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In this volume, we have seen several compelling reasons for the statistical analysis
of network data.

1. Find statistical regularities in an observed set of relationships between ob-
jects. For example, what kinds of patterns are there in the friendships be-
tween co-workers?

2. Understand and make predictions about the specific behavior of certain ac-
tors in a domain. For example, who is Jane likely to be friends with given
the friendships we know about?

3. Make predictions about a new actor, having observed other actors and their
relationships. For example, when someone new moves to town, what can we
predict about his or her relationships to others?

4. Use network data to make predictions about an actor-specific variable. For
example, can we predict the functions of a set of proteins given only the
protein-protein interaction data?

All of the analysis techniques proposed here are model-based: one defines an
underlying joint probability distribution on graphs and considers the observed
relationship data under that distribution. Loosely—and this will be a point of
discussion among the panelists—the models can be divided into those that are
“descriptive” or “discriminative” and those that are “generative.”

A descriptive graph model is one where the number of nodes in the observed
graph or graphs is held fixed and the joint distribution is defined over the edges
of that fixed set. The influential exponential random graph model is a general
formulation of a descriptive graph model [1,2]. In this framework, the distribution
of the entire graph structure is an exponential family with sufficient statistics
that are aggregates of the entire graph, e.g., the number of triangles.

In a generative graph model, there is a clear probabilistic mechanism for
expanding the graph to new nodes and new edges. The paper by Goldenberg
and Zheng is a full generative graph model: the joint distribution is built around
the notion of new actors and new connections between existing actors. There is
still a joint distribution over the observed graphs. However, the probability of
a new node is well-defined and the probability of a new edge can be computed
without recalibrating the distribution.

There is ample room for middle ground between these categories. Several
papers define hierarchical models based on the latent space approach [3]. These
models are generative in the sense that new edges are conditionally independent
of the others and have a well-defined probabilistic generative process. But they
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Flight AA #11 − Crashed into WTC North

Flight UA #175 − Crashed into WTC South

Flight UA #93 − Crashed in Pennsylvania

Flight AA #77 − Crashed into Pentagon

Others

Fig. 1. 9-11 Hijacker/Terrorist Network. Source: [4].

are somehow not “as generative” as Goldenberg and Zheng’s model, where the
evolution of the social network is part of the fabric of the generative process.

This distinction was only one of the issues addressed in the workshop that
accompanied this volume. As in any kind of data analysis, the tools required
depend on the job at hand. We saw work on modeling sequential observations
from social networks, modeling multiple data types such as citations and text,
fitting graphs organized into hierarchies, and developing new statistics for the
exponential random graph model.

Many of these tools were presented for the first time at the workshop. In this
panel discussion, we have asked some of our distinguished participants to reflect
on the contents and offer a comparative perspective.

Stephen E. Fienberg
Carnegie Mellon University
Pittsburgh, PA 15213, USA
fienberg@stat.cmu.edu

The papers at this workshop when taken together capture many fascinating as-
pects of network modeling. Prodded by some earlier discussion, I thought it would
be useful to begin by reminding us about the two different kinds of graphical rep-
resentations of the traditional n×p data array for n individuals or units by p vari-
ables. Graphical models [5] are used to represent relationships among the variables
in terms of independence relationships. Graphical representations for networks
are used to represent relationships among the units, and it is precisely because



188 D.M. Blei

we don’t have conditional independences in the usual dyadic models that things
are somewhat complex. Our goal in this workshop has been to both focus on the
latter kind of network models and to show how to link them in different ways to
probabilistic/statistical models for the variables, either through representations
of covariate information (see the paper here by Handcock) or or via mixed mem-
bership models (see the papers here by Airoldi et al. and by McCallum et al.).

As others have already noted, we have seen two different types of network
models—generative (or what Shalizi et al. call agent-based in their paper) and
descriptive. In the latter, which includes the class of p∗ models described here
by Wasserman et al., we identify motifs such as triads or stars and then build
models that use them as primary data summaries, e.g., sufficient statistics. When
we focus on the evolution of networks we can often be blending the two types
of models although they can still be purely descriptive, c.f. the paper here by
Henneke and Xing. An interesting question we have raised is whether the latent
space models of [3] are descriptive or generative. At one level they appear to be
descriptive but they are quite similar in other ways to the mixed membership
stochastic block models in the papers by Airoldi et al. and by McCallum et al.,
which are generative in nature see also [6] and the discussion that follows it.

One issue on which we have not dwelled but which is implicit in the discus-
sions of the distinction between the models is the nature of the data at hand.
When we ask what are the data and where do they come from we are really
asking a generative question which frames the nature of the models we should
be considering. Consider the reported “network” demonstrating the links among
the 9/11 hijackers that the press and administration officials are so fond of de-
scribing. Figure 1 shows perhaps the most carefully constructed version of it due
to [4] What types of linkages do the edges in the graph represent, i.e., to what
variables do they correspond? Was the graph constructed to assure that there are
paths linking the hijackers to one another? The network picture shows linkages
to others beyond the 9/11 hijackers with Arabic names. Are these individuals to
be considered hijacker accomplices or confederates? What about others to who
linkages could have been made beyond the horizon of observability from each
other? After all, many hijackers on the same flight were more than 2 steps away
from each other. Finally, real linkages in a terrorist network are dynamic but
Figure 1 represents data collapsed over time.

Let me end by summarizing what I see as three major statistical modeling
challenges in the analysis of network data. These relate to both the quality and
the ease of inference:

Computability. Can we do computations exactly for large networks, e.g., by
full MCMC methods, or do we need to resort to approximations such as those
involved in the variational approximation such as in the paper by Airoldi et al.?

Asymptotics. The is no standard asymptotics for networks, e.g., as n goes to
infinity, which can be used to assess goodness of fit of models. Thus we may have
serious problems with variance estimates for parameters and with confidence or
posterior interval estimates. The problem here is the inherent dependence of
network data.
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Embeddibility. Do our data represent the entire network or are they based on
only a subnetwork or subgraph, as in Figure 1? When the data come from a
subgraph we need to worry about boundary effects and the the attendant bias
they bring to parameter estimates. The one result I know in this area is due
to [7] for scale-free models in which they show the extent and nature of the bias.
My suspicion is that there are similar issues for most of the models discussed at
this workshop and we need to explore the consequences of these.

Andrew McCallum
University of Massachusetts

Amherst, MA 01003
mccallum@cs.umass.edu

Task-Focussed Social Network Analysis

I am a relative newcomer to social network analysis. Although I have been
doing some research in SNA for the past few years, most of my research over
the past decade has been in natural language processing. With this “outsider’s
perspective,” I’d like to offer a couple of thoughts about possible fruitful future
directions for SNA.

First, I encourage work in discriminatively-trained social network models.
Many of the recently-proposed models in my local sub-area of SNA are gener-

ative directed graphical models. These include various mixed-membership “topic
models” and related models, such as author-topic [8], author-recipient-topic [9],
role-author-recipient-topic [10], group-topic [11], infinite-relational [12], entity-
topic [13], relational mixed membership [14], and community-user-topic [15].
Other generative models are mentioned by the other panelists.

Although research NLP was dominated by generative models (such as hidden
Markov models and probabilistic context free grammars) for decades, the past
five years have seen a much stronger emphasis on “discriminative” conditional-
probability-trained models, such as logistic regression, maximum entropy models
and conditional random fields. Here model parameters are estimated by max-
imizing the conditional probability of some output variables given some input
context. Because the model is not responsible for generating the input context,
we need not be concerned about violated independence assumptions among the
input variables, and we are free to use rich, expressive sets of overlapping in-
put features. In NLP, the move from generative models to discriminative models
typically yields significant gains in accuracy.

Like in natural language, social network data sets are often rich in context,
multiple modalities, and other non-independent variables that would benefit
from a discriminative approach. We have begun research toward “conditionally-
trained topic models” with our work on multi-conditional learning, and in par-
ticular multi-conditional mixture models [16].

Second, in a related point, I encourage emphasis on particular tasks.
Much past work in SNA approaches the problem as a scientist—we observe

some natural phenomenon, and attempt to build models that capture them.
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These include foundational work in descriptive graph properties, generative mod-
els of graphs, etc. It is also interesting (and sometimes more useful) to approach
a domain as an engineer—asking “What is the real task we are trying to solve?”
“What is the use-case?” “What is the decision problem?”

There are, of course, many important use-cases for social network analysis:
deciding who to promote, finding an expert, selecting the right actions to improve
(or harm) an organization, identifying likely illicit behavior, selecting the best
collaborator, finding new music I’m likely to enjoy, predicting which team will
get the job done best.

Scientifically descriptive models may have something to say about these tasks,
but discriminative SNA models could focus on tuning their parameters for best
accuracy on these particular tasks. As interest in SNA expands, I predict that
there will be more research on models designed to address particular tasks.

Cosma Rohilla Shalizi
Carnegie Mellon University
Pittsburgh, PA 15213, USA

cshalizi@cmu.edu

Looking back over the papers presented at this workshop, I am struck by two
cross-cutting contrasts, which I want to explore a little here. The first contrast is
between models of phenomena and models of mechanisms, which doesn’t quite,
I think, map on to Prof. Fienberg’s contrast between descriptive and generative
models. The other contrast is between small networks which we know in rich
contextual depth, and big networks where our knowledge is shallow and impov-
erished. Before elaborating on our divisions, however, I would like to say a few
words about what we all seem to have in common. As the token representative
of statistical physics on the panel, I will be deliberately provocative and say that
what unites us is a devotion to the ideals of statistical mechanics.

Of course, of the participants at the workshop, only Dr. Clauset and myself
were even arguably statistical physicists — and really he’s a computer scien-
tist and I’m a statistician. But the goal of statistical mechanics is to explain
large-scale, macroscopic phenomena as the aggregated result of small-scale, mi-
croscopic behavior, as the result of interactions among individuals in contexts
which themselves result from small-scale interactions among individuals. Global
patterns should derive from local interactions. And this, I think, is something
we would all be comfortable endorsing. Certainly when I heard Prof. Krackhardt
explain that social networks matter because they show the contextual determi-
nants of behavior, or when I saw Prof. Handcock check his ERGMs by seeing
whether they could go from homophily and transitivity (local interactions) to
the distribution of geodesic distances (a global pattern), my inner statistical
mechanic felt right at home.1 So, I’d claim that we’re united by wanting to
understand context and interaction, and how these lead to global patterns.

1 To be sure, an inner economist, or an inner evolutionary biologist, would also have
felt at home.
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The first contrast, then, concerns how we do this. Once we have commit-
ted ourselves to generating the macroscopic patterns, we still need to decide
whether we do this by modeling the mechanisms of action and interaction, and
hope we get them right, or by modeling the consequences of interactions, and
hope the details don’t matter. The former leads to mechanistic models, the latter
to what physicists call “phenomenological” ones. Take, for example, homophily.
The model presented by Goldenberg and Zheng, for instance, is a mechanistic
model, with a fairly detailed representation of the process by which people come
to form social bonds, one consequence of which is homophily.2 We also had phe-
nomenological models of homophily, including both the ERGMs of Handcock
and Morris, and the dynamic latent space model of Sarkar, Siddiqi and Gordon.
Random walks in social space are obviously unrealistic, but may well be a good
first approximation to reality; the ERGMs are simply silent about the dynamical
processes by which networks form3. I want to have that a mechanistic under-
standing of the systems I study, so I find phenomenological models, as such,
less than fully satisfying. But I recognize that there are very good reasons to
use them, not the least of which is that they are much easier to get right. If
Handcock and Morris want to measure the strength of homophily relative to
transitivity, their problem is comparatively straightforward: estimate some pa-
rameters — with sufficient statistics, no less. If Goldenberg and Zheng want
to make the same measurement for their model, the inferential problems are
much more complicated, because their model includes mechanisms and not just
phenomena.

The contrast between mechanistic and phenomenological models, then, seems
to run through almost all the contributions here. But there is no reason we
cannot have both sorts of models, or why we should think they contradict each
other. In fact, I think this contrast is potentially productive of new research,
since there should be ways of systematically deriving phenomenological models
from mechanistic ones, and conversely of using well-estimated phenomenological
models to constrain guesses about mechanisms.

I turn now to the second contrast, which is not between models of networks,
but the networks themselves, or at least our representations of them. In small
networks, like the karate club, or even the Colorado Springs sex-and-drugs net-
work, we have, if not necessarily “thick descriptions” in the ethnographic sense,
at any rate deep ones. We know a reasonable amount about each of the nodes,
and sometimes (as in the karate club) can tell a story about each of the edges.
We have, in other words, a lot of context, which is what we want. But, precisely
because there is some much detail, it can be difficult, at a qualitative level, to
distinguish an analytical narrative from a mere just-so story. If we then turn
to quantitative models (which, as mathematical scientists, we’re inclined to do

2 In fact, they have what people in complex systems would call an “agent-based
model”. So far as I know, they are the only people to combine such a model with
proper inference.

3 The interesting paper by Hanneke and Xing adds dynamical detail to ERGMs, but
makes no mechanistic commitments.
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anyway), the small size of the network severely limits our ability to discriminate
among models; the maximum attainable power is low.

Of course, we are no longer limited to small networks like the karate club;
some of the graphs we saw presented at the workshop, like the PGP keyring
network, had several million nodes, making them about five orders of magnitude
larger than the karate club. This is exciting in its own right, because hitherto
we have had almost no information about the fine-grained social organization of
large populations. And certainly we no longer have much difficulty statistically
distinguishing the predictions of different models! Dealing with this volume of
strongly-dependent data does raise interesting technical problems; for instance,
it’s not obvious that models developed on small- and medium- sized networks
can scale up, either computationally or descriptively, to such large networks. But
beyond those technical problems, there is what seems like an intrinsic difficulty,
which is that our knowledge of these large networks is shallow. It is simply not
possible to have richly detailed information on all of the nodes, never mind all
of the edges. When we look at any network with a few hundred thousand nodes,
we are always going to be ignoring a huge amount of context about the nodes
and their interactions. This isn’t just a problem for social networks, but would
also apply to, say, gene-regulatory networks.

So, opening up the divide between small networks and large, we find it contains
a dilemma. Either we can possess the rich contextual detail we are interested in,
or we can have enough data to severely test our models. Perhaps some clever
methodology can cut a path through this dilemma; I myself don’t see how.

Mark S. Handcock
Department of Statistics
University of Washington

Seattle, WA 98195-4322 USA
handcock@stat.washington.edu

The development of exponential family random graph models (ERGM) for
networks has been limited by three interrelated factors: the complexity of realistic
models, dearth of informative simulation studies, and a poor understanding of
the properties of inferential methods.

The ERGM framework has connections to a broad array of literatures in
many fields, and I emphasize its links to spatial statistics, statistical exponential
families, log-linear models, and statistical physics.

Historically, exploration of the properties of these models has been limited
by three factors. First, the complexity of realistic models has limited the insight
that can be obtained using analytical methods. Second, statistical methods for
stochastic simulation from general random graph models have only recently been
become available [17,18,19]. Because of this, the properties of general models
have not been explored in depth though simulation studies. Third, the properties
of statistical methods for estimating model parameters based on observed net-
works have been poorly understood. The models and parameter values rele-
vant to real networks is therefore largely unknown. Significant progress is now
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being made in each of these areas. However, despite their elegance and pedigree,
the ERGM framework have yet to prove their value in addressing real scientific
questions of interest. They have the tendency to produce degenerate behavior
as a result of their maximum entropy properties [20]. This hinders simple model
specification. The papers presented at the workshop illustrated many alternative
approaches that may prove more fruitful.

The discussion of “generative” verses “descriptive” models was dialectic in
nature. The exponential random graph models can be clearly be interpreted as
descriptive. However, if we take the term generative to mean the ability to simu-
late network structures with given structural properties, they are also generative.
If by generative is meant dynamic changing edges and structures then the pa-
per of Steve Hanneke and Eric Xing illustrated how this can be achieved within
the ERGM framework. If a probabilistic mechanism for adding additional nodes
temporally is an regarded as an essential characteristic of a generative model
then the published work on ERGM models does not meet this criterion. Note,
however, that this is well within the capabilities of exponential family models.
The model of Goldenberg and Zheng has a more directly generative mechanism
and may be preferred for this reason.

The latent space framework invented by [3], and expanded by others at the
workshop was originally descriptive in nature. However, variants of it can have
a generative flavor (e.g., hierarchically adding a Gaussian mixture model for the
positions).

As noted in the discussion, there are many challenges facing statistical net-
work modeling. I believe the more traditional ones: inference from sampled data
rather than a census, the development of statistical testing procedures, and their
associated computational issues, will be overcome. The fundamental challenge is
adapting the choice of models to the scientific objectives. Network phenomena
are complex and the models must choose the specific features to be represented
well while being ambivalent about the others.

Let me end by noting the success of this workshop in bringing together statis-
tical network modeling researchers from distinct disciplines and scientific frame-
works. The disciplines have much to communicate to each other especially where
their scientific goals overlap. In the few cases were such researchers are brought
together to speak, there has been little cross-disciplinary listening going on.
This workshop was able to overcome that barrier so that researchers with back-
grounds in SNA, physics, computer science or statistics were listened to. This
success owes much to the principal organizers.
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