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1. INTRODUCTION

There is an extensive literature on statistical spatial–temporal modeling of meteorological and environmental
fields. See, for example, Guttorp & Sampson (1994), Mardia & Goodall (1994), Brown, Le & Zidek (1994), Niu & Tiao
(1995), Jones & Hulme (1996), Smith (1996) and Luo, Wahba, & Johnson, (1997). These papers focus on developing
realistic models for possibly heterogeneous spatial–temporal dependence structures. In practice the characteristics of
the underlying stochastic process are seldom completely known and are usually modeled from environmental data.
The perspective taken here is that the model specification and statistical inference should not be regarded as two
separate procedures when the objective is prediction. In particular it is essential that the choice of the class of models
take into account the various sources of uncertainty that will effect the predictions based on that class. This will
not only improve the quality of the predictions but also improve the quality of the assessment of the uncertainty
of the prediction. The sources of uncertainty in prediction are sampling variability, model uncertainty and model
misspecification. Sampling variability is the variation in the prediction given that the specified model is correct. The
model uncertainty is the uncertainty about the correct model within the specified class of models given the available
data. The model misspecification is the degree to which the specified class of models does not represent the spatial–
temporal variation of the phenomena. The current available statistical approaches typically only take into account the
first source when they assess the overall uncertainty. In general complicated (e.g., semi–parametric) model classes have
smaller model misspecification while simple (e.g., small parametric) model classes have smaller model uncertainty.

Here we develop a spatial-temporal model for the spring temperature over a region in the northern United States
covering eastern Montana through the Dakotas ( 90◦ − 107◦ in longitude) and northern Nebraska up to the Canadian
border ( 41◦ − 49◦ in latitude). The empirical work of Lettenmaier, Wood and Wallis (1994) suggests that the
temperatures over the spring period might exhibit a temporal pattern not found in the winter months. In addition the
relatively stable and simple topography of the region help to ensure homogeneity and the minimization of localized
effects.

A companion study reported in Handcock & Wallis (1994) considered the winter months and this region because
GCM predictions of climatic change (4◦F − 10◦F ) induced by increased greenhouse gases are expected to be at
maximum for high latitudes during the winter months (Mitchell (1989), IPCC (1990)). However there was no indication
that the areal mean temperature for this time of the year in this region has changed over the last half century. There
the posterior predictive distributions were used as a basis for calibrating temperature shifts by the historical record.
In particular, the objective was to understand how soon gradual increases in temperature over this region would be
discernible from the year-to-year variation. A similar analysis could be undertaken for the spring season considered
here.

2. METHODOLOGY

Suppose Z(x) is a real-valued stationary Gaussian random field on R with mean E{Z(x)} = f ′(x)β, where

f(x) =
{
f1(x), . . . , fq(x)

}′
is a known vector-valued function and β is a vector of unknown regression coefficients.

Furthermore, the covariance function is represented by cov
{
Z(x), Z(y)

}
= αKθ(x, y) for x, y ∈ R where α > 0 is a

scale parameter, θ ∈ Θ is a p× 1 vector of structural parameters and Θ is an open set in IRp. In the general case,
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we observe {Z(x1), . . . , Z(xn)}′ = Z and will focus on the prediction of Z(x0). In our application x1, . . . , xn are the
spatial locations of the stations in the network. We will focus on the prediction of Z(x0), where x0 is a new location

in the region of interest. The Kriging predictor is the best linear unbiased predictor of the form Ẑθ(x0) = λ′(θ)Z;
that is, the unbiased linear combination of the observations that minimizes the variance of the prediction error. In
the application x = (u1, u2) and we can take f1(x) = u1 and f2(x) = u2, the latitude and longitude of locations
within the geographic region, respectively. A third component of the mean will be added in Section 3. The covariance
function represents the covariance between the temperature at the locations x = (x1, x2) and y = (y1, y2).

As β is a location parameter we expect that our prior opinions about β bear no relationship to those about α
and a priori might expect α and β to be independent, leading to the use of the simple prior: pr(α, β, θ) ∝ pr(θ)/α.
The marginal posterior distribution of θ can be shown to be

pr(θ | Z) ∝ pr(θ) · |Kθ|−1/2|F ′K−1
θ F |−1/2α̂(θ)−(n−q)/2

where F = {fj(xi)}n×q ,Kθ = {Kθ(xi, xj)}n×n, and α̂(θ) is the GLS of α given θ. The Bayesian predictive
distribution for Z(x0) is

pr(Z(x0) | Z) ∝
∫

Θ

pr(Z(x0) | θ, Z) · pr(θ | Z)dθ

where the predictive distribution of Z(x0) conditional on θ and Z is a shifted t distribution on n − q degrees

of freedom with location Ẑθ(x0) and scale α̂(θ)Vθ , the usual prediction error variance for Z(x0) − Ẑθ(x0). This
formulation does not restrict the covariance model to be isotropic or homogeneous, although the such a model is
used in the application below. Depending on the influence of θ on the spread and location of pr(Z(x0) | θ, Z), the
Bayesian predictive distribution might be wider or narrower than the predictive distribution derived by “plugging in”
point estimates of α,β and θ. . The location of the plug-in predictive distribution may also be quite different from
the Bayesian predictive distribution. Typically the Bayesian predictive distribution will have no simple analytic form
and must be determined numerically.

3. MODELING SPRING TEMPERATURE FIELDS

Initially we consider a spatial model appropriate for a meteorological field over a single time period. The field
discussed here is the average spring temperature. The daily average temperature at a location is defined to be the
mean of the daily maximum and the daily minimum at that location. The average spring temperature is defined to
be the average daily average temperature over the months March, April and May.

The basis of the data is a network of 1219 stations (the HCN network) for the contiguous United States developed
by the U. S. Carbon Dioxide Information Analysis Center “with the objective of compiling a data-set suitable for the
detection of climatic change” (Karl, Williams, Quinlan & Boden (1990)). The actual data values are from Wallis,
Lettenmaier and Wood (1991) which applied a enhanced method of adjusting for missing days (See Handcock & Wallis
(1994)).

The components of the parametric mean function, fi(·), should clearly include the latitude, longitude and ele-
vation of each station. Other possibilities are polynomials in latitude, longitude, elevation, and the distance to the
closest urban area or transformations of them. The ultimate choices for components for the mean function were
latitude, longitude and elevation, as additional components did not have an appreciable effect on the likelihood ratios
or on the likelihood function itself.

The parametric family of covariance functions used in this analysis is the Matérn class discussed in Matérn (1986)
and Handcock & Stein (1993). In the form used here it is spatially isotropic and homogeneous: Kθ(x, y) ≡ Kθ(|x−y|)
is usually expressed as a function of a single scalar variable: (x/θ′1)

θ2 Kθ2 (x/θ
′
1) /(2

θ2−1Γ(θ2)) where θ′1 = θ1/(2
√
θ2)

and θ1 > 0 is a scale parameter controlling the range of correlation. The smoothness of the field is controlled by
θ2 > 0. Kθ2 is the modified Bessel function of order θ2 discussed in Abramowitz and Stegun (1964), §9. Based on
numerical and graphical diagnostics this is a plausible specification for the spatial variation in this region. The use of
a more complicated model would result is a bias–variance tradeoff with the greater model uncertainty. The class is
motivated by the smooth nature of the spectral density, the wide range of behaviors covered and the interpretability
of the parameters. The Exponential class corresponds to the sub-class with smoothness parameter θ2 = 1/2, that is
KE(x) = θ1 exp(−x/θ1). As θ2 → ∞, Kθ(x) → exp(−x2/θ21), often called the “Gaussian” covariance function. We
shall refer to it as the Squared Exponential model. This model forms the upper limit of smoothness in the class. A
draw back of this class is that it does not allow negative correlations. A related class of models that do allow negative
correlations have been developed by Vecchia (1985), although the flexibility in the smoothness is restricted.

Based on meteorological arguments, we believe that the underlying meteorological field is continuous and may
be differentiable many times . The magnitude of both random and systematic measurement error (“nugget effect”)
varies from year-to-year. It can be incorporated by adding a single additional parameter (θ3) to the covariance
function: cov{Z(x),Z(y)} = α(θ3I(x = y) + Kθ(x, y)) where I(·) is the indicator function. For example, for

1984 the maximum likelihood estimate had no nugget effect (θ̂3 = 0). Typically the estimated nugget effect was
25% - 50% of the point variance. In contrast, the mean winter temperatures reported in Handcock & Wallis (1994)
the nugget effect appeared to be small relative to the year to year variation. As expected the estimate of the
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smoothness of the field increases when a nugget effect is included. For example, for 1988 the maximum likelihood
estimate for the covariance structure based on the Matérn class is (α̂, θ̂) = (1.33◦F 2, 1.02◦, 10.3, 77%). The range
of dependence (1.02◦) spans approximately a ninth of the region under study. The point standard deviation of

the mean spring temperature is
√

α̂ + α̂θ̂3 = 1.5◦F. The smoothness of the field is estimated to be ten mean-
square derivatives. Under the Gaussian assumption this implies that the observed field has ten derivatives. The
likelihood is very flat for θ2 > 1. The maximum likelihood Squared Exponential model ( θ2 = ∞) with a nugget

effect is (α̂, θ̂) = (1.33◦F 2, 0.97◦, ∞, 76%), with only a 0.01 decrease in log-likelihood from the previous model.
This feature was typical of most years: the log-likelihood is very flat for large smoothness values indicating that
there is little information in the spatial observations to discriminate between these smoothnesses in the presence of a
substantial micro-scale variation.

We can add the temporal component of the model, generalizing the random field to Zt(x) where t = 1948, . . .
represents the spring of observation. We consider the time-series of data from each station, independent of the spatial
information. The spatial analysis was repeated independently for each year of data from 1948-88.
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Figure 1. Time-series and empirical autocorrelation functions for four typical sites.

Figure 1 presents the time-series and empirical autocorrelation functions for four spatially separate stations. Indi-
vidually the time-series are quite variable over time. Inspection of the series as a whole suggests a mild upward trend
over the last half century time. The right hand side figures are the sample autocorrelation functions corresponding to
the time-series. The dashed boundaries represent approximate 95% confidence limits. Note the similar patterns in the
series over time and the lack of first lag autocorrelation. We investigated these fields for short-memory temporal struc-
ture. We found little evidence for AR(1) structure and indication that the series are close to uncorrelated over time.
We also considered the presence of significant dependence between observations a long time span apart, postulating an
autoregressive integrated moving average processes with non-integral degrees of differencing, d. (ARIMA (p, d, q) ).
There was little (likelihood) evidence for such structure.

4. MEASURING AREAL MEAN TEMPERATURE

Using the method described in Handcock & Wallis (1994) we can construct posterior distributions for the time–
series of areal mean temperature over the region of interest. These are defined by: Z̄t = 1

|R|

∫
R
Zt(x)dx, t =

1948, . . . , 1988, . . . where |R| is the area of the region R. Thus at each point in time, Z̄t represents the average
temperature over the region and is a function of the field Z(x). Z̄t provides a natural measure for the detection
of changing climatic patterns over the region. As the region is devoid of gross topographic features, it provides a
convenient measure of overall temperature during the spring. It is important to note that Z̄t is a characteristic of
the temperature field itself, and not a characteristic of the stations in the network. The behavior of the areal mean
temperature will provide an indication of the overall changes in climate over the region independent of the individual
stations.

To further explore the temporal changes in Z̄t we will consider the time-series of maximum a posteriori (MAP)
values. The distributions have similar shape and the ratio of largest to smallest variance is 2.2. While this clearly
represents a reduction in information relative to the full distribution, it facilitates examination. Figure 2 represents
the MAP values for the last half century. Note the suggestion of a trend over time. Some interesting years have been
indicated. There was little evidence, over this period, of short or long term dependence in the MAP values. However
long term dependence in climatological series can occur over time scales of a centuries or more and such dependence
would not be apparent from our half century of observation. The trend apparent in Figure 2 could simply be an
artifact of such long term dependence.

As in Handcock & Wallis (1994) we can construct a model for the mean areal temperature over the last half
century. If we compare the static areal mean temperature for 1948-67 to 1968-88 we can confirm that the posterior
distributions have little overlap, with the information from the latter years indicating warmer temperatures. The
uncertainty in the mean areal temperature for the latter period is larger, reflecting the increased variation in the
annual values. The natural alternative model postulates a linear increase over time. However this trend is confounded

221



Bulletin of the International Statistical Institute, 51, 1, 219-222.

with any long term dependence over a time scale much longer than the forty year observation period.
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Figure 2. This is the time-series of (the MAP estimates for the) areal mean temperature. There
is little short or long term dependence.

BIBLIOGRAPHY

Abramowitz, M. & Stegun, I.A. (1965). Handbook of Mathematical Functions. New York: Dover.
Brown, P. J., Le, N. D. & Zidek, J. V. (1994),Multivariate Spatial Interpolation and Exposure to Air Pollutants Canadian

J. of Statistics, 22, 489-516.
Guttorp, P. & Sampson, P. D. (1994). Methods for Estimating Heterogeneous Spatial Covariance Functions with Envi-

ronmental Applications in Handbook of Statistics, Vol. 12, Eds. G. P. Patil and C. R. Rao, pp. 661-689. Elsevier.
Handcock, M.S. and Stein, M.L. (1993). A Bayesian Analysis of Kriging. Technometrics 35, 403-410.
Handcock, M.S. and Wallis, J.R. (1994). An Approach to Statistical Spatial–Temporal Modeling of Meteorological Fields

(with discussion) Journal of the American Statistical Association, 368-390.
Intergovernmental Panel on Climate Change, (1990) Scientific Assessment of Climate Change, World Meteorological Orga-

nization, United Nations Environment Programme, Geneva, Switzerland.
Jones, P.D., & Hulme, M. (1996). Calculating Regional Climate Time Series for Temperature and Precipitation: Methods

and Illustrations International Journal of Climatology 16, 361-377.
Karl, T.R. & Williams, C.N., Jr., Quinlan, F.T. & Boden, T.A. (1990). United States Historical Climatology Network

(HCN) serial temperature and precipitation data. NDP-019/R1, p. 83 plus appendices. Carbon Dioxide Information
Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Lettenmaier, D.P., Wood, E.F. & Wallis, J.R. (1994). Hydro–Climatological Trends in the Continental United States,
1948-88 Journal of Climate 7, 586-.

Luo, Z., Wahba, G. & Johnson, D. (1997). Spatial–Temporal Analysis of Temperature Using Smoothing Spline ANOVA.
Technical Report, Department of Statistics, Penn State University.

Mardia, K. V. & Goodall, C. R. (1994) “Spatial–temporal Analysis of Multivariate Environmental Monitoring Data Models” in
Multivariate Environmental Statistics Eds. G. P. Patil and C. R. Rao, pp. 347-386. Elsevier: New York.

Matérn, B. (1986). Spatial Variation Second Ed, Lecture Notes in Statistics, 36. Berlin: Springer-Verlag.
Mitchell, J. F.B. (1989). The “Greenhouse Effect” and Climate Change. Reviews of Geophysics 27, 115-139.
Niu, X. and Tiao, G. C. (1995). Modeling Satellite Ozone Data, Journal of the American Statistical Association, 969-983.
Ripley, B.D. (1981). Spatial Statistics. New York: Wiley.
Smith, R. L. (1996). Estimating Nonstationary Spatial Correlations, Technical Report, Department of Statistics, University

of North Carolina.
Vecchia, A. V. (1985), A General Class of Models for Stationary Two-Dimensional Random Processes,

Biometrika 72, 281-91.
Wallis, J.R., Lettenmaier, D.P. & Wood, E.F. (1991). A Daily Hydroclimatological Data Set for the Continental United

States. Water Resources Research 27, 7, 1657-1663.

SUMMARY

The traditional best linear unbiased prediction procedure (“Kriging”) is used in this paper for inference, but within a Bayesian
framework. See Brown, Le & Zidek (1994) for an alternative Bayesian formulation. Our approach is to exam how posterior
predictive distributions of areal quantities change over time. The objective is to see if there have been changes in areal tempera-
ture that are discernible from the year-to-year variation. The approach takes into account the uncertainty about the covariance
function expressed in the likelihood surface and ignored by point estimates of the covariance function.

These ideas are implemented for the spring temperature over the region in the northern United States based on the stations
in the United States historical climatological network reported in Karl, Williams, Quinlan & Boden (1990). The results indicates
that there is significantmicro-scale variation over a spatially smooth field. There is substantial variation in the spring temperature
from year-to-year that is spatially correlated (Figure 1). The areal mean temperature is correspondingly variable and appears
to be increasing over the period considered (Figure 2). However, this finding has been confirmed using different statistical
approaches (Lettenmaier, Wood and Wallis (1994)). It is also evident from this later study that, had other regions or periods
been picked, the results would have been quite different.
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