-2139-2 report.

4.3. Nonlinear dynamic analysis

After verifying the nonlinear static analysis results, site-agnostic
NRHAs are performed by subjecting the 3D models to the full suite
of 826 ground motion pairs. Two sets of structural responses are
generated. First, the two horizontal acceleration time series are applied
simultaneously assuming H1 and H2 of the ground motion orientation
correspond to the X- and Z-direction of the model, respectively. Con-
sequently, the second set of responses is obtained by subjecting the
model to orthogonally rotated record pairs. The two sets of orientation-
dependent responses are combined into one by computing the geomet-
ric mean. The output of the NRHA is an orientation-independent EDP
(SDR and PFA) profile along the story height in both the X- and Z-
direction. The EDP profile for a two-story SFD and a four-story MFD
is highlighted in Appendix B. Additionally, the EDP profiles for all

archetypes are also provided as supplementary material [20].
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Fig. 2. (a) Comparison of the cyclic force–displacement behavior computed using the SAWS (CASHEW) and Pinching4 (OpenSEES) hysteretic models; (b) pseudo energy plots
based on the dissipated energy.
Table 2
Comparison of eigenvalue and pushover analysis results between FEMA P-2139-2 and the current study.

Archetype
ID

Fundamental period (sec) Base strength (Vmax/W) Drift @ 80% Vmax/W(%) Ductility
demand

FEMA P-2139 OpenSees FEMA P-2139 OpenSees FEMA P-2139 OpenSees

SFD1B 0.14 0.13 2.10 2.28 3 3.54 0.22
SFD3B 0.13 0.13 2.33 2.53 3 3.52 0.16
SFD2B 0.24 0.22 0.90 1.04 2 1.89 0.26
SFD4B 0.24 0.22 0.95 1.14 2 1.94 0.28
MFD1B 0.18 0.16 1.39 1.51 3 3.08 0.99
MFD4B 0.18 0.16 1.48 1.75 3 3.51 0.69
MFD2B 0.27 0.26 0.70 0.67 1 1.99 1.22
MFD5B 0.27 0.26 0.73 0.72 2 2.21 1.14
MFD3B 0.51 0.49 0.39 0.39 1 1.31 2.28
MFD6B 0.54 0.49 0.44 0.48 1 1.41 1.74
5. Case studies

This section provides a detailed comparative analysis of the var-
ious IM evaluation methods described in Section 2. The analysis is
performed at two levels of granularity. In the first part, the pros and
cons of each method are discussed based on the EDP data from an
individual building. In the second half, results from all 10 archetypes
are aggregated and discussed.

5.1. IM evaluation for a single building

For an in-depth IM evaluation, the four-story MFD (archetype ID:
MFD6B) is chosen. The bi-directional (X- and Z-axis) SDR and PFA
profiles are leveraged to investigate the effectiveness of the 10 IMs
considered.

5.1.1. Investigating the multivariate distribution assumption
The methods detailed in Section 2 rely on foundational assumptions

that the EDPs, IMs, and causal parameters can be modeled by univariate
or multivariate distributions that can be defined by a fixed set of
parameters. The first step in implementing the outlined methods is
validating or equivalently quantifying the degree of invalidity of the
parametric assumptions. This ensures that the probability models are
not misspecified. If they are misspecified, the uncertainty propagated
due to an invalid assumption should be quantified to make accurate
inferences [47]. For the majority of this study, EDPs, IMs, and causal
parameters are assumed to follow a multivariate lognormal distribu-
tion. In statistics, normality tests such as the Kolmogorov–Smirnov
test and Shapiro–Wilk test are widely used to evaluate this type of
hypothesis. However, previous authors have noted that normality tests
for large datasets might be irrelevant [48]. Specifically, the authors
argued that for a moderately large enough dataset (𝑛 > 40), the
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violation of normality would not cause major problems. Conceptually,
it is trivial that for a large sample size, even the slightest deviation
from normality will result in failed normality tests. Considering that
the EDPs, IMs, and causal parameters have some degree of randomness,
they are not empirically expected to follow a perfectly multivariate
lognormal relationship. This can be rationalized by using as a mea-
sure the Kullback–Leibler divergence between the two closest Gaussian
distributions to the actual distributions, rather than the distributions
themselves. Rather, it is appropriate to gauge the relative measure of
dependence between multiple random variables in terms of mutual
information. Mutual information is a measure of information obtained
about one random variable by observing the other. Mutual information
between two random variables, 𝑋 and 𝑌 , is computed as

𝐼(𝑋; 𝑌 ) =𝐷KL
(

𝑃𝑋,𝑌 ∥ 𝑃𝑋 ⊗ 𝑃𝑌
)

=∫𝑌 ∫𝑋
𝑃𝑋,𝑌 (𝑥, 𝑦) log

( 𝑃𝑋,𝑌 (𝑥, 𝑦)
𝑃𝑋 (𝑥)𝑃𝑌 (𝑦)

)

𝑑𝑥𝑑𝑦 (12)

As noted in Eq. (12), mutual information relies on KL divergence
to determine how much the joint distribution (𝑃𝑋,𝑌 ) differs from the
product of two marginal distributions (𝑃𝑋 and 𝑃𝑌 ). When the joint
distribution coincides with the product of the marginals, the mutual in-
formation equals zero, thus, effectively indicating that the two random
variables are independent. It also implies that observing 𝑋 provides
no information about 𝑌 . Mutual information is a non-negative number
and is symmetric (i.e., 𝐼(𝑋; 𝑌 ) = 𝐼(𝑌 ;𝑋)). Fig. 3 presents a heat
map of mutual information between SDRX and PFAX at story 1 of
MFD6B, SaT1, M, and R. The non-zero mutual information across the
board implies the existence of dependence between the respective pairs.
The mutual information, however, cannot be easily interpreted solely
based on its value because it is not a standardized quantity like the
correlation coefficient. To infer a sense of the degree of dependence,
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Fig. 3. Mutual Information between SDR and PFA at floor 1 in X-direction, SaT1,
magnitude, and distance.

self-information can be used as a baseline reference point. In a spe-
cial case where the two random variables follow a bivariate normal
distribution, mutual information has a closed-form relationship to the
correlation coefficient (𝜌), i.e. 𝐼(𝑋, 𝑌 ) = − 1

2 𝑙𝑜𝑔(1 − 𝜌2). A random
variable would be perfectly correlated (𝜌 = 1.0) to itself, but for the
purposes of computation, we will assume a near-perfect correlation
𝜌 = 0.999 because log(0) is undefined. The self-information between two
perfectly correlated random variables equals 3.10 bits. In Fig. 3, the
diagonal terms are expected to be close to 3.10 bits. The off-diagonal
terms can be compared to their respective diagonal term to gauge the
degree of joint relationship. As expected, log-transformed SDRX, PFAX,
and SaT1 share the highest information. Among the causal parameters,
mutual information for R is roughly double compared to M suggesting
that R has relatively stronger mutual dependence with SDRX, PFAX,
and SaT1. It is noted that the conclusion drawn here is valid for the
specific set of considered ground motions and the findings may vary if
the record-set is changed.

5.1.2. Efficiency comparisons
Fig. 4 shows the story-based efficiency profile of all 10 IMs for the

four-story building (MFD6B). Although the figure represents efficiency
profiles, it is obtained by implementing the traditional OLS method. In
other words, the direction-dependent EDPs are individually regressed
on all the IMs. For 16 EDPs (8 SDRs and 8 PFAs) and 10 IMs, the RSEs
obtained from 160 OLS are represented in the plot.

The efficiency profiles for SDR and PFA are nearly symmetrical
in the X- and Z-direction. This is indicative of a similar wall density
along the X- and Z-direction. For SDR, the dispersion profile along the
story height suggests Saavg and SaT1 to be the most efficient IMs. In
predicting PFA along the X-direction, all the acceleration-based IMs
showcase similar predictive ability with Saavg performing slightly better
on average over the height. However, in the Z-direction, the dispersion
is constant over the height and ASI is distinctly the most efficient IM
followed by PGA. It is interesting to note that acceleration, velocity, and
displacement-based intensity measures are roughly grouped together
with the same dispersion profile and progressively higher dispersion
values.

Based on the discussion above, it is challenging to pinpoint a single
‘‘most efficient’’ IM for all the EDPs. Of course, one could take the
average of dispersions, or only consider the maximum EDP instead
of the profile to summarize the results but these approaches have
two shortcomings (1) the summarized data will potentially lose some
information, and (2) it would not be able to account for mutual
dependence. Fig. 5 compares the entropy for each IM obtained by
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implementing a multivariate GAM model that incorporates all 16 EDPs.
When the nonlinear and multivariate relationship is explicitly modeled,
ASI is the most efficient IM. ASI was introduced to study short-period
structures such as dams. It is therefore not surprising that it has the least
uncertainty in estimating the seismic demands of a four-story building
with a first-mode period of 0.49 s. Appropriately, Saavg is more efficient
than SaT1 because Saavg naturally contains more information than an
elastic spectral intensity (SaT1). Similar to Fig. 4, it is apparent in Fig. 5
that acceleration-based IMs are relatively more efficient than velocity-
and displacement-based IMs.

5.1.3. Sufficiency comparisons
As detailed in Section 2.2, sufficiency can be characterized using

either a 𝑝-value or relative entropy. This section provides a detailed
implementation of univariate and multivariate cases for both the tradi-
tional OLS-based and entropy-based methods. Table 3 summarizes the
𝑝-values obtained by regressing the residuals (ln(𝜖|IM)) independently
against the causal parameters per Eq. (5). In total, 32 univariate OLS
models and two 16-dimensional multivariate GAM models are fitted
for each IM of interest. To limit the number of models, Table 3 only
documents the results for SDR and PFA in the X-direction on the fourth
floor. The 𝑝-values for the majority of causal parameter and IM pairs
are well below the 5% threshold, indicating that most of the IMs are not
sufficient in defining the structural response. For both OLS and GAM,
it can be argued that PGA is the most sufficient IM.

To better summarize a large number of possible 𝑝-values in signifi-
cance testing, a sufficiency rate is introduced as an aggregate measure.
The sufficiency rate is defined as the fraction of sufficient cases within
all EDPs against a specific causal parameter. For instance, in Table 3,
SaT1 is sufficient with respect to R in one out of the two possible
OLS models. In this case, the sufficiency rate is 50%. Similarly, the
sufficiency rate for the GAM model is 0% because SaT1 is not sufficient
against any causal parameters. Table 4 lists the sufficiency rates for all
10 IMs. For the univariate OLS, SaT1 is the most sufficient with respect
to M while PGA is the most sufficient for R. On aggregate, PGA appears
to be the most sufficient IM considering all causal parameters, Simi-
larly, for the multivariate GAM (Eq. (6), PGV is the most sufficient with
respect to M while Saavg is the most sufficient for R. On average, PGV
is the most sufficient IM. As noted earlier, the multivariate GAM can
be modified to consider two-way or three-way interactions between the
IM and causal parameters (i.e., Eq. (7)). In Table 4, only the sufficiency
rate from a two-way interaction GAM (Eq. (7a)) is presented because
the sufficiency rate for three-way interactions (Eq. (7b)) is zero for all
cases. The multivariate GAM has a higher overall sufficiency rate for
velocity-based IMs as compared to the OLS-based approach. This could
be because the GAM is designed to account for nonlinear relationships
through the spline function. The alternate GAM, on the other hand,
has higher sufficiency for acceleration-based IMs and is exclusively
sufficient against R. This implies that the two-way interaction between
IM and M is more significant than IM and R.

As highlighted in Table 3, PGA is considered marginally sufficient
(𝑝-value = 0.0467) against M when the GAM model is implemented.
Although, given that the 𝑝-value is less than 5%, it can also be argued
that PGA is marginally insufficient. The judgment would rely on the
researcher’s choice of the level of significance (𝛼). Table 5 compares
the KL divergence (relative entropy) for the univariate and multivariate
cases. In the univariate case, 𝑃 is the distribution of the EDP condi-
tioned on the IM in the form of residuals (ln(𝜖|IM)) while 𝑄 is the
distribution of the EDP conditioned on the IM and a causal parameter 𝑥
(either M or R) in the form of residuals (i.e., ln(𝜖|IM, 𝑥). Concurrently,
0 and 1 are the jointly normal distribution of maximum SDR and
PFA with and without a causal parameter, respectively. For simplifi-
cation, all KL divergence calculations hereafter utilize the maximum
EDPs in each direction instead of the EDP profile. In the univariate
relative entropy, KL divergence for SDR and PFA are added to make
an equivalent comparison with its multivariate counterpart.



Soil Dynamics and Earthquake Engineering 173 (2023) 108084L. Dahal et al.
Fig. 4. Story-level efficiency (𝜎EDP|IM) of SDR and PFA of a four-story multi-family building (MFD6B).
Fig. 5. Multivariate entropy-based efficiency for the four-story multi-family building (MFD6B).
Table 3
Comparison of 𝑝-values obtained from univariate OLS and multivariate GAM models. The residuals, ln(𝜖|IM), are regressed on the causal parameters (M and R) independently.

IM type OLS: SDR GAM: SDR OLS: PFA GAM: PFA

Against M Against R Against M Against R Against M Against R Against M Against R

SaT1 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.69 <0.0001 <0.0001
PGA 0.89 0.86 0.05 0.008 0.17 <0.0001 0.59 0.17
PGV <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Saavg <0.0001 0.34 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CAV <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
SI <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
ASI <0.0001 0.10 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.04
DSI <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
DS5-75 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
DS5-95 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
9
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Table 4
Sufficiency rate (%) based on the number of sufficiency cases for OLS and GAM-based sufficiency checks. The sufficiency rate for the multivariate GAM is computed using Eq. (6)
while the alternate GAM is computed using Eq. (7a).

IM type Univariate OLS Multivariate GAM- Eq. (6) Alternate GAM- Eq. (7a)

Against M Against R Overall Against M Against R Overall Against M Against R Overall

SaT1 31.25 12.5 21.88 12.5 0 6.25 0 0 0
PGA 25 43.75 34.38 12.5 37.5 25 0 37.5 18.75
PGV 0 0 0 93.75 0 43.75 0 0 0
Saavg 18.75 37.5 28.22 12.5 43.75 28.13 0 56.25 28.13
CAV 0 0 0 18.75 0 9.38 0 0 0
SI 0 0 0 81.25 0 40.63 0 0 0
ASI 25 37.5 31.25 18.75 18.75 18.75 0 18.75 9.38
DSI 0 0 0 0 0 0 0 0 0
DS5-75 0 0 0 0 0 0 0 0 0
DS5-95 0 0 0 0 0 0 0 0 0
Table 5
The univariate relative entropy computed based on residuals from the OLS and the multivariate relative entropy computed based on
estimated residuals from the GAM model. The relative entropy is the measure of relative sufficiency. The KL divergence values are
scaled by a factor of 1 × 103.

IM type Univariate Entropy 𝐷KL(𝑃 ∥ 𝑄) Multivariate Entropy 𝐷KL(0 ∥ 1)

Including M Including R Total Including M Including R Total

SaT1 1.58 4.54 6.12 2.88 6.64 9.53
PGA 2.29 3.53 5.81 2.66 4.99 7.65
PGV 5.18 19.9 25.1 6.05 19.7 25.7
Saavg 2.77 1.81 4.58 4.00 2.02 6.01
CAV 31.4 90.3 121 31.8 95.18 127
SI 2.40 13.2 15.6 3.30 13.9 17.3
ASI 3.64 5.04 8.68 3.84 6.68 10.5
DSI 0.47 150 150 1.45 118 119
DS5-75 33.8 199 233 23.9 149 173
DS5-95 16.4 203 220 13.1 152 166
Fig. 6. Average efficiency of (a) SDR (𝜎𝑆𝐷𝑅|IM) and (b) PFA (𝜎𝑃𝐹𝐴|IM) among four SFDs (red) and six MFDs (blue) for all 10 IMs considered.
It can be seen that Saavg typically has the lowest KL divergence
implying that, relatively speaking, it is the most sufficient IM. The
four-story residential building used in this example is known to have
nonlinear behavior controlled by multiple modes [39]. It is not surpris-
ing that Saavg, which encompasses spectral acceleration information for
a range of periods is the most sufficient in rendering the conditional
distribution of EDP independent of the causal parameters. Several
past studies have found Saavg to be sufficient for structures known to
undergo highly nonlinear behavior under dynamic loading [9,13].

5.2. IM evaluation for the complete archetype set

The efficiency and sufficiency results for the 10 archetype wood-
frame buildings are summarized in this section.
10
5.2.1. Efficiency summary

OLS-based efficiency. For the set of 10 archetype woodframe buildings,
the OLS-based dispersion is averaged at two stages. First, the average
dispersion is computed for an individual building (considering all sto-
ries/floor levels and directions) which is then averaged among all the
relevant buildings. Fig. 6(a) shows that SaT1 is the most efficient IM
in estimating SDR because it has the lowest average dispersion among
both the SFD and MFD buildings. In Fig. 6(b), a near identical trend
was observed for PFA where SaT1 was found to be the most efficient
followed by Saavg. It is apparent from Fig. 6 that acceleration-based
IMs (SaT1, PGA, Saavg, and ASI), velocity-based IMs (PGV, CAV, SI),
and displacement-based IMs (DSI, DS5-75, and DS5-95) cluster together
and tend to have progressively higher average dispersion across the
building groups. Recall that a similar pattern was also observed in
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Table 6
Total KL divergence (relative entropy) among EDPs and across causal parameters computed assuming the univariate relationship between EDPs. The KL divergence values are
scaled by a factor of 1 × 103.

Archetype ID Period (T1) SaT1 PGA PGV Saavg CAV SI ASI DSI DS5-75 DS5-95

SFD1B 0.13 3.80 10.9 85.0 34.5 309 61.9 6.26 276 225 235
SFD3B 0.13 2.45 10.7 86.6 34.5 319 62.8 5.81 280 234 243
MFD1B 0.16 8.25 9.44 94.3 30.2 302 72.1 8.30 298 235 245
MFD4B 0.16 11.9 10.9 103 31.9 314 80.1 11.1 318 252 263
SFD2B 0.22 15.5 7.85 90.3 25.0 282 70.1 11.3 294 241 250
SFD4B 0.22 25.9 16.0 107 30.2 294 87.6 21.4 333 280 290
MFD2B 0.26 31.6 14.2 95.5 23.6 293 74.5 21.4 319 300 305
MFD5B 0.26 11.7 5.50 56.4 11.2 207 43.3 7.23 236 252 257
MFD3B 0.49 21.4 14.9 44.8 12.8 183 31.4 21.6 211 290 279
MFD6B 0.49 6.13 5.81 25.0 4.58 122 15.6 8.68 150 233 220
Table 7
Total KL divergence (relative entropy) among EDPs and across causal parameters computed assuming the multivariate relationship between EDPs. The KL divergence values are
scaled by a factor of 1 × 103.

Archetype ID Period (T1) SaT1 PGA PGV Saavg CAV SI ASI DSI DS5-75 DS5-95

SFD1B 0.13 6.35 10.9 62.0 24.8 183 49.8 8.14 179 141 145
SFD3B 0.13 4.15 9.75 57.7 23.0 182 45.3 6.55 169 141 144
MFD1B 0.16 8.70 10.3 66.1 25.3 186 54.6 9.88 193 147 151
MFD4B 0.16 12.4 12.8 73.0 29.0 201 60.8 12.9 208 163 167
SFD2B 0.22 18.4 13.2 76.8 27.6 209 62.8 16.7 226 186 189
SFD4B 0.22 26.4 19.8 87.1 33.4 232 73.2 23.9 247 216 219
MFD2B 0.26 32.2 17.1 79.8 27.0 234 63.8 22.3 240 231 230
MFD5B 0.26 12.6 7.39 43.8 11.5 167 34.2 8.30 160 179 180
MFD3B 0.49 27.8 17.8 47.1 13.5 191 35.2 25.8 178 238 228
MFD6B 0.49 9.53 7.65 25.7 6.01 127 17.3 10.5 119 173 166
Fig. 7. Average joint entropy of SDR and PFA (𝜎𝑆𝐷𝑅,𝑃𝐹𝐴|IM) among four SFDs (orange) and six MFDs (green) for all the IMs.
the individual building assessment discussed in Section 5.1.2. It is also
notable that the average dispersion for SaT1, PGA, and ASI, is lower in
predicting PFA as compared to SDR. On the other hand, the dispersion
of the velocity- and displacement-based IMs is higher in PFA than SDR.

Joint entropy-based efficiency. Fig. 7 displays the average joint entropy
across the four SFDs (in orange) and six MFDs (in green) for each of the
10 IMs. For both categories of buildings, acceleration-based IMs such
as SaT1, PGA, Saavg, and ASI outperform velocity- and displacement-
based IMs. Evidently, SaT1 is the most efficient IM among SFDs while
ASI edges SaT1 by a slight margin to be the most efficient for the MFDs.
This observation conforms to the expected structural behavior of the
archetypes. Meaning, it is reasonable for an elastic, period-dependent
SaT1 to be efficient for highly ductile SFDs that are not expected
to collapse for a relatively large displacement. MFDs, on the other
hand, are moderately ductile and tend to have multi-modal inelastic
responses. Thus, it is plausible to observe ASI, which is an aggregate of
11
SaT1 from 0.1 to 0.5 s, to be the most efficient as compared to SaT1 and
other IMs. This pattern indicates that when the EDPs are assumed to be
multivariate, more complex IMs such as ASI perform better in defining
the demand model for buildings dominated by multiple modes. Recall
that the univariate OLS-based method (Fig. 6) established SaT1 to be the
most efficient for all 10 buildings regardless of the level of ductility of
the building. Interestingly, the trend across different IMs for SFD and
MFD is identical irrespective of the univariate or multivariate assump-
tion. This implies that both the univariate and multivariate approaches
can distinguish the performance of different IMs. This comparison also
suggests that additional studies are needed (especially for other types
of lateral force resisting systems) to further investigate the implications
of the univariate versus multivariate assumption.

5.2.2. Sufficiency summary
As highlighted in Section 2.2, there are various methods for de-

termining if the distribution of an EDP conditioned on the IM is
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Fig. 8. (a) A three-way grid plot showing individual (diagonal) and pairwise (off-diagonals) relationships between three causal parameters, magnitude, distance (Rjb), and shear-wave
velocity (Vs30). (b) Rotated response spectrum (RotD50) of all 826 ground motion pairs (in gray) and the median of all the records (in red).
independent of the causal parameters. The merits of each method have
been previously discussed at length. For the complete archetype set
assessment, univariate and multivariate relative entropy-based methods
are presented.

Univariate relative entropy. Table 6 summarizes the KL divergence be-
tween the univariate conditional EDP distribution with and without
causal parameters. Each value is the sum of KL divergence between all
12
the causal parameters and EDPs. For instance, the values for MFD6B
are the same as the total value presented in Table 5. The least relative
entropy in each row is highlighted in bold font thus indicating the
most sufficient IM. It is seen that the sufficiency trend is a function
of the building’s fundamental period and/or the displacement duc-
tility demand. SaT1 is sufficient for one-story buildings while PGA
is sufficient for two-story buildings. In both the one- and two-story
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Fig. 9. (a) EDP profile of a two-story archetype (SFD2B) and (b) EDP profile of a four-story archetype (MFD3B).
buildings, ASI is the second most sufficient IM. The one- and two-story
buildings have first-mode fundamental periods less than 0.26 s and
an average displacement ductility demand of 0.62. To this end, it is
logical that IMs such as SaT1, PGA, and ASI are sufficient in general.
However, for the four-story buildings that undergo highly nonlinear
behavior and are also subjected to higher mode responses, Saavg is the
most sufficient IM. Among the archetypes, the four-story buildings (on
average) have a ductility demand of 2.01 which indicates that they
experience the much higher inelastic deformations compared to their
one- and two-story counterparts. This result highlights the ability of
Saavg to capture ground motion effects on a structure that responds to
a range of frequencies due to period elongation and/or higher mode
effects.

Multivariate relative entropy. Table 7 shows the KL divergence when
the max SDR and PFA are assumed to follow a bivariate lognormal
distribution. Each value represents the total KL divergence for all causal
parameters. For instance, the values for archetype MFD6B are the same
as the total value previously presented in Table 5. The sufficiency
trend is more distinct as compared to Table 6. Under the bivariate
assumption, SaT1, PGA, and ASI appear to be the most sufficient for
the one-story and two-story buildings while Saavg is the most sufficient
for the four-story buildings.

6. Conclusions

This paper presented a comparative assessment of alternative meth-
ods for evaluating and selecting the most appropriate ground motion
13
intensity measure (IM) for nonlinear response history analyses. Specif-
ically, efficiency and sufficiency are discussed as the two primary
evaluation metrics. Historically, univariate linear regression (OLS) has
been used for both types of evaluations, which disregards the non-
linear multivariate relationships between the engineering demand pa-
rameters (EDPs), IMs, and causal parameters. Recently, entropy-based
measures have been proposed that address the limitations of the OLS-
based methods but the relevant studies still relied on the univariate
assumption.

In this study, the currently available univariate OLS-based methods
are expanded to explicitly consider the multivariate distribution of
EDPs. In particular, a multi-target generalized additive model (GAM) is
proposed as an alternative to the OLS approach. The GAM appropriately
captures the complex relationship within a given EDP (i.e., the response
along the building height in the two orthogonal directions), between
EDPs (e.g., story drift ratio (SDR) and peak floor acceleration (PFA)),
and between the IM and EDPs. The GAM is implemented to compute the
joint entropy as an alternative measure of efficiency and the 𝑝-value of
the spline function as a measure of sufficiency. The EDP data generated
from 10 woodframe buildings using a site-agnostic set of 826 pairs of
ground motion records is leveraged to evaluate 10 different IMs. The
results from both the univariate OLS and multivariate GAM suggest that
SaT1 and acceleration spectrum intensity (ASI) are the most efficient
IMs across all building types. Also, for all IMs, greater efficiency was
obtained for the single-family dwellings (SFDs) compared to the multi-
family residences. The higher ductility demands in the multi-family
dwellings (MFDs) was used to explain this result.
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A comparative analysis between the existing and proposed relative
entropy-based sufficiency methods is also performed using the set of
aforementioned building archetypes and IMs. In the univariate case,
SaT1 appeared to be the most sufficient for all but one of the 1-story
buildings, whereas, peak ground acceleration (PGA) and Saavg were
found to be the most sufficient for the 2- and 4-story buildings, respec-
tively. In the multivariate case, the sufficiency trend was even more
distinguished such that SaT1 was found to be the most sufficient for
all 1-story buildings, PGA the most sufficient for all 2-story buildings,
and Saavg the most sufficient for all four-story buildings. Overall, it
is seen that Saavg is sufficient for structures that respond to a range
of frequencies whereas SaT1, PGA, and ASI are sufficient for shorter
buildings with a fundamental period less than 0.26 s.

The results from this study suggest that capturing the multivariate
EDP distribution in IM evaluations has non-negligible implications,
especially for multi-story woodframe buildings. However, both the
univariate and multivariate methods demonstrated that a single univer-
sally optimal IM likely does not exist for a set of building archetypes.
Rather, there was clear evidence that the efficacy of an IM is a function
of the level of nonlinearity (or ductility demand) in the response of
the structure. To facilitate future applications of the various evaluation
methods, the source code developed as a part of this research work is
made publicly available in a GitHub Repository [20]. The repository
includes code for the GAM- and univariate OLS-based approaches.

While the alternative methods presented thus far are sound ap-
proaches to evaluating the effectiveness of an IM, there are several
limitations. Ground motion models often utilize a host of causal pa-
rameters such as soil type, fault type, and shear-wave velocity, which
were not considered in this study. There is an opportunity for future IM
evaluation studies to investigate these often-ignored causal parameters.
The current study used a suite of unscaled ground motion records to
negate the possibility of bias being induced due to amplitude scaling.
However, it is noted that the use of unscaled records comes with its
own challenges as the two extreme ends of the IM distribution could
be dominated by a very specific set of causal parameters (low M and
large R in low-intensity IMs, and high M and low R in high-intensity
IMs). Finally, most of the alternative methods rely on the assumption
that the EDPs, IMs and causal parameters for a theoretical multivariate
distribution (usually lognormal) that should be further investigated for
different classes of structures.
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Appendix A. Ground motion information

See Fig. 8.
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Appendix B. Engineering demand parameters

Fig. 9 highlights the EDP profiles along the building height for
a two-story single-family dwelling (Fig. 9(a)) and a four-story multi-
family dwelling (Fig. 9(b)). The figures show the peak story drift
ratio and peak floor acceleration in the X-direction experienced by the
archetypes when subjected to 826 pairs of ground motion records. It
can be seen that the four-story archetype experiences higher story drift
ratio as compared to its two-story counterpart.
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