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ABSTRACT
We present our experience integrating large language models
(LLMs) and simulation engines to enhance spatially-disaggregated
simulation, taking advantage of the spatial knowledge and spa-
tial reasoning capabilities of LLMs. The examples illustrate LLM
integration with different variations of compartmental epidemio-
logical models, including agent-based models (ABM) in the context
of modeling COVID-19 infection spread in a school setting, and
LLM integration with a system dynamics model which supports
a serious game focused on strategies for responding to disease
outbreaks at the county level. We present the architecture of the
integrated LLM-simulation system, demonstrate the initial results,
and discuss the challenges of the current approach, related to LLM’s
understanding of spatial information and spatial relationships, their
reasoning capabilities, and model performance and scalability.
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1 INTRODUCTION
The goal of this study is to improve strategies and assess human
responses to public health interventions during emergencies, such
as the COVID-19 pandemic. These responses are influenced by a
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variety of local factors and individual characteristics, making them
difficult to accurately represent in formal models. In epidemiology,
the spread of disease is commonly viewed as a spatial process, as
the transmission of infectious diseases largely relies on the spatial
arrangement and interactions among individuals or populations.
This includes modeling both direct (person-to-person contact) and
indirect (e.g., via a shared environment with a high viral load) spa-
tial interactions, tracing and forecasting infection pathways, and
devising health interventions, which often necessitates data on
geographic locations, the distances between individuals and popu-
lations, and their movement patterns. To map disease transmission,
agent-based models (ABM) and metapopulation models (e.g., [1],
[2], [3]) explicitly incorporate spatial interactions at the level of
individuals or subpopulations in different locations, respectively.
The SEIR model, a prevalent compartmental epidemiological model,
categorizes the population into Susceptible (S), Exposed (E), Infec-
tious (I), and Recovered (R) compartments and describes the flow
of individuals through these compartments over time, influenced
by transmission rates, incubation periods, and recovery rates [4].
In this study, we examine models that merge SEIR methodologies
with both ABM and metapopulation models, resulting in spatially-
aware compartmental ABMs and spatially-disaggregated system
dynamics (SD) models for tracking disease spread.

Implementing such models and simulating effective public health
strategies requires extensive local data and an understanding of
spatial configurations andmovements. Trained on vast text corpora,
large language models (LLMs) can potentially offer the necessary
spatial intelligence and refine these simulations by adapting to local
conditions already recognized by the models. This paper outlines
our initial efforts to integrate LLMs with ABM and SD SEIR models,
aiming to create more realistic and location-sensitive simulations
without the need for explicitly programmed spatial information. In
addition, we aim to investigate the types and volumes of additional
local demographic and socio-economic data, along with patterns of
spatial relationships, which could further enhance LLMs for spatial
decision-making. We also seek to develop a modular modeling
framework that combines LLMswith traditional simulation engines,
capitalizing on the strengths of each to allow for their independent
update and calibrationwhile ensuring their interoperability through
an API. The next section describes prior work and our methodology
for augmenting simulations with LLMs. It is followed by a summary
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of findings with respect to LLM capabilities to enhance simulations
and concludes with future directions.

2 METHODOLOGY
The rapid advancement of Large Language Models (LLMs) has sig-
nificantly expanded their capabilities, yet their spatial analysis and
reasoning abilities are not fully understood. Recent research ex-
amined a range of pre-trained LLMs, including testing geospatial
skills of ChatGPT in terms of basic concepts of spatial analysis,
mapping and spatial data management [5] and qualitative spatial
reasoning [6], and comparing performance of several models on
prompts involving understanding of geospatial predicates [7]. The
Llama-2 LLM learns basic linear representations of space and time,
as shown in [8]; while [9], [10], [11] demonstrated that LLMs can
capture spatial structure and spatial relationships given various
types of geospatial location embeddings, and [12] described LLM’s
potential in assisting with the generation of SQL code for query-
ing spatial databases. Despite these advancements, each study
underscored the need for further improvement in LLMs’ spatial
reasoning capabilities and raised additional research questions for
future work.

Building on the pioneering work that introduced generative
agents [13], subsequent studies explored the concept of adding
information about agent personas to refine agent-based models,
resulting in what are known as Generative ABMs (GABMs) [14],
[15], [16], [17]. This approach has been applied to various fields,
including epidemiology [18]. The studies also documented chal-
lenges in performance and scalability, as the models were limited
to managing only a small number of generative agents.

In the realm of System Dynamics (SD) models, while LLMs have
been employed to aid in the construction and evaluation of simula-
tion models [19], their use has not extended to enhancing simula-
tions through interactive engagement between a simulation engine
and an LLM at regular time steps, to our knowledge.

In our work, we have integrated LLMs with both spatially-aware
ABM and SDmodels. The two examples presented below extend our
earlier and ongoing modeling work on disease outbreak prediction
and prevention, primarily using COVID-19 infection data for the
County of San Diego. In each case, the LLM serves to augment an
existing model by examining simulation outputs at selected steps
and adjusting the weights of different spatial preferences based
on key infection characteristics (as computed by the simulation
engine) and local knowledge (as retrieved from LLM).

2.1 The ABMmodel of infection transmission in
schools

This first case is an ABM developed to forecast the impacts of phar-
maceutical and non-pharmaceutical interventions on the spread of
COVID-19 in an elementary school setting [20], [21]. The model
describes the dynamics of infection among students and school
staff, who were categorized into several states: susceptible, ex-
posed, infected symptomatic, infected asymptomatic, and removed
from school/isolated. Importantly, the model included spatial infor-
mation about classrooms and other school areas (including school
buses), characterized by their viral loads, ventilation quality, and

Figure 1: Mainmodules in the SDmodel underlying the series
game focused on community resilience to disease outbreaks.

spatial layouts. It simulated regular school operations over a two-
week period, mirroring common school activities and using school
floor plans from the San Diego Unified School District. These activ-
ities, including studying at desks, classroom group projects, lunch,
and recess in the school yard, were associated with specific move-
ment patterns, which influence the likelihood of close contacts
with an infected person, based on spatial proximity and duration.
Also, an agent’s change to an exposed or infected status could be
triggered by agent’s location within a given space (room) with ele-
vated viral load. The model proved its effectiveness in assessing the
efficacy of various intervention strategies, such as mask mandates,
staggered attendance schedules, designated seating arrangements
on buses, adjustments to HVAC settings, relocating lunch spaces,
and increasing testing frequency — on reducing infection rates
under different viral strains and local conditions.

Implemented using the MESA and MESA-GEO Python libraries
[22], the model integrates ABM simulation with Geographic Infor-
mation System (GIS) capabilities. To enrich the simulation with
advanced decision-making and social interaction dynamics, we in-
terfaced the model with pre-trained LLMs like OpenAI’s ChatGPT
3.5 and Anthropic’s Claude 2, as well as with a local LLM developed
using the Flan-Alpaca framework [23]. The refined model incorpo-
rates detailed agent personas, detailing their mobility and social
preferences. For instance, it characterizes students by their likeli-
hood to play outside or spend time with friends. These personas
maintain unique narratives, which the LLM utilizes to simulate
agent actions. The model considers several characteristics includ-
ing the agent’s location, identity and health status of surrounding
agents, and the physical and environmental attributes of the room
itself. The duration and intensity of social interactions for each
agent’s behavior are then used to simulate the health status of each
agent at subsequent time steps. Decoupling LLM from the ABM
allowed us to explore how different models enable dynamic and
context-sensitive generation of agent actions based on the unique
personas and situational variables.

2.2 The system dynamics model underlying
serious games on responding to disease
outbreaks.

The second model is a System Dynamics (SD) model used within
an experimental serious game framework,
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Figure 2: The overall architecture of LLM integration with
simulation systems

designed to aimed at enhancing response strategies to infectious
disease outbreaks in regions such as San Diego County [24]. The
serious game was designed to foster community resilience to dis-
ease outbreaks by enhancing individual capacities in governance
and security, essential services, healthcare, sensing, surveillance,
vaccine development, and combating misinformation. These capac-
ities, including financial, human and social capacities, represent
the main stocks in the model (Figure 1). Participants in the game
could select from a range of intervention strategies based on rec-
ommendations from authoritative bodies such as [25], or to devise
their own strategies. The strategies included investments in detec-
tion systems (public health surveillance, contact tracing, laboratory
testing), community mitigation measures (public health messaging,
social media, and law enforcementmeasures), medical interventions
(working with hospitals, vaccine manufacturers, and pharmaceuti-
cal companies), improvements in healthcare system preparedness
(such as managing hospital surge capacity), and investments into
scientific infrastructure. To evaluate the effectiveness of the sug-
gested strategies and their combinations, game judges translated
them to scenario parameters and ran the simulations using a system
dynamics model implemented using the Stella software platform.
This model allowed players to explore trajectories and long-term
outcomes of their strategic decisions, providing insights into the
potential impacts of various interventions on community resilience
and outbreak management.

The diversity within a population, variations in community char-
acteristics, differing healthcare capacities, and other variables make
it difficult to quantify the model, accurately assess resilience, and
compare the effectiveness of various response strategies across a re-
gion as large and varied as San Diego County. To accommodate the
spatial heterogeneity inherent in such a large area, the SD model
was enhanced to allow for the simulation of selected strategies at
the zip code level. The choice of zip code-specific strategies was
facilitated by a LLM, leveraging its extensive knowledge base on the
characteristics and demographics of different locations. Meanwhile,
the computation of regional capacities and SEIR stock values is
carried out within the Stella platform. The integration of an LLM
into the strategy selection process enabled allocation of resources
tailored to the unique needs and characteristics of each area.

The integration of the LLM with the Stella model is realized
through a Python module that facilitates communication between
the LLM and Stella at simulation steps. The Stella model itself is

encapsulated within an R wrapper, which uses the model’s XMILE
representation to enable dynamic parameter adjustments, model
loading, and execution within the Stella environment via R’s de-
Solve package. This hybrid design approach, where the LLM’s
execution is decoupled from the simulation engine, offers greater
flexibility in model calibration and sensitivity analysis, as adjust-
ments to the simulation parameters or to the LLM prompts can be
made independently, and the components can be independently
validated and tested. At the same time, this decoupling increases
computational overhead and slows the simulation process, espe-
cially for large and complex models. We expect that the simulation
stack will continue to evolve towards achieving an optimal balance
between execution efficiency and the analytical depth and flexibility
provided by this hybrid approach.

The overall framework in Figure 2 integrates a geospatial server,
which hosts multiple layers of local spatial data accessible via
ArcGIS Python API. This setup is a key part of our Retrieval-
Augmented Generation (RAG) [26] system, designed to enhance
LLM prompts with external information from document reposito-
ries and databases. At present, due to token limitations, the geospa-
tial server does not feed information directly to the LLM during
simulations. Instead, it contributes to the initial setup of the model,
ensuring that spatial data informs the simulation’s parameters and
environment from the outset.

3 RESULTS
3.1 The ABM – LLM integration
Our initial observations from the integration of Large Language
Models (LLMs) with the ABM described above, have yielded sev-
eral insights regarding agent behavior, consistency challenges, and
model performance and scalability limitations:

• The integration successfully captured complex behaviors
exhibited by agents, which are influenced by individual mo-
bility preferences. This detailed representation offers a more
authentic and nuanced depiction of how various factors, in-
cluding social interactions and movement patterns, impact
the spread of infectious diseases.

• One of the challenges we encountered involves maintaining
consistency in agent interactions. In some instances, for
example, Agent A attempted to interact with Agent B while
Agent B was simultaneously involved in another activity.
Such inconsistencies highlight the need for coordination
mechanisms within the model to ensure seamless agent be-
haviors across simulations.

• In the current implementation, LLM is queriedmultiple times
per time step for each agent, which presents serious perfor-
mance and scalability challenges. As the complexity and
number of agents and their personas increase, the model
becomes increasingly slow. To address this limitation, we
are refining the model’s performance and consistency, e.g.,
using heuristics based on insights from previous model in-
teractions.
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3.2 The SD – LLM integration
From our first experiments in integrating LLM with the Stella sys-
tem for spatially-disaggregated modeling of disease outbreak re-
sponses, we make the following observations regarding the inter-
play between LLM geospatial reasoning capabilities, spatial data
integration, and computational efficiency.

• The LLMs have generated meaningful insights into spatially-
disaggregated scenarios, proposing tailored dynamic re-
source allocation strategies for specific areas, such as pri-
oritizing research efforts and vaccine distribution among
students in zip codes housing universities —despite the ab-
sence of explicit programming of such localized details into
the model. However, the performance varied across different
areas, showing a tendency to offer more detailed insights on
well-documented areas, such as those with universities or
downtown events, which are likely to have a higher density
of contact and textual descriptions in the training corpus.
For the same reason, focusing on spatial disaggregation by
named neighborhoods rather than zip codes appears a more
promising approach. This method aligns better with the
inherent strengths of LLMs in recognizing and processing
information based on named locations.

• Token limits of pre-trained LLMs restrict the inclusion of
detailed spatial data in prompts. Training LLMs with various
types of spatial data and developing a hybrid system where
an LLM’s partial spatial understanding is supplemented by
a specialized spatial reasoner appears a promising, though
resource-intensive and complex, strategy.

• A robust software framework is essential for systematically
assessing how LLMs integrate spatially-disaggregated SEIR
data from models into decision-making about resource allo-
cations. Such a framework would address the inefficiencies
of our current implementation, with delays in processing
within the Stella wrapper and during LLM queries.

• Given the model’s substantial computational requirements,
identifying methods to group similar zip codes promises to
reduce the frequency of LLM queries.

• Resources relevant to outbreak response are typically man-
aged by various county agencies rather than a single regional
authority. This complexity mirrors the organization of the
serious game, where players often represent different organi-
zational domains. In the next iteration of the model, we will
include several county agencies, characterized to an LLM by
their mission statements and available strategies, similar to
agent personas in the LLM-ABM integration.

4 CONCLUSIONS AND FUTUREWORK
Our experiments integrating LLMs into simulation systems, in-
cluding spatially-aware ABMs and SD epidemiological models,
have yielded findings that align with earlier observations of LLMs’
geospatial knowledge and reasoning abilities mentioned in section
2. Furthermore, these experiments have provided added insights
and highlighted challenges pertinent to spatially-disaggregated sim-
ulation modeling, as LLMs were tasked with allocating resources
or fine-tuning behaviors based on agent personas or area charac-
teristics without being directly prompted about these properties.

The main challenges we encountered included understanding
the extent of LLM’s spatial reasoning abilities and adapting sim-
ulations to better align with these capabilities. Capitalizing on
LLM’s inherent knowledge, which, for instance, shows a stronger
familiarity with neighborhood names over zip codes, would lead to
more accurate models. Ensuring robustness, refining LLM prompts,
conducting sensitivity analysis, and improving the interpretability
of results were additional issues we addressed, albeit to a limited
extent. One significant observation is the LLMs’ underdeveloped
ability to use information about spatial proximity between zip
codes or other neighborhoods, whether defined through adjacency,
k-nearest neighborhoods, or distances. Future work will aim to
improve LLMs’ spatial reasoning through experimentation with
embedding of varying levels of neighborhood data including socio-
demographic and economic profiles and contiguity and distance ma-
trices. Given the impracticality of encoding all spatial relationships
explicitly, a balance must be found between what spatial knowledge
is directly included in simulations and what nuances are left for
LLMs to infer. The balance between explicit model details and LLM
inferential capabilities is crucial for advancing our understanding
of LLM applications in simulation modeling. Addressing the alloca-
tion of different types of information into LLMs—whether through
training, Retrieval-Augmented Generation (RAG), or prompts—is
another critical area of exploration.

Technical implementation challenges also emerged, especially
concerning the computational load of querying LLMs, the perfor-
mance of the Stella wrapper, the management of token limits, and
memory retention across iterations. Exploring alternative modeling
strategies, such as a hybrid Agent-Based Model-Partial Differential
Equation (ABM-PDE) approach, could offer scalable solutions to
these issues.
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