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Regression coefficients specify the partial effect of a regressor

on the dependent variable. Sometimes the bivariate or limited

multivariate relationship of that regressor variable with the

dependent variable is known from population-level data. We

show here that such population-level data can be used to reduce

variance and bias about estimates of those regression coefficients

from sample survey data. The method of constrained MLE is

used to achieve these improvements. Its statistical properties are

first described. The method constrains the weighted sum of all

the covariate-specific associations (partial effects) of the
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regressors on the dependent variable to equal the overall associa-

tion of one or more regressors, where the latter is known exactly

from the population data. We refer to those regressors whose

bivariate or limited multivariate relationships with the dependent

variable are constrained by population data as being ‘‘directly

constrained.’’ Our study investigates the improvements in the

estimation of directly constrained variables as well as the

improvements in the estimation of other regressor variables

that may be correlated with the directly constrained variables,

and thus ‘‘indirectly constrained’’ by the population data. The

example application is to the marital fertility of black versus

white women. The difference between white and black women’s

rates of marital fertility, available from population-level data,

gives the overall association of race with fertility. We show that

the constrained MLE technique both provides a far more power-

ful statistical test of the partial effect of being black and purges

the test of a bias that would otherwise distort the estimated

magnitude of this effect. We find only trivial reductions, how-

ever, in the standard errors of the parameters for indirectly

constrained regressors.

1. INTRODUCTION

A typical situation in the social sciences is that data are available in

aggregate levels of a societal unit but have too little detail. These data

are therefore considered useful only at a level of preliminary descrip-

tion or for cross-societal comparison. The best known and most

general of societal data collections in the United States is the decen-

nial census of households and individuals, offering both published

aggregate tabulations and the opportunity for researchers to estimate

bivariate and limited multivariate associations from microdata sam-

ples that are large enough to approximate population data. A glance

at national or subnational statistical yearbooks, however, reveals

many other population collections or registers of events of potential

interest to sociologists. Individuals, businesses, and nonprofit institu-

tions register their coming into being, their ceasing to exist, and

certain changes to their legal identity. Annual income is recorded in

corporate and individual tax returns. Entry to, and exit from, govern-

mental support programs (low-income benefit programs, unemploy-

ment insurance, old-age and disability insurance, etc.) and
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punishment or supervision programs (prisons, probation, restraining

orders, child-support orders) at the national, state, and local levels are

typically registered and compiled. Limited amounts of information

about the individuals experiencing the events are typically also

collected.

Standard regression modeling techniques are not appropriately

used with these population-level data, as there are too few variables to

estimate behavioral models. Putting this into a statistical framework,

sociologists employing regression methods are typically interested in

studying the association between a dependent variable and an expla-

natory variable of interest (a ‘‘target variable’’). The estimates of this

association are of more interest after controlling for confounding

associations of variables related to both the outcome variable and

the explanatory variable of interest (‘‘control variables’’). Not infre-

quently, data at the population level are available for the outcome

variable and the target variable but not for an adequate set of control

variables. In this case, only a ‘‘misspecified’’ model may be estimated

with these population data. The sociologist then turns to survey data

to specify the model more fully. Typically she or he then abandons the

information on the overall associations between the outcome and

target variable provided by the population data.

That social scientists are forced to choose either population

data or sample data, however, need not be assumed. The advantages

and disadvantages of sample versus population data collections point

strongly to their being complementary to each other. The advantages

of population data are that they are without sampling error and may

be much less subject to biases due to nonresponse. These advantages

mirror the main disadvantages of survey samples: sampling error and

bias due to nonresponse. The main advantage of sample surveys is

that a large amount of information is collected about individuals,

often with special thought in the selection of variables toward those

that may have causal associations. These are the variables from which

a behavioral model may be specified. The challenge then is to develop

and apply statistical methods that combine population data’s more

precise and less biased estimates of the overall associations between

the outcome and target variables with survey data’s breakdown of

these overall associations into multivariate associations between out-

come, target, and control variables. The main purpose of the present

study is to describe and illustrate a statistical method that combines
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the respective advantages of survey and population data. The method

is constrained maximum likelihood estimation (MLE). Population-

level data provide the constraints, in the form of information about

the overall association between an outcome variable y and a target

explanatory variable x. Estimates of the multivariate associations

between outcome variable y, target variable x, and control variables

z using survey data are then constrained to equal the overall

associations.

1.1. Statistical Theory of Constrained Maximum Likelihood

Estimation and Other Methods for Combining Population and Survey

Data in Regression Analysis

The traditional statistical method for combining survey and aggre-

gated population data is poststratification (Kish 1965; Lohr 1999).

Broadly defined, poststratification refers to methods for adjusting

bias and reducing variance in survey results by reweighting observa-

tions after selection (Smith 1991). Until recently, the statistical litera-

ture on the statistical properties of poststratified estimates has been

relatively sparse (Holt and Smith 1979), but it has been applied also to

the modeling of survey data through the use of constraining informa-

tion from population data (Deming and Stephan 1942; Ireland and

Kullback 1968). More recently, Qin and Lawless (1994) develop

methods for combining information from multiple sources when the

information about the parameters of interest can be expressed in

terms of unbiased estimating equations. They establish some theore-

tical properties of contingency tables with population data for mar-

ginal probabilities. Their equations are applied in conjunction with

the empirical likelihood for the sampled information to estimate the

parameters. This approach is closely allied to the econometric

approaches we discuss below.

The lack of development of the post-stratification approach to

modeling has been in part due to the fact that it has been largely

motivated by, and is usually applied in, design-based inference.

However, the ubiquitous nature of nonresponse and attrition has led

many researchers to consider instead model-based inference. In design

(i.e., randomization) based inference, the population values are

regarded as fixed numbers and inference is based on the probability

sampling scheme for the survey. If nonresponse exists, design-based
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inference is inappropriate except under very strict assumptions about

the nature of the nonresponse. In the alternative, model-based per-

spective, nonresponse and attrition are regarded as further sample

selection, and the ultimate sampling scheme must be inferred from a

selection model and the observed data. In this case, poststratification

can be used to make the nonresponse ignorable for inference in the

sense of Little and Rubin (1987). From this perspective the combina-

tion of survey and population data should be model-based (Little

1991, 1993, 1995). Little and Wu (1991) compare the design-based

and model-based approaches when the sampled population differs

from the population data due to nonresponse or coverage errors.

Little (1993) develops a Bayesian model-based approach to

combine information from sample surveys and population data (see

also Elliott and Little 2001). The approach assumes that the popula-

tion distribution of a categorical variable in a simple random sampled

sample survey is determined from the population information. His

approach is to poststratify on the variable using a Gaussian model for

the response given the poststratification variables. This approach is

also useful when the survey is subject to simple forms of nonresponse

and coverage errors. Further, the model is easily extended to the case

where a joint distribution of multiple variables is available from the

population data. Application to multiple data sets, some with fewer

covariates, is also possible. This is analogous to population-level data

with fewer variables combined with survey data with more variables.

This may be restated as a partially missing regressors problem (Little

1992). Including observations with some missing regressors neverthe-

less increases the efficiency of the estimation of parameters for the

regressors that are present. In this way, missing data observations are

treated as a second type of sample that must be combined with the

sample of complete data observations. This framework can be

extended to cover situations in which samples are combined from

different studies with overlapping, but not completely identical, sets

of regressors. Gelman and Little (1998) and Gelman and Carlin

(2001) develop further methods of adjustment that are based on

modeling population structure. Bethlehem (2002) shows how the

Dutch POLS social survey can be adjusted for unit nonresponse by

including population level data.

A closely related literature is that on ecological regression

(Goodman 1953; Firebaugh 1978). Originally the focus was on the
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potential biases of using population- or aggregate-level information

alone to infer individual-level processes. However, recent developments

in ecological inference emphasize the use of individual-level informa-

tion to address these concerns (Wakefield and Salway 2001).

There is a well-developed literature on the econometric theory

for combining population-level and sample-survey data. This work

dates back to at least Manski and Lerman (1977). The approach is

closely related conceptually to what econometricians refer to as

choice-based, or endogenously stratified, random sampling. In

(bio)statistics this is often studied under the title of case-control or

retrospective sampling schemes (Prentice and Pyke 1979; Breslow and

Day 1980). Of most direct importance is the work by Imbens and

Lancaster (1994, 1996) and Hellerstein and Imbens (1999). This is a

very active research area in econometrics that has direct relevance to

other social science fields. Imbens and colleagues (Imbens and

Lancaster 1994; Hellerstein and Imbens 1999) explore the benefits of

combining population with survey data, using economic data in a

generalized method of moments (GMM) regression framework.

Imbens and Lancaster (1994) consider the estimation of parameters

in the regression model under moment restrictions on the survey data

contributed by population data, and report large gains in efficiency by

incorporating marginal moments from census data with sample-sur-

vey joint distributions. Hellerstein and Imbens (1999) give an example

of the bias-reduction possibilities of including aggregate data in the

context of estimating wages from survey data. In that case, the survey

data suffer from possibly nonrandom attrition. They also show how

this may be addressed by means of a reweighting scheme under an

implicit assumption that the values are missing at random. This

approach can be seen as an extension of poststratification using a

special case of the empirical-likelihood estimator (Qin and Lawless

1994; Imbens, Johnson, and Spady 1998). While the approach does

not require parametric assumptions about the error distributions, it

does not benefit from this information either. This reduces small-

sample statistical efficiency and excludes Bayesian extensions relaxing

the assumption that the constraint values are exact. In addition, the

approach does not adjust for nonresponse that is not missing at

random. Likelihood-based methods and maximum likelihood estima-

tors in particular are more frequently found in sociological and much

other social-scientific modeling work, due to their good statistical
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properties and because likelihood-based methods provide a general

conceptual and inferential framework.

There is also a tradition of combining population and sample

data in macro-level demographic analyses, using techniques that

include ‘‘model’’ life tables and indirect standardization (Smith

1992). More recently, Handcock, Huovilainen, and Rendall (2000)

demonstrated the potential feasibility of a constrained maximum like-

lihood estimator (MLE) to combine sample survey data with birth

registration data in the estimation of a multivariate model of fertility.

Large gains in efficiency were achieved through the intercept term of

their logistic regression equation. The variance about the intercept

parameter was halved when the general fertility rate constraint was

introduced. Since the covariate-specific birth probabilities are always

functions of the intercept parameters, the reduction in variance in the

constrained model was similarly large (around 50 percent) for both

covariate-specific birth probabilities. Handcock et al. did not, how-

ever, use any population-level information on fertility rates by model

covariates, and so gains were confined to the intercept parameter and

functions of it. The present paper extends the Handcock et al. results

to consider possible gains in efficiency and unbiasedness additionally

for the coefficient parameters of regression equations. As with that

earlier paper, we treat the case of exact population data for the

constraints. In Section 2, we describe the statistical theory of variance

and bias reduction for the constrained maximum likelihood estimator,

with particular application to logistic regression. In Section 3, we

describe how this estimator may be used in a sociological application

that combines panel survey data with population data on black and

white marital fertility in a test of the minority-group hypothesis of

fertility. In Section 4, we present the results. Section 5 concludes with

a discussion.

2. STATISTICAL THEORY

We outline here the statistical principles of variance and bias reduc-

tion when combining survey and population data in a likelihood

framework. The exposition is oriented toward the type of estimators

and assumptions about the nature of the survey and population data

of our subsequent empirical application. We describe the theory of
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constrained MLE for survey data that are subject to varying degrees

and types of nonresponse and attrition when exact population-level

data are available to constrain the regression estimates. Further, we

describe implementation with constraints on the weighted sum of

conditional probabilities when the weights may be known from either

population or survey data or both, and when the unconditional

probabilities are known from population-level data. The conditional

probability function described is the logit, although the method of

constrained MLE generalizes to other functional forms. The basic

principles also apply to nonlikelihood-based regression methods

such as least squares and method of moment estimators. We make

reference to these generalities in the course of the exposition.

2.1. Representative Survey Data Combined with Exact Population

Values

In this section, we consider what improvements could be achieved by

combining survey data that are representative of our target popula-

tion with accurate population-level data. To say that the survey data

are ‘‘representative’’ corresponds in the terminology of missing data to

‘‘ignorable’’ nonresponse (Rubin 1976), encompassing as special cases

standard survey designs where data are ‘‘nonmissing,’’ ‘‘missing com-

pletely at random,’’ ‘‘missing at random,’’ or subject to ‘‘covariate

only missingness.’’ We say that the population data are ‘‘accurate’’

to mean that they are without substantial nonsampling error such as

undercounting or misclassification. Because they are collected for all

members of a target demographic population, we assume that they

are statistically precise (that is, not subject to sampling error). In this

section we show how the population values may be used to reduce

sampling variance about survey estimates. We give a formula

(equation 8 below) for the reduction in variances about the regression

parameters, which demonstrates that the standard errors of the esti-

mates when using the population information will always be lower

than when this information is ignored. This formula applies to the

reduction in standard errors on both the intercept and coefficient

parameters in the regression.

We start by writing the joint distribution of a response Y and

covariates X as
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PðY ¼ y; X ¼ x j q0Þ ¼ PðY ¼ y j X ¼ x; q0ÞðX ¼ xÞ; ð1Þ

where q0 is the unknown parameter vector of interest describing the

relationship between Y and X. These may, for example, be the regres-

sion parameters in a logistic or probit regression of Y on X or, less

frequently in contemporary sociological research, discriminant analy-

sis (e.g., Efron 1975; Ruiz-Velasco 1991). Suppose the universe con-

sists of women within a given range of childbearing ages, and that the

response variable Y has two levels: 0 denotes no birth, and 1 denotes a

birth, during the year (t � 1, t]. Suppose further that the only covari-

ate in this model is a dichotomous ‘‘premarital children’’ variable X

for whether there are any children from before this marriage in the

family unit at time t � 1. The binomial logistic regression model for

the birth probability P(Y ¼ 1jX ¼ x, q0) is given by

logit½PðY ¼ 1jX ¼ x; q0Þ� ¼ b0 þ b1x: ð2Þ

Here the parameter is q0 ¼ (b0, b1). Denote the survey data by D ¼ (yi,

xi), i ¼ 1,. . ., n. If this is all the information we have, under standard

regularity conditions, the value of q that maximizes the likelihood

Lðq; y;xÞ ¼
Yn
i¼1

PðY ¼ yi;X ¼ xi j qÞ

¼
Yn
i¼1

PðY ¼ yi j X ¼ xi; qÞPðX ¼ xiÞ ð3Þ

is an asymptotically efficient estimator of q0. Under these conditions,

the estimator is also asymptotically unbiased and Gaussian with

asymptotic variance Vs, where Vs is the inverse of

Eq0
½q log½Lðq; yjxÞ�=qqij�, the Fisher information matrix for q (Rice

1995). Note that as the sampled distribution of the covariates does

not depend on q0 the same estimator is produced by maximizing the

constrained likelihood

Lðq; yjxÞ ¼
Yn
i¼1

PðY ¼ yijX ¼ xi; qÞ: ð4Þ
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Intuitively this means that information about the population distribu-

tion of the covariates does not affect the estimator. Thus population

information about a function of X alone would not improve the

estimation of q0.
Now suppose that we supplement the survey data by popula-

tion information about some function of the response and covariate

variables, which we denote by g(y,x). The function may be bivariate,

or multivariate if information about multiple characteristics is avail-

able. As the information tells us something about how Y and X relate

to each other, we might expect that it will also help us infer the value

of q0. We assume that the information can be expressed as a mean of a

multidimensional function over the population

Cðq0Þ ¼ Eq0
½gðY ;XÞ�; ð5Þ

where the value of C(q0) is known from the population data to be f, for
example. Most information can be expressed in this form by a judicious

choice of g(y,x). Returning to the example, consider the above model

for birth probabilities in terms of presence of premarital children.

Population data supply the annual probability of childbearing among

all married couples in that wife’s age group, f. Survey data are used

to estimate the proportion of couples with and without premarital

children, r ¼ P(X ¼ 1) and 1 � r ¼ P(X ¼ 0). By choosing

gðy; xÞ ¼ 1 y ¼ 1
0 y 6¼ 1

�
;

and using the above expressions for the covariate-specific birth

probabilities, the constraint (5) is

PðY ¼ 1jX ¼ 0; q0Þð1� rÞ þ PðY ¼ 1jX ¼ 1; q0Þ� ¼ f ð6Þ

In general, a constraint for covariates x and outcome variable y is of

the form

CðqÞ ¼ Eq½gðY ;XÞ� ¼
ð
x

ð
y

gðy; xÞPðY ¼ yjX ¼ x; qÞðX ¼ xÞdydx ð7Þ
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If the marginal distribution of the covariate X, P(X ¼ x), is known

then this constraint is a known function of q. Hence (5) constrains this

function of q to equal its known population value f. If we maximize

the above likelihood subject to this constraint using the procedure

described in Handcock et al. (2000), the estimator is still asymptoti-

cally efficient, unbiased, and Gaussian. However, while the asympto-

tic variance in the unconstrained version is given by the Fisher

information matrix Vs, in the constrained version the asymptotic

variance is

VS � VSH
T ½HVSH

T ��1HVS; ð8Þ

where H ¼ [qCi(q)/qqj] is the gradient matrix of C(q) with respect to

q. As the second term in this expression is positive definite, the

inclusion of the population information always leads to an improve-

ment in the estimation of q0. In particular, the standard error of the

estimator in the version using the population information (the con-

strained model) will always be less than the one that ignores it (the

unconstrained model). A further result of (8) is that the asymptotic

ratio of the variances of the constrained to unconstrained parameters

is independent of the survey sample size. Thus, the percentage reduc-

tion in the standard errors of the regression parameters will be

approximately the same for all sample sizes.

It is also important to note that both Vs and H in (8) can be

estimated from the survey data using the unconstrained model. The

efficiency gain from including population information can then be

estimated before running a constrained model, and so before obtain-

ing the population data. Alternative choices for g(y,x) can then be

compared in terms of their statistical efficiency and ease of collection

of the population information. Note that the increase in efficiency

from including population data will be reduced if the population

distribution of the covariates is not known. Typically in demographic

applications, the population data will provide information about the

univariate or bivariate distributions of at least some of the covariates,

but survey data will be needed to provide information about the

multivariate dimensions of the covariate vector.

The effect of including the population data is presented gra-

phically in Figure 1. This is a stylized representation of the relative
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positions in a two-dimensional parameter space of the various models.

The target population model is represented by q0. The dashed curves

are the contours of the unconstrained likelihood (3) with the maximum

likelihood estimator using only the sample survey represented by qMLE.

The models satisfying the constraints (5) on the parameters imposed by

the population data are represented by the thick line. Note that q0 is

always on this line if the population data are from the target popula-

tion. The constrained MLE qCMLE is the value on this line that max-

imizes the likelihood subject to the constraints. The variance formulas

given above show that qCMLE is, on average, closer to q0 than is qMLE.

The exact size of the improvement depends on constraints, but it is

calculable from (8) for given g(y,x), independently of the actual value

of the constraint f. Because the survey data are representative, though,

the expected values of both the constrained and unconstrained para-

meters are equal to the population parameter q0. The gains realized

through the introduction of the population data will be in variance

reduction only, as the unconstrained estimator is already unbiased with

respect to the target population.

It is worthwhile to be explicit about the situation where the

survey suffers from nonresponse but is still assumed to be representa-

tive. The simplest case is where the values of D that are missing are a

simple random sample from the complete sample. This is known as

the missing completely at random condition (Little and Rubin 1987).

θMLE

θCMLE

θο

FIGURE 1. The relationship between estimates when representative sample data

alone are used (MLE) and when they are augmented by exact

population information (CMLE).
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Denote the observed part of D by Dobs, and the missing part by Dmis

so that D ¼ (Dobs, Dmis). As the mechanism that determines which

values are missing is independent of the response, covariates and q0,
the likelihood for the data is just the product (3) taken over the

observed cases. In addition, the constrained MLE is still asymptoti-

cally unbiased, efficient, and Gaussian. The asymptotic efficiency for

the observed data relative to the complete data is just the proportion

of the complete data that is missing. Hence the inclusion of the

population data has the same rate of increase in efficiency that it

has in the complete data case.

This assumption can be weakened to allow values to be missing

differentially by covariates but independent of the response and of the

vector of parameters q0 relating the response variable to the regres-

sors. We call this covariate only nonresponse (Rubin 1977). In our

example, this would mean that childless women could have a different

response rate to women who had at least one child at time t � 1, as

long as the rate was the same for all women in each category regard-

less of their birth status during the year. That is, the reason for

nonresponse is then perfectly related to the measured covariates. As

the constrained likelihood is expressed in terms of the conditional

distributions P(Y ¼ yi j X ¼ xi, q), and these are unchanged, the

likelihood for the data is again just the product (3) taken over the

observed cases. Thus even though the observed sample distributions

of the covariates are biased, the inclusion of the population informa-

tion is unaffected and the constrained MLE is asymptotically

unbiased, efficient, and Gaussian. The asymptotic efficiency for the

observed data relative to the complete data is again just the propor-

tion of the complete data cases that is missing.

Suppose now that the nonresponse also depends on the

response Y. Suppose that the probability that an observation is miss-

ing may depend on Dobs but not on the missing part Dmis. This is

known as missing at random, in the sense of Rubin (1976). This is less

restrictive than covariate only nonresponse, which is in turn less

restrictive than missing completely at random. Missing at random

allows the probability that a datum is missing to depend on the

response and covariate of the datum itself, but only indirectly through

the quantities that are observed. Let us assume that the parameters of

the nonresponse mechanism are distinct from the parameters of inter-

est q0. If both the missing at random and the distinctness conditions
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hold, then the missing-data mechanism is said to be ignorable (Little

and Rubin 1987). This is an important concept, because we can still

model an ignorable nonresponse mechanism as a function of what we

have observed and obtain efficient inference for q0. Finally, note that

this assumption, like all those made about missing data, cannot be

verified from the observed data alone; support must come from exper-

tise or information external to the data. For example, we might know

from other studies that women’s marital fertility by premarital fertility

does not differ by whether they respond to surveys, even if, say, women

with no premarital children are less likely to respond.

If there is nonresponse, the observed information includes not

only the observed values of the response and covariates but also a

variable R indicating whether the case was observed or not. Hence the

likelihood for the observed data is the joint likelihood for Dobs and R.

However, if the missing data mechanism is ignorable, the joint like-

lihood is

Lðq;yobs;xobs;RÞ¼PðR jY¼yobs;X¼xobsÞPðY¼yobs jX¼xobs;qÞ
¼PðR jY¼yobs;X¼xobsÞLðq;yobs jxobsÞ: ð9Þ

The first term is independent of q so the likelihood is

proportional to the constrained likelihood for the observed values

of the response and covariates. Hence the MLE is just the con-

strained MLE under L(q; yobs j xobs), independent of the missing

data mechanism. That is, under our approach we can achieve fully

efficient inference without modeling the missing data mechanism

explicitly for likelihood-based inference about qo. The constrained

MLE under L(q; yobs j xobs) is asymptotically unbiased, efficient,

and Gaussian. The asymptotical efficiency for the observed data

relative to the complete data is just the proportion of the complete

data that is missing. Hence again the inclusion of the population

data has the same rate of increase in efficiency as it has in the

complete data case.

2.2. Nonrepresentative Survey Data Combined with Exact Population

Values

In this section, we consider what improvements could be achieved using

accurate population-level data to supplement ‘‘nonrepresentative’’
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survey data, meaning survey data that are less than perfectly

representative of the population on at least one dimension related

to the estimation problem. In our regression case, this refers to repre-

sentativeness of the conditional expectations of the dependent variable

Y on regressors X. In missing data terminology, the effective survey

sampling mechanism then incorporates nonresponse that is no longer

ignorable. The statistical properties of estimators that combine nonre-

presentative survey data with exact population values, however, apply

more broadly than to the case of ‘‘nonignorable’’ survey nonresponse.

They can be extended also to respondent misreporting (Schafer 1997)

and to survey sampling designs that do not exactly match the target

population.

The main result of using constraints from the target population

in combination with the above kinds of survey data is that the more

population information we introduce, in the form of constraints

about the relationship between Y and X, the closer we will get to

unbiased regression estimates of target population relationships.1 We

describe this below in terms of the synthetic population that is formed

by the combination of elements from both the representative and

nonrepresentative effective sampling frames respectively from the

population-level and survey data. The inclusion of population con-

straints moves this synthetic population toward the target population.

The more constraints used, the closer is the synthetic population to

the target population, and the greater the reductions in bias about

parameters estimated from this synthetic population.

Following Little and Wu (1991) and Hellerstein and Imbens

(1999), we refer formally to the survey data’s distribution as the

sampled population, with parameter qsample. We distinguish this from

1A reviewer correctly points out that this does not necessarily hold in
the case where population information on the distribution of the regressor X alone
is used to estimate the unconditional expectation of Y, where the sample and
population distribution of X differ due to informative (nonignorable) nonre-
sponse (that is, nonresponse depends on Y in addition to X). In this case
population-level information on the joint distribution of Y and X is required.
The population-level information we consider for constrained MLE, however, is
information about the relationship between Y and X—that is, information on the
association between Y and some subset of the regression vector X. We consider
the use of population data in the estimation of the distribution of regressor X
when we also have information on the association between Y and X in the bottom
two paragraphs of Section 2.3 below.
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the target population, with parameter qo. The MLE will approach

qsample. If the survey is representative, qsample ¼ q0; otherwise the dif-

ference between them represents the bias of the sample survey. The

inclusion of population information will, in general, reduce this bias.

Suppose we use the constrained MLE to estimate q0. Consider the

synthetic population that satisfies the constraints (5) defined by the

population data and that is closest to qsample in terms of likelihood (see

Figure 2). This population is in a sense a combination of the sampled

population and the target population. We denote the parameter for this

synthetic population by qcombined. The constrained MLE qCMLE will

approach qcombined, as the sample size increases, rather than the true

value q0. Thus the difference between qcombined and q0 is a measure of

the bias that remains after introducing population constraints. In this

sense it is the bias of the combined survey and population information. In

general qcombined will be closer to the true value qo than qsample, so the

inclusion of the population data improves the estimates. The develop-

ment of the properties of the constrained MLE in Section 2.1 still

applies, with qo now replaced by qcombined. In particular, the variance

formulas given above now apply for qCMLE, which is, on average,

closer to qo than is qMLE. Hellerstein and Imbens (1999) derive these

results in the special case of linear regression.

Computational limitations for the maximization problem may

be encountered when many population constraints are simultaneously

applied. To circumvent this problem, the poststratification

θCombined

θSample

θο

FIGURE 2. The relationship between the estimated parameters of the uncon-

strained (‘‘sample’’) and constrained (‘‘combined’’) and the popula-

tion parameter when the sample survey is not representative.
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reweighting approach of Hellerstein and Imbens can be used. Those

authors demonstrate the equivalence between the constrained estima-

tion and the reweighting approaches in the linear regression context.

They show that the empirical likelihood MLE can be expressed as a

weighted linear regression estimator, where the weights are a by-

product of calculating the MLE and can be interpreted as poststrati-

fication weights. This approach has a major advantage: Once the

weights are calculated, the weighted data set can be used within

standard statistical packages, and interpreted accordingly. Both the

constrained methods and the reweighting methods lead to identical

estimators. The choice of method can then be made on the basis of

ease of programming and statistical computational efficiency.

Misreporting of respondents can be statistically treated in a

similar way to nonignorable nonresponse. It requires the modeling of

the misreporting mechanism just as the nonresponse is modeled. Even

parameters of the misreporting (i.e., the misreporting probability) can

be included as parameters. A good example is Heitjan and Rubin’s

(1989) treatment of respondents’ rounding of answers (e.g., age and

income); Heitjan (1990) also reviews these methods.

2.3. Application to Logistic Regression

Let Y be a binary response variable modeled via a logistic regression

on covariates X ¼ {X1, X2, . . . ,Xq}:

logit½PðY ¼ 1jX1 ¼ x1;X2 ¼ x2…;Xq ¼ xq; q0Þ� ¼
Xq
k¼1

q0kxk: ð10Þ

The responses are assumed to be conditionally independent given the

covariates. We next introduce constraints on the total effects of each

variable. Let fij be the proportion of positive responses (Y ¼ 1) in

the population with Xi ¼ j. The corresponding constraint functions

Cij(q) are each of the form

fij ¼ CijðqÞ ¼ Eq½gijðY ;XÞ�
¼
X
x:xi¼j

PðY ¼ 1jX ¼ x; qÞpðX ¼ xjXi ¼ jÞ; ð11Þ
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where

gijðy; xÞ ¼ 1 when y ¼ 1 and xi ¼ j
0 otherwise

n

The constraint function (11) is expressed as the sum of two product

terms (on the right-hand side of the constraint function). The first

term is the probability of a positive response conditional on the value

of the regressor vector x. The second term is the proportion of the

population with a specific set of values on the regressor variables

given that Xi ¼ j.

Consider now the case in which there is a constraint function

defined for each possible value j that variable Xi may take. For

example, X1 may be a race variable that takes the value of X1 ¼ 0

for whites and X1 ¼ 1 for blacks. Given the individual is white or

black, there will in general be different distributions on other regres-

sor variables—for example, on the distribution of socioeconomic

status. Hence p(X ¼ x j X1 ¼ 0) 6¼ p(X ¼ x j X1 ¼ 1), where vector

X includes both race and socioeconomic status.

Continuing this example, let response variable Y indicate

whether a birth occurs in the year. Then {f11, f10} represents the

bivariate association of race with fertility in the population of whites

and blacks. For example, f11/f10 expresses the ratio of black to white

fertility. The two constraint functions C(q11) and C(q10) then together

constrain the marginal effects in the behavioral model that includes

socioeconomic status to preserve this overall ratio of black to white

fertility that is known from the population data. When a set of

constraints of this type is applied, such that for a given regression

variable Xi (in the example, race), its bivariate association with Y is

completely specified for the population, we say that the regression

variable Xi has been directly constrained. For other variables in the

equation (e.g., socioeconomic status), we say they are indirectly con-

strained, since each constraint potentially influences every parameter

value via the interrelationships between the covariates, assuming

nonzero covariances—i.e., cov(Xi, Xj) 6¼ 0. Hence a direct constraint

on one variable indirectly influences the values of the other para-

meters and their standard errors. While these indirect effects may be

expected to be larger if the covariates are closely related (for example,

if a variable is an interaction between a directly constrained variable
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and another variable), Imbens and Lancaster (1994) found in a Monte

Carlo simulation that only for regressor variables that are extremely

highly correlated will population information limited to one of the

variables’ relationship with the dependent variable have any variance

reduction on the parameter estimate for the other. We similarly find

that only the coefficient parameters of the ‘‘directly-constrained’’

variables are significantly influenced by the population data in our

empirical application reported in the results section below.

In general, the population proportions p(X ¼ x j Xi ¼ j) may

be estimated from survey or population data, or a combination of the

two. Estimating them from the survey data is useful to ensure con-

formity of the variable definitions between the first and second terms

on the right-hand side of the constraint equation (11)—that is,

between the definitions of X measured in the regression sample

observations (y,x) and X measured in the data (sample or population)

used to estimate the distribution of X, p(X ¼ x j Xi ¼ j).

‘‘Nonconformity’’ of definitions may be restated as the case that the

sample is ‘‘population-representative’’ with respect to the distribution

of X but that there is no population data source for which there is a

set of identically measured variables on all dimensions of vector X.

Estimation of the distribution of X from the regression sample data

introduces a source of variability in the constraint function. It is

possible to modify equation (8) to include a component due to this

uncertainty. The constrained estimator is still used, but with the

constraint functions conditional on the distribution of the regressors

estimated from survey data. Let g(x;q) ¼ EYjX¼x;q[g(Y, x)] be the

conditional expectation of g(Y, X) given X ¼ x. The variation of

g(X;q) determines the variation in the constraints. The variance of

the constrained estimator is given by Imbens and Lancaster (1994) as

VCU ¼ ½V�1S þHT��1g H��1 ¼ VS � VSH
T½HVSH

T þ�g��1HVS;

where �g is the covariance matrix of g(X; q0). Compared to equation

(8), it can be seen that �g represents the cost of not knowing p(X ¼ x

j Xi ¼ j) and this inflates the variance of the estimator. When �g

is close to zero—that is, the constraint right-hand side varies little

from sample to sample—the two formulas are very close. The

effect of using sample data to estimate population proportions
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p(X ¼ x j Xi ¼ j), however, is to unambiguously reduce the effect-

iveness of constrained estimation. By just how much will vary from

application to application.

A second case of difference between the sample and population

distributions of regressors X is when the investigator estimates the

distribution of X from regression sample data that are not ‘‘popula-

tion-representative’’ with respect to the distribution of X. This case

belongs to the class of covariate-only non-response discussed in Section

2.1. Again, using the sample data in place of the population data in

the right-hand side of the constraint function will unambiguously

reduce the effectiveness with respect to the variance reduction of

using population data to constrain the estimation. However, as dis-

cussed in Section 2.1, even though the observed sample distributions

are biased, the constrained MLE of the regression parameters is

asymptotically unbiased.

3. A CONSTRAINED MLE TEST OF THE ‘MINORITY-GROUP

STATUS’ HYPOTHESIS OF FERTILITY

The example introduced above in the context of the theoretical prop-

erties of constrained ML estimators can now be elaborated and

estimated. Specifically, we consider a test of the ‘‘minority-group-

status’’ hypothesis of couple fertility. We demonstrate the constrained

maximum likelihood method by testing this hypothesis on the marital

fertility of black and white couples in which the wife is aged between

30 and 34 years old. According to the ‘minority-group status’ hypoth-

esis, fertility will be lower for a minority group of otherwise equal

economic status (Goldscheider and Uhlenberg 1967). In previous tests

of the hypothesis applied to minority black versus majority white

women (Johnson 1988; Boyd 1994), the strength of empirical support

for the hypothesis has varied, and the hypothesis has undergone

refinements (Johnson 1979) that have sought to limit its applicability

to women with higher socioeconomic statuses. Our test of the minor-

ity group status hypothesis does not attempt to contribute substan-

tively to this literature, but instead is presented to show concisely how

to apply the constrained MLE method to test hypotheses of theore-

tical interest in sociology. Thus our test of the hypothesis uses the

simplest ‘‘strong form’’ of the hypothesis in which women of all
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socioeconomic statuses are expected to be similarly affected, and uses

a sample confined to married women in the 30- to 34-year-old age

group. While limiting the age range in this way will mix childbearing

quantity with timing effects, we include regressors (in particular, for

marital duration) that control for timing associations.

The minority-group status hypothesis of fertility differentials

was originally proposed when fertility within marriage predominated

among both majority and minority groups. Thus it is appropriate for

us to apply the hypothesis to marital fertility. It is important, how-

ever, to take into account the potentially confounding effect of ferti-

lity before the marriage began. This may be nonmarital fertility, either

with a woman’s current husband or with a previous partner. It may

also be fertility within a previous marriage. In either case, we expect

and find that this depresses fertility in the current marriage. Because,

as we show, premarital fertility is substantially more common among

black married women than among white married women, it is import-

ant to include a control for any premarital children in addition to

other sociodemographic and economic variables.

We obtain the bivariate associations between race and fertility

from the population data: the race- and year-specific marital fertility

rates for 30- to 34-year-old women from 1984 to 1993. The population

data are estimates of annual marital fertility rates by five-year age

group and race of the woman published by the National Center for

Health Statistics (NCHS 1999). The NCHS makes these estimates by

using as their numerator all marital births in a given year between

1984 and 1993 to married mothers of that racial group,2 and by using

as their denominator the Census Bureau’s midyear population esti-

mates by sex, age, and marital status. We assume that the marital

age-, period-, and race-specific fertility rates have zero sampling

variance, and that the age, race, and period definitions are those of

the target population for our analyses. That is, we assume that the

NCHS data represent the true population values exactly.

In general, when jointly using survey and population data,

there will seldom be an exact match between the population and

survey universes and variable definitions. In the present study, we

2In general, these are 100 percent samples, but some states provide 50
percent samples for the national compilation by NCHS, who then weight them to
the population total.
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specify the population about which we wish to make inferences on the

basis of the population data, and we use the survey data to best

approximate that. This allows us to explore empirically the statistical

properties of the case for which we have described above in terms of

statistical theory. This is the case in which the population values are

known exactly and the sample may or may not have been drawn (or

have subsequently evolved) in a way that can be said to exactly

represent that target population.

The survey data we use are from the Panel Study of Income

Dynamics (PSID, Hill 1992). These data have the advantages of

coming from a very long-running panel survey with covariates for

socioeconomic and demographic variables for each year. For the

present study, it is especially advantageous to have economic status

measured directly each year with an income variable. We make esti-

mates for the years 1984 to 1993. The latter year is the most recent

year for which ‘‘final release’’ files, including generated variables such

as the family income-to-poverty ratio, were available from the Survey

Research Center when we coded our survey data. The PSID sample

uses an unequal probability sample design. We account for this by

conducting our estimation with the PSID’s individual sample weights.

Thus we account for both initial sample design effects and some of the

biases introduced by attrition. The PSID’s sampled population may,

however, have drifted away from target population universe over

time, through differential attrition (Fitzgerald, Gottschalk, and

Moffitt 1998), and through its not capturing the processes of popula-

tion change through immigration. We interpret such drift in terms of

bias with respect to the target population.

The universe consists of years of exposure to marital fertility in

the period 1984 to 1993 among white and black married couples in

which the wife is aged 30 to 34 years old. The survey data were

collected at annual intervals late in the year, with age recorded in

completed years at last birthday. Using these data to best approxi-

mate our calendar-year universe, we select our sample to consist of all

survey year-pairs (t � 1,t] in which the wife was aged from 29 to 34 in

year t � 1, and hence aged 30 to 35 in year t. The part-year exposure

while still aged 29 is then balanced by part-year exposure at age 35.

The matching of survey period to calendar year is done at year t of the

(t � 1,t] survey period, since the survey data are collected late in each

year, and thus the majority of exposure in each (t � 1,t] year occurs
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during calendar year t. Married couples each contribute up to six

couple-years of exposure in the 1984 to 1993 period. This results in a

sample of 8,266 person-years. We ignore variance-estimation compli-

cations due to the repeated observation of individuals in the panel.

Because we use the same data for both the constrained and uncon-

strained estimates, introducing this further complication should not

change our main results.3

The variables from the PSID that are used in the regression are

as follows. The dependent variable Y has two levels: 0 denotes no

birth and 1 denotes a birth to the couple, during the year (t � 1,t].

Using the PSID’s panel data only, we code a birth when a child aged

less than 2 has entered the family unit since the previous year. This

assumes that the parents and child live together at the survey inter-

view immediately following the birth, and that infant mortality

between birth and survey is zero. Improvements to the accuracy of

coding of births could presumably be achieved through supplement-

ing the panel data with the PSID’s fertility histories. For the present

study’s methodological objectives, though, the panel data are

sufficient.

Next, we consider the explanatory variables. A fully specified

model of the determinants of the marital birth event would include

a variety of demographic, economic, and sociological variables

3While corrected standard errors could in theory be computed for both
the unconstrained and constrained cases, in practice, the considerable additional
computational burden imposed by constrained estimation makes such a proce-
dure feasible only for the unconstrained case. A computationally feasible
approach would be to use the unconstrained estimator to calculate the design
effect (ratio of the variance of the actual sample to the variance under the
assumption of a simple random sample), and to apply this ratio to the con-
strained variances. This would also adjust for other attributes of the sample
that inflate the standard error. The PSID’s guidance on these design effects are
that the standard errors should be inflated by a factor of 1.5 for whites and 2.25
for blacks (Morgan et al. 1974, appendix B), due to both higher degrees of
clustering and the dual-sample frame that includes more blacks than whites in
the low-income subsample. When we conducted our own bootstrap estimates of
the design effects for transitions between family statuses (including through
childbearing) for white and black women, we found somewhat smaller magni-
tudes of design effects: 1.18 for white women and 2.01 for black women. These
lower magnitudes, especially for whites, were despite our having included multi-
ple observations of the same individual in the PSID sample, suggesting that the
effects of the overall sample design are likely to be more important than the
effects of repeated observation.
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influencing the probability of a birth in the year. The demographic

variables might include the single-year ages of both the wife and the

husband; length of the marriage; and number of, and years since,

previous births within this marriage, for this couple (allowing for

children born to the couple before they married), and outside this

couple. The economic variables might include the husband’s and the

wife’s current and opportunity wages (the latter affected by education

and years of working experience), and the couple’s net worth.

Sociological variables, such as religious affiliation and behavior, and

attitudes toward marriage and family, might also be included. Our

intention in this example is to include a reduced set of these variables

that is sufficient to illustrate the statistical issues and advantages when

using constrained MLE as opposed to the usual, unconstrained

technique.

As proxies for a full set of demographic variables, we include

single-year durations of marriage up to 10 years and over, and

whether the age of any child in the current family unit is greater

than the duration of the marriage (a ‘‘premarital children’’ variable).

As a proxy for a full set of economic variables, we include dummies

for the family’s tercile income-to-poverty ratio. This defines lower-,

middle-, and upper-income married couples of this age group. The cut

points are at 3.15 and 5.16 times the PSID’s approximation of the

official poverty ratio. Since the poverty ratio is determined by size of

family, this also proxies partially for that demographic variable. As a

proxy for sociological variables that have changed over time, includ-

ing attitudes to marriage and the family, we include single-year period

dummies for 1984 to 1993. These period dummies will, of course,

proxy also for changes in other unobserved variables, including con-

temporary labor-market conditions.

Finally, race of the couple is coded from the ‘‘race of the

Family Unit Head’’ variable in the PSID. A more complete model

would allow for the race of the husband and wife to differ, but again,

our simplification is adequate for illustrative purposes. Race is also

interacted fully with each of the year dummies and with the dummy

for whether there are any premarital children. The choice of these

particular interactions is more for the purposes of illustration than for

substantive or model-fitting reasons. The year dummies are interacted

with race because the population data allow us to do so very precisely.

The ‘premarital children’ variable allows us to explore the effect of
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interacting a variable for which the population data do not provide

direct information, with a variable (race) that is directly constrained.

We explore the effect of constraints on the black dummy and its

interactions with premarital children and period, under different

model specifications and sample sizes. A major focus of our study is

the improvements of estimation and inference with respect to the

directly constrained coefficients for race and race-by-year interac-

tions, as it is these that allow us to test the minority-group hypothesis

of fertility.

Formally, the covariates in this model are represented by the

vector x, measured at time t � 1. The binomial logit model for the

birth probability P(Y ¼ 1jX ¼ x, qo) is given by equation (10). In the

unconstrained case, we use the survey data alone to estimate the value

of q0 that maximizes the unconstrained log-likelihood.

We next introduce constraint functions. Let ftr be the NCHS

fertility rate for black and white couples (r ¼ 0, 1, respectively) in year

t ¼ 1984, . . . 1993. These fertility rates are used to constrain the black

and white couples’ annual probabilities of a marital birth. The 20 con-

straint functions Ctr (q) are each of the form seen in equation (11) above:

ftr ¼ CtrðqÞ ¼
X

x:year¼t; race¼r
PðY ¼ y j X ¼ x; qÞ�

PðX ¼ x j year ¼ t; race ¼ rÞ ð12Þ

Thus the constraint functions are of the form in which the value of the

outcome variable is known exactly for race and period subpopulations

of the overall population of 30- to 34-year-old married women. The

bivariate association of race with fertility is then implicitly constrained

for all 30- to 34-year-old married women in any given year. The first

term on the right-hand side of the constraint function is the probability

of a birth in year t conditional on the value of the regressor vector x. The

second term is the proportion of the population of that race in year t

with a specific set of values for the regressor variables. Here, it is the

proportion of the population with a specific number of years marital

duration, presence or absence of premarital children, and family

income-to-poverty tercile (that is, values on the regressors that are not

directly constrained). We estimate those proportions from the survey

data. In a simple specification of the model from our example problem,

variance reduction in the estimation of our parameter of interest (the
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coefficient on the black dummy) was little changed when variability

about the regressor distribution was accounted for—down from a 98.4

percent reduction over the unconstrained estimate’s variance to a 97.0

percent reduction. Variance reduction in the intercept parameter, how-

ever, was more substantially affected—down from a 94.9 percent reduc-

tion to only a 73.2 percent reduction. For simplicity, the results

presented below do not account for this source of variability in the

estimates of variance reduction.

The maximum likelihood estimator under constraints is the

solution of

max
q
½Lðq; yjxÞ� subject to CtrðqÞ ¼ ftr t ¼ 1;…10; r ¼ 0; 1

The estimator is asymptotically efficient, unbiased, and Gaussian with

covariance matrix approximated by (8). To evaluate the gains

obtained by imposing additional constraints from the population

data, we estimate both the unconstrained and constrained versions

of our model, and compare the parameters and their standard errors.

We implement our constrained ML estimator using the PROC

NLP procedure of the SAS/OR package (SAS Institute 1997). This

procedure allows for a wide range of objective functions and for a

large number of either linear or nonlinear constraints. In the present

logistic regression case, the constraints are nonlinear due to the non-

linearity in the logistic cumulative density function. The NLP proce-

dure also calculates the covariance matrix and standard errors, using

the standard asymptotic approximation of the inverse of the Fisher

information matrix. The NLP procedure is relatively simple to imple-

ment, and converges within a reasonable time (under two hours CPU

time) for the specification presented here. In more complex specifica-

tions with larger survey samples, however, more flexible and efficient

programming implementations may be required.4

4The main programming disadvantage of the NLP procedure is that it
does not allow for the specification of the constraint function in matrix form.
Thus it becomes unwieldy when the number of possible regressor-vector values to
sum over becomes large. Code for example implementations including for the
present study are available at http://www.stat.washington.edu/~handcock/

combining.
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4. RESULTS

Comparisons between the population and survey estimates of the

annual marital fertility for white and black married women aged 30

to 34 are shown in Figures 3 and 4 for the years 1984 to 1993.5 Here,

as throughout the analyses, the survey estimates are weighted. Here

alone, however, the confidence intervals account for deviations of the

sample from a simple random sampling design. We do so by applying

inflation factors of 1.18 and 2.01 respectively to the standard errors of

white and black women, as calculated separately in a bootstrap

estimation of standard errors in the PSID.

The degree of fluctuation due to sampling error is high for both

races. This is seen both in the confidence intervals that are plotted

with the point estimates and in comparison with the population rates.

The population rates show clear upward trends and very little fluctua-

tion from year to year, for both whites and blacks. The upward trends

are not clearly visible in the highly fluctuating survey rates. Several
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FIGURE 3. Survey (PSID) versus population (NCHS) marital fertility rates of

30- to 34-year-old white women.

5Strictly, the annual probability of a birth is estimated in the PSID, but
this is equivalent to a fertility rate due to the negligible mortality at the child-
bearing ages.
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features stand out when comparing the white and black rates. First,

the black fertility rates in the survey fluctuate more than the white

fertility rates. This is as expected given the smaller sample sizes of

married black women—approximately 250 person-years of exposure

per year, compared to married white women’s approximately 600

person-years of exposure per year.

Second, the black survey rates fluctuate both above and below

the population rates, while the white survey rates appear to be system-

atically higher than the population rates, even if the difference is

statistically significant in only two years (1986 and 1992). This finding

is important for the statistical testing of the minority-group hypoth-

esis, as it could induce a finding of lower marital fertility among black

women that is due to bias in the sample if population data were not

used to correct this bias. We conduct a formal test for such a bias in

the regression estimates below.

Third, in both the population and survey rates, the marital

fertility of blacks is substantially lower than that of whites. This is

seen clearly in the population rates, in which the black rates are

consistently lower by about 20 percent. The black rates increase

from an annual rate of .0675 in 1984 to .0796 in 1993, while white

rates increase from .0830 to .1004 in the same period. These differences

NCHS PSID 95% C.I.
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FIGURE 4. Survey (PSID) versus population (NCHS) marital fertility rates of

30- to 34-year-old black women.
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are the population estimates of the bivariate association of race

and fertility. While this direction of differences is consistent with the

minority-group hypothesis (at least in its ‘‘strong version’’), before draw-

ing a conclusion it is necessary to control for socioeconomic covariates

that may depress black marital fertility rates relative to those of whites

of the same age group.

For the minority-group status hypothesis to be supported, we

should find that black women’s fertility is substantially lower after

controlling for sociodemographic and economic variables. To do so,

we allow the survey data to contribute information on premarital

children, on duration of the current marriage, and on the economic

condition of the family. After including these demographic and socio-

economic control variables, the coefficient for the race variable

together with dummies for the interaction of race by year provide a

test of the minority-group hypothesis.

The distributions of blacks and whites on the covariates, and

the proportions giving birth by covariate and race, are shown in

Table 1. Black women are likely to have been married fewer years

(29.1 percent fewer than 5 years, compared to 23.0 percent of white

couples). They are much more likely to have a child present from

before the marriage (19.7 percent, compared to only 7.5 percent of

white couples). They are also much more likely to be in the lower

income-to-poverty tercile (50.3 percent, compared to 31.1 percent of

white couples), and much less likely to be in the upper income tercile

(16.7 percent, compared to 35.3 percent of white couples).

Two of these racial covariate distributions would point to

black couples having lower birth probabilities than white couples,

and one points in the reverse direction. Having a premarital child

and being in lower income categories are associated with substantially

lower probabilities of giving birth: 0.035 with a premarital child

compared to 0.116 without a premarital child; and 0.074 in the

lower income category compared to 0.152 in the higher income cate-

gory. Birth probabilities are higher, however, at shorter marital dura-

tions (the third and fourth years being the peaks), with the exception

of the first year of the marriage. The lower marital fertility rates of

30- to 34-year-old married black women that are seen in the popula-

tion data, therefore, may be due to socioeconomic covariate differ-

ences by race, not to a ‘‘minority-group’’ effect. Hence, as proposed by

the minority-group hypothesis, it is necessary to control for these
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covariates to assess whether there is a depressing effect of minority

status on fertility.

We estimate the model with socioeconomic covariates under

two regression specifications, alternately including and excluding the

income variables (see Table 2). In both models, we control for mar-

riage duration and presence of a premarital child when estimating the

year-by-year effects of being black on having a birth. For each speci-

fication, we estimate the models alternately in their unconstrained and

constrained versions. Comparing the specifications alternately with

and without the income-to-poverty variables, a test of increase in the

log-likelihood reveals that in both the unconstrained and constrained

versions, inclusion of the income-to-poverty variables improves the fit

(p < .001). The values of the log-likelihood for each equation are

TABLE 1

Blacks’ and Whites’ Covariate Distributions and Bivariate Relationships of These

Covariates to Marital Fertility

Proportion

Whites Blacks Birth Probability

Marital Duration

1 year 0.034 0.043 0.013

2 years 0.040 0.056 0.112

3 years 0.045 0.057 0.191

4 years 0.052 0.066 0.191

5 years 0.059 0.069 0.177

6 years 0.063 0.064 0.163

7 years 0.062 0.068 0.167

8 years 0.070 0.071 0.144

9 years 0.075 0.076 0.127

10þ years 0.500 0.430 0.068

Premarital Child

None 0.926 0.806 0.116

One or more 0.074 0.194 0.035

Family Income-to-Poverty Ratio

Lowest third 0.311 0.503 0.074

Middle third 0.336 0.330 0.100

Top third 0.353 0.167 0.152

Sample N (person-year pairs t � 1,t) 5,813 2,453

Source: PSID 1984 to 1993.
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TABLE 2

Unconstrained and Constrained Regression Estimates

(a) Without Income Variable

Unconstrained Constrained

Parameter

Standard

Error Parameter

Standard

Error (s.e.)

Percent

Reduced (s.e.)

Intercept �1.328** 0.169 �1.564** 0.115 31.8

Premarital child �1.449** 0.228 �1.441** 0.227 0.1

Year 1985 0.078 0.170 0.027** 0.008 95.2

Year 1986 0.297 0.164 0.056** 0.012 92.4

Year 1987 �0.119 0.178 0.077** 0.010 94.5

Year 1988 0.115 0.170 0.041** 0.008 95.2

Year 1989 0.028 0.168 0.082** 0.009 94.6

Year 1990 �0.178 0.175 0.114** 0.010 94.1

Year 1991 0.023 0.169 0.040** 0.013 92.2

Year 1992 0.243 0.165 0.053** 0.013 92.2

Year 1993 �0.098 0.172 0.102** 0.011 93.4

Marriage

duration 1 year

�2.864** 0.541 �2.854** 0.540 0.0

2 years �0.622** 0.212 �0.618** 0.212 0.4

3 years 0.011 0.181 0.010 0.180 0.6

5 years �0.106 0.171 �0.105 0.170 0.6

6 years �0.220 0.172 �0.218 0.171 0.6

7 years �0.195 0.171 �0.193 0.170 0.6

8 years �0.345* 0.171 �0.341* 0.170 0.5

9 years �0.541* 0.173 �0.536** 0.172 0.5

10 or more years �1.277** 0.138 �1.267** 0.137 0.5

Black 0.086 0.458 {0.017** 0.050 89.0

Black*pre-marital

child

�0.023 0.617 �0.011** 0.614 0.4

Black*year 1985 �0.029 0.639 {0.090** 0.027 95.8

Black*year 1986 �0.935 0.697 {0.225** 0.025 96.4

Black*year 1987 0.109 0.618 {0.338** 0.027 95.6

Black*year 1988 �1.242 0.774 {0.338** 0.029 96.2

Black*year 1989 �0.645 0.636 {0.414** 0.033 94.8

Black*year 1990 �0.687 0.692 {0.291** 0.025 96.3

Black*year 1991 0.108 0.595 {0.089** 0.019 96.7

Black*year 1992 �1.106 0.734 {0.050** 0.022 97.1

Black*year 1993 �1.035 0.739 {0.242** 0.023 96.9

2nd tercile

income-to-poverty

— — — —

3rd tercile

income-to-poverty

— — — —

�2 log-likelihood 2673.3 2703.6

(continued)
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TABLE 2

Continued

(b) With Income Variable

Unconstrained Constrained

Parameter

Standard

Error Parameter

Standard

Error (s.e.)

Percent

Reduced (s.e.)

Intercept �1.628** 0.185 �1.930** 0.138 25.4

Premarital child �1.319** 0.229 �1.310** 0.229 0.2

Year 1985 0.081 0.170 0.099** 0.010 94.3

Year 1986 0.291 0.164 0.120** 0.009 94.4

Year 1987 �0.133 0.178 0.132** 0.007 96.3

Year 1988 0.095 0.171 0.091** 0.009 94.6

Year 1989 0.022 0.169 0.145** 0.008 95.3

Year 1990 �0.195 0.176 0.168** 0.008 95.5

Year 1991 0.019 0.169 0.106** 0.012 93.0

Year 1992 0.229 0.166 0.106** 0.012 92.9

Year 1993 �0.105 0.172 0.165** 0.008 95.1

Marriage duration 1 year �2.833** 0.541 �2.820** 0.540 0.1

2 years �0.611** 0.213 �0.606** 0.212 0.5

3 years 0.019 0.181 0.018 0.180 0.6

5 years �0.104 0.172 �0.101 0.171 0.6

6 years �0.222 0.172 �0.221 0.171 0.6

7 years �0.190 0.172 �0.199 0.170 0.7

8 years �0.316* 0.172 �0.312 0.171 0.5

9 years �0.503** 0.173 �0.496** 0.172 0.5

10 or more years �1.173** 0.140 �1.164** 0.139 0.5

Black 0.175 0.458 0.141** 0.054 88.2

Black*pre-

marital child

�0.051 0.617 �0.047** 0.615 0.4

Black*year 1985 �0.056 0.639 {0.186** 0.030 95.3

Black*year 1986 �0.968 0.698 {0.327** 0.027 96.1

Black*year 1987 0.107 0.619 {0.411** 0.027 95.6

Black*year 1988 �1.221 0.774 {0.385** 0.029 96.3

Black*year 1989 �0.635 0.636 {0.474** 0.033 94.9

Black*year 1990 �0.721 0.692 {0.393** 0.028 96.0

Black*year 1991 0.089 0.596 {0.129** 0.022 96.3

Black*year 1992 �1.091 0.734 {0.102** 0.023 96.9

Black*year 1993 �1.003 0.738 {0.281** 0.025 96.5

2nd tercile income-

to-poverty

0.222* 0.099 0.219* 0.099 0.4

3rd tercile income-

to-poverty

0.439** 0.096 0.434** 0.095 0.4

�2 log-likelihood 2662.4 2693.7

Note: Directly constrained coefficients are shown in bold; statistically significant

coefficients are indicated by *p < .05 and **p < .01.
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given in Table 2. As the standard errors for these parameters are

trivially reduced by introducing constraints, it follows that the test

for improving the model fit is almost identical when comparing the

two specifications in the constrained models and in the unconstrained

models.

Our main focus is on the differences between the unconstrained

and constrained estimates. As described in the theory section, the

parameters can be divided into those that are directly constrained

and those that are not. The former category consists of the year

variables, the black variable, and the black-by-year interactions. For

each year, there are black and white constraints. The difference

between them measures the bivariate association of race with fertility

in that particular year. For each year there is a survey variable whose

regression coefficient measures the marginal effect of being black

in that particular year. Thus these variables fit our definition

from the theory section of having ‘‘directly-constrained parameters.’’

The category of indirectly constrained parameters consists of those

for the premarital child, marital duration, and income-to-poverty

variables, plus the variable for the interaction of black and premarital

child.

We consider first efficiency gains from constraining the survey

estimates. Consistent with the statistical theory presented above, the

standard errors on all parameters are lower in the constrained equa-

tion than in the corresponding unconstrained equation. For the vari-

ables that are directly constrained, the reductions in standard errors

are extremely large. For the year dummies, the reductions are by

factors of more than 15, while for the black-by-year interactions, the

reductions are by factors of up to 30. The reductions in standard

errors about the black variable are by factors of about 9. Accordingly,

the magnitudes of the coefficients for the year dummies and black-by-

year interactions vary much less in the constrained model than in the

unconstrained model.

The reductions in standard errors are of trivial magnitudes,

however, for all indirectly constrained variables, in all cases by less

than 1 percent. Noteworthy here is that even for the interaction

variable between black and premarital child, the standard error is

reduced by less than 1 percent. This negligible reduction is in spite

of the strong correlation between being black (a directly constrained

variable) and having a premarital child (seen above). This example
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points to the likelihood that any reductions in the standard errors of

other than directly constrained variables in sociological research will

be very modest.6

The intercept parameter is a special category that is subject to a

direct constraint: the fertility rate of the reference white group in the

reference year 1984. However, the intercept parameter measures more

than just an implicit marginal effect of being white in 1984, measuring

also the implicit marginal effects of being in the reference categories of

the variables that are not directly constrained. The standard error

reduction is by ‘‘only’’ one-third about the intercept variable. The

statistical interpretation here is that the intercept is related both to

the directly constrained variable (black versus white) and the uncon-

strained variables (marital duration and premarital child and, in the

second specification, also income level). The more indirectly con-

strained parameters there are in the model, the less will the intercept

term be determined by the value of the constraint on the reference

year 1984 for reference race ‘‘white.’’

Comparing the specifications alternately with and without the

income-to-poverty variables is instructive here. The reduction in the

standard error about the intercept term is proportionately smaller when

the income-to-poverty variables are additionally included (by 25.4

percent, versus by 31.8 percent in the model without the income-to-

poverty variables). There are not, however, any substantial differences

in the directly constrained parameters with the additional indirectly

constrained parameters included. This is an important result because

the present study has used a simpler specification of the socioeconomic

and demographic variables than would typically be used. The finding

of almost equally large reductions in the standard errors when further

indirectly constrained regressors are added indicates that directly con-

straining a regressor of interest can also be expected to yield very large

efficiency gains in a fully specified regression model.

We now proceed to evaluate the effects of these reductions in

standard errors on our statistical evaluation of the minority-group

hypothesis. We do so for the specification that includes the income-to-

poverty variables. Because we have interaction dummies for nine

6We further confirmed this finding in results not reported here in which
we experimented with simulated data that we created to have very high correla-
tions between directly constrained and other variables.
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years as well as a black dummy, there are ten statistical tests of the

minority-group hypothesis that may be performed in each equation.

A measure of the black minority-status effect for 1984 is the coeffi-

cient of the black dummy. For each of the years 1985–1993, we can

use the sum of the black dummy and the black-by-year interaction

dummy. Each minority-status effect can be evaluated using a t-test

whose test statistic is constructed by dividing the black-effect estimate

by its standard error.7 We then construct confidence intervals around

the estimate for each year. These are shown in Figure 5.

The unconstrained model estimates of the year-by-year black

minority-status effect have large confidence intervals around them,

such that in no year is the estimate significantly different from zero.

While point estimates are relatively evenly spread between being

above and below zero (six above and four below), those below zero

are further from zero, suggesting a possible effect that the statistical

test may not be powerful enough to detect. This suggestion is sup-

ported by the results for the constrained model. Seven out of ten years

have a point estimate below zero, and six of these are statistically

significantly different from zero. Only one of the years (1984) has a

point estimate that is above zero and statistically significant.

We next assess whether and by how much we have reduced bias

by constraining the estimates. As discussed in Section 2.2, the survey

data are unbiased if qsample ¼ q0. We can test the overall hypothesis of

equality between these two parameter vectors using a Wald test

statistic:

ðqMLE � qCMLEÞTðVS�VCÞ�1ðqMLE � qCMLEÞ:

This is asymptotically Chi-squared with degrees of freedom equal to

the number of constraints.

As these models are nested, this difference is asymptotically

chi-squared with degrees of freedom equal to the number of con-

straints. For the model including the poverty variables the test

7For the years 1984–1993, the test statistics are the sum of the two
estimated coefficients (the black dummy and the black *year interaction) and so
the standard errors can be calculated from a quadratic form in the appropriate
variance-covariance matrix. This is Vs in the unconstrained case and Vc in the
constrained case.
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statistic is 69.86. The p-value based on the chi-squared with 20 degrees

of freedom is <0.001. Hence we can reject the null hypothesis of no

bias against the alternative of bias in at least one parameter. The

result is unsurprising given the comparisons between the sample and

population fertility rates shown above for whites in particular (see

again Figure 3). In particular, it seemed that one reason that black

marital fertility in the PSID might be lower than white fertility is that

white fertility might have been upwardly biased.

We calculate the bias in terms of the log-odds of having a birth

calculated from the constrained model estimates minus the log-odds

of having a birth calculated from the constrained model estimates.

This calculation of the log-odds is just the right-hand side of equation

(10). We calculate this bias for the reference category on the other
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FIGURE 5. Estimates of the black minority-status effect.

Note: Effect is estimated by the sum of the ‘‘black’’ parameter estimate and the

‘black-by-year’ parameter estimate for that year.
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regressors—that is, no premarital child, marital duration four years,

and bottom tercile income-to-poverty ratio. We do this separately for

whites and blacks (see Figures 6 and 7). The log-odds are seen to be

upwardly biased in five of the ten years for whites, but in none for

blacks.

Returning to the results of Figure 5, we saw that there

appeared to be a tendency for a downward black minority-status

effect on fertility in the unconstrained model, but one for which the

year-by-year statistical tests were not powerful enough to detect. One

way of increasing the power of the test is to consider an average of

each of the annual effects. This permits an overall test of the minority-

group status hypothesis for the 1984–1993 period. We calculated the
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FIGURE 6. Estimates of the bias of the PSID for white no pre-marriage children,

married four years, and lowest income-to-poverty tercile.

Note: Bias is estimated by the unconstrained log-odds minus the constrained

log-odds.

IMPROVED REGRESSION ESTIMATION 327



average ‘‘black’’ effect in the constrained and unconstrained models as

the mean of the annual differences in the log odds, and calculated the

standard error about this mean.8 The mean effects are then �.375
(0.165 standard error, p ¼ .02), or 0.687 odds-ratio for the uncon-

strained model, and �.128 (.0445 standard error, p ¼ .004), or 0.880

odds-ratio for the constrained model. This compares to mean odds

ratios for the mean black-to-white race-specific fertility rates as pre-

sented in Figures 3 and 4 of 0.641 for the PSID sample data and 0.755

for the NCHS population data. Thus adding the covariates moderates
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FIGURE 7. Estimates of the bias of the PSID for black no pre-marriage children,

married four years, and lowest income-to-poverty tercile.

Note: Bias is estimated by the unconstrained log-odds minus the constrained

log-odds.

8The average ‘‘black’’ effect is a linear combination of the coefficients,
and its variance is then the corresponding quadratic form in the variance-covar-
iance matrix; see also footnote 7.
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the black-white difference from 0.641 to 0.687 in the unconstrained

(sample) version, and from 0.755 to 0.880 in the constrained

(population) version (Table 3). These are very good summary mea-

sures of the effect of constraining the survey estimates of the marginal

race effect to known population values of the overall race and fertility

association. The unconstrained model indicates that black marital

fertility in this age group is as much as one-third lower than white

marital fertility (in terms of odds of having a birth in the next year),

after controlling for socioeconomic variables and variables for marital

and fertility history. This difference is statistically significant at the .05

level but not at the .01 level. Thus although the magnitude of the

effect is apparently very high, the statistical test is only just powerful

enough to detect it. The constrained model indicates that the effect of

black minority status is much smaller— 12 percent lower odds than

for whites of having a birth in the next year. The test for the minority

effect, however, is a very powerful one. The standard error about the

average effect is only one-quarter that of the unconstrained model,

and thus the relatively small difference between black and white

marital fertility is significant at the .004 level.

Finally, we conduct a test of whether the mean black effect

(that is, the black log-odds minus the white log-odds) estimated with

the unconstrained model is biased. The standard error of the differ-

ence in the mean black effect between the unconstrained and con-

strained models (0.247) is 0.159, or a p-value of .060. Taking the

constrained model’s average ‘‘black’’ effect as unbiased, we can say

TABLE 3

Mean 1984–1993 Odds Ratios of Black-to-White Fertility in the Sample and

Population Data at the Predicted Values from the Unconstrained and Constrained

Regression Estimates

Ratio of Black Odds of

Birth to White Odds of Birth

Bivariate Relationships ratio

PSID (sample) 0.641

NCHS (population) 0.755

Partial (Regression-Predicted) Relationships

Unconstrained regression 0.687

Constrained regression 0.880
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that the apparent upward bias in the unconstrained model’s black

effect, estimated by comparing the mean effect between the con-

strained and unconstrained models, is close to being statistically sig-

nificant at the .05 level.

5. SUMMARY AND DISCUSSION

We first described the statistical properties of the general constrained

ML estimator. We then illustrated its application with a particular type

of constraint function in which the weighted sum of all the covariate-

specific associations (partial effects) of the regressors on the dependent

variable is constrained to equal the population association of one or

more of the regressors. We refer to those regressors whose bivariate or

limited multivariate relationships with the dependent variable are con-

strained by population data as being ‘‘directly constrained.’’ Our study

estimated the improvements in the estimation of directly constrained

variables and also improvements in the estimation of other regressor

variables that may be correlated with the directly constrained variables,

and thus indirectly constrained by the population data.

We showed with an empirical example that partial effects from

survey data may be reestimated with a large reduction in variance by

specifying population constraints on their overall association with the

dependent variable. The example application consisted of a test of the

‘‘minority-group’’ hypothesis of fertility for the marital fertility of

black and white couples in which the wife is aged between 30 and 34

years old. According to the minority-group hypothesis, fertility will be

lower for a minority group of otherwise equal economic status.

The population data were age-, year-, and race-specific marital

fertility rates calculated from birth-registration data combined with

census-based estimates of the married population by age and race.

The survey data were from the Panel Study of Income Dynamics

(PSID). These survey data contribute additional information on pre-

marital children, on duration of the current marriage, and on the

economic condition of the family.

The standard error about the coefficients was shown to be

substantially, even drastically, reduced under constrained MLE as

compared to under unconstrained MLE. The indirectly constrained

coefficients, however, were changed negligibly in both point estimate
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and standard error about the point estimate. We also used the compar-

ison between constrained and unconstrainedMLE to test for bias in the

survey data, and found evidence of upward bias for white couples but

not for black couples. Thus we have shown that the constrained MLE

technique both provides a far more powerful statistical test of the

minority-group hypothesis and purges the test of a bias that would

otherwise favor a finding in support of the minority-group hypothesis.

Substantively strong but statistically weak support for the

minority-group hypothesis is found in the estimates from the uncon-

strained version of our model. The conclusion from the constrained

version is that a statistically significant but substantively small min-

ority-group effect is indicated. The difference in these two conclusions

from the point of view of the sociologist is potentially very large. As

we noted above, earlier tests of the hypothesis for black versus white

fertility have yielded mixed findings. These studies are not directly

comparable to the present study, due among other things to the

restriction of the present study to married women in their early 30s.

Nevertheless, the results of the present study suggest that one factor

contributing to the mixed findings in previous studies may be weak-

nesses in the empirical tests—either due to bias in the data of one or

the other of the black or white groups (as we found here for whites);

or due to the large sampling error that arises in testing in relatively

small subpopulations. It is indicative here that researchers frequently

turn to large sample data sets such as Census PUMS when analyzing

racial and ethnic differences (e.g., Bean and Swicegood 1985), trading

off sampling error for the problem of having fewer socioeconomic

variables available to specify a behavioral model. In the present study,

we direct sociologists to an alternative approach that allows for the

use of a smaller survey data set and thus a more fully specified

behavioral model, but using known population relationships to

greatly increase the statistical power of the regression estimates.

As a caveat here to the finding of a small minority-group status

effect, the relatively simple set of socioeconomic variables regressors

used here, and the lack of attention to hypothesized interactions

between socioeconomic status and a minority-group status effect in

more refined statements of the hypothesis, may have resulted in

marital fertility equations that are misspecified. If the specification

were improved by the inclusion of more regressor variables—for

example, to specify such socioeconomic by minority-group status
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interactions, or to include more demographic or economic variable

detail—the black minority-group status effect might be reduced still

further. In that case, we would be able to conclude against the

operation of a substantial minority-group status effect using a much

more powerful test than one that used survey data only. The compari-

sons we made between the models before and after adding more

socioeconomic regressors (the income-to-poverty ratio dummies) indi-

cate that little reduction in statistical power would result from adding

more regressors to the model.

Finally, we note that the statistical structure assumed for the

population and survey data here will not always be realistic. In

particular, we assumed that the population constraints were known

exactly, in terms of both the associations of race and year with fertility

(the marital fertility rates provided by NCHS) and the distributions of

regressor variables (estimated from sample, not population, data).

Future research on, and development and implementation of methods

to account for, these sources of uncertainty in the constraint functions

and values are recommended.
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