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An Approach to Statistical Spatial-Temporal 
Modeling of Meteorological Fields 

Mark S. HANDCOCK and James R. WALLIS* 

In this article we develop a random field model for the mean temperature over the region in the northern United States covering 
eastern Montana through the Dakotas and northern Nebraska up to the Canadian border. The readings are temperatures at the 
stations in the US. historical climatological network. The stochastic structure is modeled by a stationary spatial-temporal Gaussian 
random field. For this region, we find little evidence of temporal dependence while the spatial structure is temporally stable. The 
approach strives to incorporate the uncertainty in estimating the covariance structure into the predictive distributions and the final 
inference. As an application of the model, we derive posterior distributions of the areal mean over time. A posterior distribution for 
the static areal mean is presented as a basis for calibrating temperature shifts by the historical record. For this region and season, the 
distribution indicates that under the scenario of a gradual increase of 5°F over 50 years, it will take 30-40 winters of data before the 
change will be discernible from the natural variation in temperatures. 

KEY WORDS: Bayesian statistics; Climatic change; Gaussian random fields. 

1. INTRODUCTION 

There has been much interest recently in climatic change 
and potential global warming. Of central focus is the phe- 
nomenon popularly called the "greenhouse effect": the heat- 
ing of the earth via the entrapment, by certain gases, of long- 
wave radiation emitted from the earth's surface. This effect 
produces a global mean temperature of about 59°F rather 
than an estimated -6°F in the absence of atmosphere 
(Mitchell 1989). Increasing concentrations of the gases 
thought to contribute to this effect have led to concern in 
the scientific community about temperature increases and 
the resulting climatic effects. 

There appears to be no clear-cut consensus on the extent 
of global warming over the last century; most estimates run 
from 0.5"F to 1 .O"F. The difficulty is the lack of good long- 
term data over large regions. The global temperature con- 
stantly changes on time scales of tens of thousands of years. 
In fact there have been times in the past millennium when 
it has been much warmer than the temperatures discussed 
in most global warming scenarios. The objective here is the 
statistical validation of a postulated rapid change over the 
next century that will have enormous environmental impact. 

Much of the evidence for a global warming effect has been 
based on large-scale general circulation models (GCM's) , 
which use multilevel mathematical representations of the 
atmosphere for weather prediction. Given the complexity of 
the environment and the relative simplicity of the models, 
there is much controversy concerning their validity. Results 
from the four most widely cited GCM's from the National 
Center for Atmospheric Research (NCAR) , Geophysical 
Fluid Dynamics Laboratory (GFDL) of the National Ocean- 
ographic and Atmospheric Administration, the Goddard In- 
stitute of Space Studies (GISS), and the Hadley Center for 
Climate Prediction and Research at Bracknell, England, are 
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still far from being in agreement, although all models predict 
higher winter temperatures at the higher northern altitudes 
as a function of increasing greenhouse gases. 

Significant global warming would have an enormous effect 
on the environment and the world economy. Altering the 
world economy to reduce the production of the gases sus- 
pected of increasing the greenhouse effect would be very 
costly and/or drastically alter our way of life. Some argue 
that the political decision is best postponed until after the 
empirical evidence is in. This article sheds light on how long 
we would have to wait to detect a global warming with suf- 
ficiently high confidence to support such a decision. 

In this paper we develop spatial-temporal models for 
temperature fields over a region in the northern United States 
covering eastern Montana through the Dakotas (90"-107" 
in longitude) and northern Nebraska up to the Canadian 
border (41 "-49" in latitude). We choose the winter months 
and this region as our study area because GCM predictions 
of climatic change (4°F- 10°F) induced by increased green- 
house gases are expected to be at maximum for high latitudes 
during the winter months (IPCC 1990; Mitchell 1989). In 
addition, the relatively stable and simple topography of the 
region help ensure homogeneity and the minimization of 
localized effects. Data from the United States historical cli- 
matological network, reported by Quinlan, Karl, and Wil- 
liams (1987) is used to explore long-term changes and po- 
tential effects of increased greenhouse gas concentrations. 

There is much interest in empirical studies of climatic 
change. Jones et al. (1986) considered station data to inves- 
tigate long-term variation in the surface temperature of the 
northern hemisphere. Karl (1984, 1985) considered climate 
variation and change in North America. These studies em- 
phasized the dynamic nature of the climate system and the 
existence of abnormal winter temperatures within the climate 
system. Other empirical work was reported by Diaz and 
Quayle (1978, 1980). A hindrance to these and earlier studies 
has been the dearth of quality data with both spatial and 
temporal extent. 
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Karl. Heim, and Quayle ( 199 1) considered a similar region 
with the objective of identifying greenhouse effects. They 
constructed a pure time-series model for the averages of the 
stations enclosed in the region and did not address the spatial 
aspects of the temperature field. In contrast, this article de- 
velops a comprehensive model for the spatial dimension in 
conjunction with the temporal component. In addition, the 
model is for the meteorological field as a whole, rather than 
just a particular characteristic. This is important, as it facil- 
itates direct comparison with GCM’s and prediction of de- 
rived quantities throughout the region and over time. In par- 
ticular, it allows the prediction of the meteorological field at 
each location (e.g., city or county) with an associated as- 
sessment of the quality of prediction. 

The traditional best linear unbiased prediction (BLUP) 
procedure, also known as “kriging,” is used in this article 
for inference, but within a Bayesian framework. Particular 
attention is paid to the treatment of parameters in the co- 
variance structure and their effect on the quality, both real 
and perceived, of the prediction. 

Our approach is to use posterior distributions for the static 
areal quantities as a basis for calibrating temperature shifts 
by the historical record. In particular, the objective is to un- 
derstand how soon gradual increases in temperature over 
this region would be discernible from the year-to-year vari- 
ation. 

1.1 U.S. Historical Climatology Network 

Recently the U.S. Carbon Dioxide Information Analysis 
Center established a network of 1,219 stations (the HCN 
network) for the contiguous United States “with the objective 
of compiling a data set suitable for the detection of climatic 
change” (Quinlan, Karl, and Williams 1987, p. 1). The net- 
work record includes maximum, minimum, and mean 
monthly temperatures and total monthly precipitation since 
the 1890s. The data base is available through the National 
Climate Data Center (NCDC) . 

Much attention has been given to the quality issues in 
terms of the choice of stations in the network (e.g., locations 
away from urban areas and the identification of artificial 
changes in local environment). The data from selected station 
records have been meticulously cleaned using procedures to 
check consistency with neighboring stations and temporal 
homogeneity. 

As part of a study to improve the land surface parame- 
terization of the GFDL GCM, a 41-year daily-value data 
base was prepared and made available in CDROM format 
(Wallis, Lettenmaier, and Wood 199 1). The study used 1,036 
of the original HCN stations, with missing days flagged and 
then estimated by correlation to nearby stations. There are 
differences between the unadjusted monthly mean values 
reported by Karl, Williams, Quinlan, and Boden (1 990) and 
those reported by Wallis et al. (199 1). Some of these differ- 
ences can be accounted for by a difference in the treatment 
of missing days. Karl et al. (1990) summed the observed 
days in any given month and divided by their number to 
calculate the average monthly value; missing days were not 
estimated. Wallis et al., however, encountered many cases 
where even the number of missing days in a given month 

did not agree between the daily and monthly NCDC data 
bases. The data used in this study are that given by Wallis 
et al., and the sites used were chosen so as to minimize the 
effect of these data peculiarities. There are minor changes to 
many of the numerical results, but the inference has been 
largely unchanged. The reformulated data appear to remove 
an additional source of “random” variation from the HCN 
data set. If the NCDC ever prepares a cleaned-up data base, 
then the calculations reported here could easily be repeated. 
In the interim, we do not believe that data errors for the 
stations and periods used in this study are large enough to 
invalidate any of our results or conclusions. 

2. ANALYSIS OF SPATIAL STRUCTURE 

In this section we discuss a spatial model appropriate for 
a meteorological field over a single time period. The field 
discussed here is the average winter temperature. The daily 
average temperature at a location is defined to be the mean 
of the daily maximum and the daily minimum at that lo- 
cation. The average winter temperature is defined to be the 
average daily average temperature over the months Decem- 
ber, January, and February using the data and aggregation 
method of Wallis et al. (1  99 1). For example, winter for the 
year 1983 starts in December 1983. 

The generalizations to include a temporal component is 
the subject of the following section. 

Figure 1 represents the region under study. The locations 
of the 88 U.S. historical climatological network stations in 
the region are marked with “+.” The elevation of the stations, 
in feet, are represented by the overlaying gray-scale image. 

Note that the elevation increases from east to west and 
also from north to south. As expected, the elevation of the 
station has a marked impact on temperature, and it is es- 
sential that the model reflect this relationship. 

Figure 2 is a gray-level image of the mean winter temper- 
atures for winter 1983-1984. These data are the basis for the 
spatial analysis described in this section. 

I 

Figure 1. Locations and Elevations of the U.S. Historical Climatological 
Network Stations. The gray-level Image IS for the elevation above sea level 
over the region. 
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Figure 2. Gray-Level Image of the Mean Winter Temperatures for the 
Winter of 1983- 1984. The temperature range, in Fahrenheit, is given in 
the legend. 

Suppose that Z( x)  is a real-valued stationary Gaussian 
random field on the region under study ( R )  with mean 

E{Z(x) j  = f(x)’B, 

where f (x) = { J; (x) ,  . . . ,f,( x) }‘ is a known vector function 
and B is a vector of unknown regression coefficients. Fur- 
thermore, the covariate function is represented by 

cov{Z(x), Z ( Y > }  = &(x, Y )  for x ,  Y E  R ,  

where CY > 0 is a scale parameter, B E 0 is a q X 1 vector of 
structural parameters, and 0 is an open set in R”. The di- 
vision is purely formal, as B may also determine aspects of 
scale. This formulation is standard for meteorological net- 
works (Gandin 1963). 

We observe, from a single realization of the field, 
{Z(x , ) ,  . . . , Z(x,)}‘ = Z, where x i ,  . . . , x, are the spatial 
locations of the stations in the network. In our situation, 
each of the n = 88 observations is the average winter tem- 
perature at a site for a winter. We will focus on the prediction 
of Z ( X O ) ,  where ~0 is a new location in the region of interest. 

The kriging predictor is the BLUP of the form Zo(xo) 
= h(B)’Z; that is, the unbiased linear combination of the 
observations that minimizes the variance of the prediction 
error. The quality of the prediction is determined by the 
distribution of the prediction error, e( xo) = Z( xo) - Z @( xo). 
Note that the underlying kriging procedure is motivated by 
sampling considerations, producing point predictions and 
associated measures of uncertainty for those predictions, both 
based on sampling distributions unconditional on the ob- 
served Z.  It is well known, however, that kriging can be 
given a Bayesian interpretation when the mean is of known 
regression form (see for example, Omre and Halvarsen 1989, 
Handcock and Stein 1993 ; and Hastie and Tibshirani 1990). 

Implementation of this model requires the specification 
of the regression function f (x) and the spatial covariance 
structure KO( - ,  - ), The components of f (x) should be easily 
measurable spatial characteristics of the station, such as the 

latitude, longitude, and elevation of each station. Other pos- 
sibilities are polynomials in latitude, longitude, elevation, 
and the distance to the closest urban area or transformations 
of them. The ultimate choices for components for the mean 
function were latitude, longitude, and elevation, as additional 
components did not have an appreciable effect on the like- 
lihood ratios or on the likelihood function itself (see Secs. 
2.2 and 2.3). Specification of the covariance structure is cov- 
ered in the following section. 

2.1 Spatial Correlation Structure: 
The Matern Class 

The properties of the covariance function directly deter- 
mine the properties of the random field model. If the class 
describes too narrow a range of behaviors of the random 
field or is not parsimonious, it will not provide an adequate 
basis for modeling. This goes beyond the criterion of pleasing 
visual shape typically used to choose covariance classes. In 
this section we describe a general class of isotropic and ho- 
mogeneous covariance functions that we feel provides a 
sound foundation for the parametric modeling of Gaussian 
random fields. An isotropic and homogeneous covariance 
function can be represented as a function of 1 x - y I, the 
distance between x and y ,  for all x, y E R.  The class is 
motivated by the smooth nature of the spectral density, the 
wide range of behaviors covered, and the interpretability of 
the parameters (Handcock and Stein 1993; Mattrn 1986). The 
Matkrn class is characterized by the parameter B = ( 01, 0,). 
0 ,  > 0 is a scale parameter controlling the spatial range of 
correlation, while the smoothness parameter d2 > 0 directly 
controls the smoothness of the random field. The exponential 
class corresponds to the subclass with smoothness parameter 
B2 = 4 ; that is, 

The subclass defined by 02 = 1 was introduced by Whittle 
( 1954) as a model for two-dimensional fields and it is com- 
monly used in hydrology (Creutin and Obled 1982; Jones 
1989; Mejia and Rodriguez-Iturbe 1974). As O2 + co, 
KO( x , y ) + exp ( - I x - y I / 0 : ) , often called the “Gaussian” 
covariance function. We shall refer to it as the squared 
exponential model. This model forms the upper limit of 
smoothness in the class and will rarely represent natural 
phenomena, as realizations from it are infinitely differenti- 
able. 

The spectral density at frequency w on Rd has the general 
form 

exP(-lx - Y l f i / ~ l ) .  

a - c(e, d )  
[ i  + (e;,)2]02+d/2 ’ 

where the constant 

e;’r(02 + d/2)(402)02 and 0; = d1,(2&). 
r ( 8 2 ) ~ ~ ’ ~  

c(e,  d )  = 

The corresponding isotropic covariance functions have the 
form 

&(x, y)  = 202-1 (Y r(0,) . ( ! q o 2 X o * ( ! y )  

where r is the gamma function and X,, is the modified Bessel 
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function of the third kind and order 8 2  discussed by Abram- 
owitz and Stegun ( 1964, sec. 9). A field with this covariance 
function is r 8 2  - 1 times (mean squared) differentiable where 
r is the integer ceiling function. The realizations will have 
continuous TO2 - 1 derivatives if O2 > TO2 - f . If the field 
is Gaussian, then the realizations will have continuous 
TO2 - 1 derivatives (almost certainly) (see CramZr and 
Leadbetter 1967, secs. 4.2,7.3, and 9.2-9.5). Note that these 
covariance functions are always positive, so that the class is 
inappropriate for fields with negative correlations. A general 
treatment has been given in the seminal work by M a t h  
(1986). 

The calculation of XB2 for nonintegral O2 is nontrivial. 
There are a number of publicly available programs to this 
end, including RKBESL from the SPECFUN (Cody 1987) 
library, available free from NETLIB (Dongarra and Du Croz 
1985). Although the calculation is expensive relative to the 
other forms of covariance functions, this cost is negligible 
compared to the other computing costs involved in the anal- 
ysis. 

2.2 Model Development and Validation 

In traditional kriging, one estimates a and B by either like- 
lihood methods or various ad hoc approaches. The likelihood 
approach to estimating the covariance structure was first ap- 
plied in the hydrological and geological fields following Ki- 
tanidis (1983), Kitanidis and Lane (1985), and Hoeksema 
and Kitanidis (1 985); see also the works of Mardia and Mar- 
shall ( 1984), Zimmerman and Zimmerman ( 199 l ), Hand- 
cock and Stein (1993), and Handcock (1989). Usually the 
predictor and the behavior of the prediction error are them- 
selves estimated by ''plugging in" the estimates to the 
expressions for known a and 8 .  

The log-likelihood of a, 8 ,  and 8,  having observed Z, is 

n 1 
2 2 

L ( a , 8 , B ; z ) =  - - ln (a ) - - ln ( l&l )  

1 
2a 

- - (Z - FB)'K,'(Z - FB), 

where & = { KO( x i ,  xi) } nXn, F = {A( xi ) } nXq and the depen- 
dencies on n have been suppressed. The values of a, 8 ,  and 
8 that maximizes this log-likelihood are denoted by &, 8 ,  
and 8. 
2.3 Checking the Validity of the Assumptions 

The approach used here is to check the assumptions in 
the context of particular models. Conditional on the cor- 
rectness of a particular model, there are verifiable properties 
that can be checked. An advantage of the likelihood-based 
approach to inference is that it facilitates the determination 
of the model's validity. As a preliminary check, the data 
were screened for obvious deviations from the assumptions. 
Initial exploration of univariate data transformations, such 
as square-root and log, indicate similar results to those pre- 
sented in this article based on the untransformed data. 

The major assumptions implicit in the model are spatial 
stationarity of the Gaussian random field, isotropy of the 
correlations, and correct specification of the mean. These 

are interdependent, so checking them individually is usually 
not the best approach. 

The assumption of stationarity and isotropy can be 
checked, at least approximately, by considering the behavior 
of empirical variograms for small distances. The variogram 
of Z (  x )  is 

2y(h) = V { Z ( x  + h) - Z ( x ) }  for x + h, x E R ,  

so that y( h) describes aspects of the covariance structure. 
(For a discussion of variograms and their estimation, see 
Cressie 1991). Here variograms are estimated from the re- 
sidual observations, Z - Fa, with respect to a candidate 
model. The validity of the isotropy assumption can be illu- 
minated via empirical directional variograms (i.e., h is re- 
stricted to a single direction). Consider Figure 3 as examples 
of such empirical directional variograms for winter 1983- 
1984. The east-west variogram is based on only those pairs 
of stations that have approximately an east-west onentation 
to each other. In this example this relationship is defined as 
only those pairs of stations whose connecting line segment 
makes at most a 45" angle with the east-west direction. 
Hence the behavior of the east-west variogram for small 
distances ( <2" ) represents the dependence in the east-west 
direction. The corresponding north-south variogram has a 
similar interpretation. The isotropic variogram, independent 
of spatial orientation, is also plotted. Substantial deviation 
between the two directional variograms would have provided 
evidence for anisotropy. Similar directional variograms were 
compared for noncardinal directions, providing little evi- 
dence of anisotropy. 

Another approach is to consider geometric anisotropies 
(Matheron 1965), where K ( x ,  y) is a function of ( V x  - Vy 1 
for a possibly unknown 2 X 2 matrix V .  This represents a 
rescaling of the usual Euclidean metric. Based on changes 
in the likelihood, the addition of geometric anisotropies does 
not lead to significant improvements to the model. Based 
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Figure 3. Empirical Variograins for the 1983- 1984 Mean Winter Tem- 
peratures. -, isotropic; - . , north-south; - . - -, east-west. 
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on these investigations, the homogeneous and isotropic Ma- 
t h  class appeared to be appropriate. 

In general, it is difficult to determine whether the tem- 
perature field is Gaussian, because the observations are spa- 
tially dependent and the correlation structure is unknown. 
In particular, the marginal distribution of the temperature 
readings is little guide to their joint distribution. Because 
each average winter temperature is the average of 182 min- 
imum and maximum daily measurements, the law of large 
numbers should work in favor of the Gaussian assumption 
at the marginal level, and hopefully at the joint level as well. 
One check on the joint Gaussian assumption is possible using 
the fact that, conditional on the estimated model, the whit- 
ened residuals K i l ”  { Z - Fâ } are independent and standard 
Gaussian. Hence plots of the whitened residuals against the 
latitude, longitude, elevation, and Z itself can be interpreted 
in the same way as residual plots from linear regression. This 
assumes that the mean and covariance are correctly specified. 
In particular, evidence of misspecification of the mean, het- 
erogeneity of covariance, outliers, and deviations from the 
Gaussian distribution can be observed. This process was car- 
ried out on all significant intermediate models, as well as on 
the final model. Nonstationarity of the covariance and non- 
stationarity of the mean are difficult to check together, and 
wholly satisfactory procedures have yet to be developed. 
One approach is to partition up the region into relatively 
homogeneous sub-regions and build models for each region 
separately. 

It should be noted that this vector is not unique, and we 
could just as well consider any orthogonal transformation 
of K i l l 2  { Z - Fa^}. The weakness of this check is that the 
whitened residuals no longer reflect the spatial information. 

The underlying temperature field for a given winter is a 
realization of the random field and hence can be thought of 
as a (deterministic) surface in two dimensions. Our obser- 
vations are then the values of this surface at 88 locations in 
the two-dimensional region. Based on meteorological ar- 
guments, we believe that the underlying temperature field is 
continuous and may even be differentiable as a real-valued 
function in two dimensions. Furthermore, for this network 
of stations, the magnitude of the random measurement error 
appears to be small relative to the winter-to-winter variation. 
Typically, the estimated random measurement error is 0%- 
5% of the point variance. There is little likelihood evidence 
for random measurement error, and this error is not included 
in this analysis, to reduce the computational and notational 
burden. 

2.4 Modeling Within the Matern Class 

The maximum likelihood estimate for the covariance 
structure based on the Matkm class is ( A ,  e l ,  8,) = (( 1.85’V2, 
1.72”, . 55 ) .  The range of dependence (1.72’) spans approx- 
imately one-fifth of the region under study. The point stan- 
dard deviation of the mean winter temperature is lk = 1.3’F. 
The estimate of the smoothness indicates that the field is 
about as smooth as the “exponential” model (0, = f), in 
the sense that similar values of O2 correspond to similar 
smoothness conditions on the realizations of the random 
field (see Sec. 2.1 ) . 

The estimates of the regression parameters indicate that 
the mean winter temperature decreases by 2.9’F per degree 
increase in latitude. There is a 2.4’F decrease per 1,000-foot 
increase in elevation. In addition, for every degree increase 
in longitude eastward, the mean winter temperature decreases 
by 1.3’F. This latter effect is possibly a surrogate for the 
winter climatic patterns over the region. 

The difficulty of using this or any other point estimate of 
the covariance structure as a surrogate for the “true” co- 
variance structure is that the uncertainty in the estimate is 
not directly translated to the final inference. The maximum 
likelihood estimate may be the best single representative 
available, but this reduction itself can be detrimental to the 
inference. This approach was developed by Handcock and 
Stein (1993). The kriging procedure is often described as 
optimal (Matheron 1965), because it produces optimal pre- 
dictions when the covariance structure is known. If an es- 
timate of the covariance structure is used, then the primary 
motivation for kriging is in question. 

One approach to include the uncertainty in the estimate 
is to use the Bayesian framework and base inference on the 
posterior distributions of the quantities of interest. This ap- 
proach takes into account the complete likelihood surface 
rather than plugging in the maximum likelihood estimate of 
the covariance structure. It allows the performance of the 
usual plug-in predictive distribution based on an estimated 
covariance structure to be critiqued within a larger frame- 
work. Another non-bayesian approach is developed in Zim- 
merman and Cressie ( 1992). 

The marginal posterior distribution for the smoothness 
parameter (19,) for winter 1983-1984 is given in Figure 4. 
An expression for the posterior distribution is given by 
Handcock and Stein (1993) and is based on the log-likelihood 
in Section 2.4. 

00 0.2 04 0.6 08 1 0  
smoothness 

Figure 4 Posterior Distribution for the Smoothness Parameter Based 
on the Mat6rn Model. 
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This distribution summarizes the uncertainty we have 
about the smoothing parameter. The distribution has neg- 
ligible mass outside of ( . 1 , 1 S ) ,  representing fields that are 
mean-square continuous or at most once mean-square dif- 
ferentiable. The marginal posterior distribution for the range 
( 0 , )  is very flat, indicating that the range is hard to identify 
from the information. 

The prior used here is 

Pr(a, P ,  01, 0 2 )  Pr(01)Pr(02)/% 

where 

1 
Pr(Oi) = 

(1 + 0 j ) 2  . 
The latter prior is noninformative for O i / (  1 + 0;)  for [0, 11. 
The prior reflects the belief that higher values of the smooth- 
ness, 0 2 ,  are a priori less likely than smaller values. The belief 
is that a random field is more likely to be 1 or 2 times dif- 
ferentiable, rather than, say, 10 1 times differentiable. In par- 
ticular, 02 = co is given zero prior weight. A similar rationale 
is given for the prior on the spatial range parameter 0 , .  
Clearly, the priors are chosen partly for convenience; they 
are reasonably flat in the region that the likelihood has mass 
and more closely relate to our beliefs than Jeffrey's nonin- 
formative prior 

Pr(Bi) = 1 Oi  > 0. 

It should be emphasized that the method is designed to in- 
corporate an informative prior if the meteorologist, hydrol- 
ogist, and/or statistician has one. 

As an example, suppose that we wish to summarize our 
knowledge of the mean temperature for winter 1983-1984 
at the center of South Dakota. The predictive distribution 
is centered about 18.59"F and has a standard deviation of 
.92"F. Calculation of the predictive distribution requires two- 
dimensional integration where the integrand is composed of 
the posterior density of 0 and the predictive density of the 
mean winter temperature at the center of South Dakota given 
0.  The distribution is a mixture of noncentral t distributions 
and for this winter is virtually indistinguishable in shape 
from a Gaussian distribution. (For details, see Handcock 
and Stein 1993). 

2.5 Alternative Estimation of the Mean 

This spatial analysis was repeated independently for the 
50 winters from 1937-1938 to 1986-1987. Figure 5 pre- 
sents a sample of the residual temperature fields, Z(x) 
- f(x);8, after subtracting off the maximum a posteriori 
(MAP) estimate of the mean function. The gray scales are 
the same for each image. The images exhibit little evidence 
of residual spatial trends, and the spatial arrangement of 
peaks and valleys differs from winter to winter. 

One alternative approach to our parametric mean, Fp̂ , is to 
estimate the mean at each station by Z( xi ) = $j C :oI Z,( xi ), 
the temporal average at that station. The deviation of the 
observations for a given winter from the temporal average 
would then have a mean of approximately zero. Thus we 
can predict the value at a site using a mean zero random 

1937 1938 

1986 
U 

Figure 5. A Sample of the Residual Mean Winter Temperature Fields 
for 1937- 1939 and 1984- 1986. 

field model for the residual covariance and add to it an es- 
timate of the mean at that site. This is essentially the approach 
taken by Haslett and Raftery ( 1989) and is appropriate when 
one wants to predict at locations where one already has data, 
under the assumption that the mean is temporally constant 
and the temporal dependence is weak. In our situation we 
wish to predict at many locations for which data do not exist. 
Thus an estimate of the mean at unobserved locations ap- 
pears to be necessary to be able to predict at the locations. 

Our estimate of the parametric mean tends to explain a 
large proportion of the variation in the data. The total vari- 
ation of the residual field for a winter about the parametric 
estimate ofthe mean for that winter is typically (2"F)*. The 
total variation of the original field (i.e., the deviation from 
a constant mean) is typically (9°F)'. The total variation of 
the residual field for a winter about the temporal average at 
that site is typically (7"F)2. The difference is largely due to 
the fact that the parametric mean is estimated separately for 
each winter, whereas the temporal average implicitly assumes 
that the mean at each site is constant over time. As the latter 
does not appear to be the case, the temporal average does 
not explain much of the variation in the data. 

3. ANALYSIS OF TEMPORAL STRUCTURE 

In this section we consider the temporal component of 
the model, generalizing the random field to Z,(x), where 
t = 1937, . . . represents the winter of observation. We con- 
sider the time series of data from each station, independent 
of the spatial information. 

Figure 6 presents the time series and empirical autocor- 
relation functions for four spatially separate stations. Indi- 
vidually, the time series are quite variable over time. The 
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Figure 6. Time Series and Empirical Autocorrelation Functions for Four 
Typical Sites. 

right side figures are the sample autocorrelation functions 
corresponding to the time series. The dashed boundaries 
represent approximate 95% confidence limits. Note the sim- 
ilar patterns in the series over time and the lack of first lag 
autocorrelation. The median cross-correlation is .78 with 
quantiles .64 and .87, indicating a tendency to move in con- 
junction with each other over time and reflecting the influ- 
ence of the spatial correlation modeled in the previous sec- 
tion. 

In the next two subsections we investigate these fields for 
short-memory and long-memory temporal structures. We 
find that they are close to being uncorrelated over time. We 
also test to see whether the spatial structure changes over 
time. 

3.1 Short-Memory Temporal Dependency 

The natural starting point in a search for short-memory 
dependence in a time series is fitting a first-order autore- 
gressive (AR) model. This simple model is the natural alter- 
native to the model of independence. The AR( 1) model was 
fitted to the time series of each station, and the estimate of 
the first-lag autocorrelation was tested for statistical signifi- 
cance. Only 3 of the 88 stations tested were significant, in- 
dicating little evidence of AR( 1) structure. The improvement 
to the log-likelihood from the addition of the additional pa- 
rameter is minor. 

How closely correlated are the effects of the spatial factors 
on the mean over time? To look at this, we consider the 
time series of estimated coefficients for each factor in Table 
1. The Durbin-Watson statistic is a useful test for serial cor- 
relation in the error term of a linear model. 

The Durbin-Watson statistics are derived from the mul- 
tivariate time series of regression coefficients &. There is 
moderate dependence between the time series. If the observed 
value of d is greater than 1.59, then we conclude that the 
value is insignificant at the 5% level for the test of positive 
serial correlation. All of the time series fail this test. If the 
observed value of d is greater than 2.41, then we conclude 
that the value is insignificant at the 5% level for the test of 
negative serial correlation. All of the time series fail this test 
as well. A multiple-comparisons adjustment could be made 
that would adjust for the four simultaneous tests and the 
dependence. The dependence makes the individual tests 
slightly conservative. There is little evidence of serial cor- 
relation in these time series. 

3.2 Long-Memory Temporal Dependency 

In the previous subsection, little evidence was found for 
short-term temporal dependency. In this section we consider 
the presence in the time series of significant dependence be- 
tween observations a long time span apart. A natural way 
to investigate the time series for long-memory temporal de- 
pendency is to consider autoregressive integrated moving 
average (ARIMA) processes with nonintegral degrees of dif- 
ferencing, d ,  (ARIMA(p, d ,  4)). These models have been 
considered in the elegant and insightful papers of Hosking 
( 198 1, 1984). The idea is that the short-memory component 
of the series will be accounted for by the autoregressive mov- 
ing average (ARMA) part of the model, and the long-memory 
component will be accounted for by the fractional differ- 
encing. As there appears to be little evidence for a short- 
memory component we will focus on the ARIMA(0, d ,  0) 
models. The ARIMA(0, d ,  0) model, consisting of A d z , (  .) 
being independent and identically distributed zero-mean 
Gaussian random variables, is the fundamental model in 
this class (Hosking 1984). 

Inference for the differencing parameter, d ,  can be 
achieved using likelihood-based inference as in the previous 
sections. Figure 7 presents the log-likelihood for d profiled 
over the scale parameter, a, and a constant mean. The station 
in this example is Faulkton, South Dakota. The maximum 
likelihood estimate is d = .048, with a standard error of .09. 
Note that the change in log-likelihood from the maximum 
likelihood estimate to the model of independence ( d  = 0) is 
small. This provides evidence that little long-memory de- 

Table 1. Durbin- Watson Statistics for the Time Series of Coefficients 
in the Mean Function 

Component of the mean, f( .) Durbin- Watson statistic, d 

Constant 
Latitude 
Longitude 
Elevation 

1.75 
2.13 
2.10 
1.64 
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Figure 7. Profile Log-Likelihood for the Fractional Differencing Param- 
eter, d, in the ARIMA (0, d, 0) Model for Faulkton, South Dakota. 

pendency exists in the series. The above process was repeated 
on the directly differenced series, with the same conclusion. 
Similar results were also found to hold for the other stations. 

In conclusion, there is little evidence of either short- 
memory or long-memory dependency in the time series of 
the stations. There also is little evidence that the spatial 
structure changes over the time scale considered here. 

4. MEASURING AREAL MEAN TEMPERATURE 

In the previous sections we found a complex spatial struc- 
ture to the mean winter temperatures, little temporal depen- 
dence structure, and little evidence for changing spatial 
structure over time. In this section we focus interest on a 
measure of the areal mean temperature over the region of 
interest. The time series of areal mean temperatures is defined 
by 

- 1  
Z = - JR Z,(x) dx t = 1937,. . . , 1986, 

IRI 
where 1 R 1 is the area of the region R. Thus at each point 
in time, 2, represents the average temperature over the region 
during the winter starting in the December of year t and is 
a function of the field 2, (x). 2, provides a natural measure 
for the detection of changing climatic patterns over the re- 
gion. As the region is devoid of gross topographic features, 
2, provides a convenient measure of overall temperature 
during the winter. It is important to note that 2, is a char- 
acteristic of the temperature field itself and not a character- 
istic of the stations in the network. The behavior of the areal 
mean temperature will provide an indication of the overall 
changes in climate over the region independent of the in- 
dividual stations. 

Based on our model, we can summarize the avail- 
able information for 2, from the predictive density 
P(zr IZ1937, 21938, . . . , Z1986); that is, the posterior density 
of 2, given the complete spatial-temporal information avail- 

able. The evidence in Section 3 indicates that the temporal 
dependence is weak, so that P( z, 121937, 21938,  . . . , 21986) 
is very well approximated by P( z, I Z,). This also has the 
advantage of relative computational tractability. 

Now 

p(2rIzi) a J p(z t le ,  zr>. P(8Izt)  do, (4.1) 

where P( 2, I 8 ,  Z,) is the predictive distribution conditional 
on 8 and Z,, and P( 8 I Z,) is the posterior distribution for the 
structural parameter for the year C; see, for example, Fig. 4 
for P( O2 121983). This calculation requires two-dimensional 
numerical integration for each year. Figure 8 gives the pre- 
dictive distribution P( 2 ,983  121983). 

By plotting the predictive distributions over time, we can 
observe how our knowledge of the areal mean temperature 
changes based on how the information in the network 
changes. 

How can we further summarize the areal mean temper- 
ature? The distributions are symmetric and have a similar 
t-like distributional shape. Theoretically, the predictive dis- 
tribution is a mixture of noncentral t distributions (Handcock 
and Stein 1993, sec. 2.3). The ratio of largest to smallest 
variance is 2.6. To explore further the temporal changes in z,, we will consider the time series of MAP values from 
(4.1). Although this clearly represents a reduction in infor- 
mation relative to the full distribution, it does facilitate ex- 
amination. 

8 

4.1 Temporal Structure of the Mean 
Areal Temperature 

Figure 9 represents the MAP values for the last half cen- 
tury. Note the lack of a clear trend over time. Some inter- 
esting winters have been indicated. The last winter for which 

Figure 8. Predictive Distribution for the Areal Mean Temperature for 
Winter 7983-1984. 
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Figure 9. The Time Series of MAP Estimates for the Areal Mean Tem- 
perature. There is little short- or long-term persistence. 

data are available ( 1986- 1987) also has the highest temper- 
ature. 

Is there evidence of short- or long-term dependence in the 
MAP values? Using the methodology described in Section 
3.1, the maximum likelihood estimator of the autocorrelation 
for the AR( 1) model is p̂  = .06, with a standard error of. 14. 
The AR( 1) model provides a nonsignificant improvement 
in the likelihood relative to the model of independence ( p  
= 0). The long-memory model, ARIMA(0, d, 0), has an 
estimated fractional difference d = -.18, with a standard 
error of. 16. This provides a nonsignificant improvement in 
the likelihood relative to the model of independence (see 
Fig. 10). 

Therefore, it seems that, over this period, the areal mean 
exhibits little evidence of temporal structure. 

4.2 A Static Model for Mean Areal Temperature 

A reasonable model for the mean areal temperature over 
the last half century is 

(4.2) 

where { } :27G3, is an independent identically distributed 
Gaussian sequence with mean 0 and variance a2. The se- 
quence { p t  } :27G3, represents the mean level. The motivation 
is the absence of strong temporal dependence (Sec. 4.1) and 
the approximately constant variances. The baseline model 
is that the means are temporally stable: p t  = p. Here p will 
be called the static areal mean temperature. 

Under the model (4.2), the posterior distribution for p 
from 1937 to 1986 is 

2, = p t  + t = 1937, . . . , 1986, 
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Figure 10. Profile Log-Likelihood for the Fractional Differencing Param- 
eter, d, in the ARlMA(0, d, 0) Model for the MAP Values for the Areal 
Mean Temperature. 

The first part of the integrand can be directly calculated, and 
the second part is available from (4.1). As in the previous 
case, this requires numerical integration. Figure 1 1 represents 
the predictive distributions for the static areal mean tem- 
perature for two separate time periods. The solid line refers 
to 1937- 196 1, and the dashed line refers to 1962- 1986. The 
mean for the first period is 20.0°F, with a standard deviation 
of .59"F; the mean for the second period is 19.4'F, with a 

16 18 20 22 
temperature (degrees fahrenheit) 

Figure 7 7 .  Predictive Distributions for the Static Areal Mean Temperature 
for Two SeDarate Time Periods. The sdid line refers to 1937-1961: the 

p ( z k  l z t k )  dzt,  * . . dzt~.  dashedline, t0 1962-1986. 
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standard deviation of 34°F. These distributions summarize 
our uncertainty about the static areal mean temperature over 
each period. 

Note that the distributions have substantial overlap, with 
the information from the later winters indicating cooler 
temperatures. 

5. CALIBRATING CHANGES IN MEAN 
AREAL TEMPERATURE 

The primary motivation for developing these models is 
to provide a tool for calibrating changes in the mean areal 
temperature. The model in the previous section allows this 
to be done. Many scenarios have been proposed for future 
global warming; typically, their basis is mathematical rather 
than empirical. 

Consider the distributions in Figure 12. The solid line is 
the posterior distribution for the static areal mean temper- 
ature from 1937-1986. This should be compared to Figure 
8; it summarizes our uncertainty about the static areal mean 
temperature by a distribution with mean about 19.7"F and 
a standard deviation of .5 1 O F .  

How soon could a linear increase in static areal mean 
temperature in this region, totally 5°F over half a century, 
be discernible from the year-to-year variation? 

We have a stochastic model for the phenomena that en- 
ables us to represent our uncertainty about characteristics 
of the phenomena. If we assume that the structure of the 
phenomena remains the same, except for the gradual mean 
shift, then we can represent the uncertainty for the unob- 
served data by the same structure. 

Suppose that we collected data from the network in this 
region for the next 10 winters, as the underlying static tem- 
perature gradually increases. Suppose that besides the creep 
in level, the stochastic structure remained stable, as is sup- 
ported by the analysis in Section 4. The dashed posterior 
(marked by " 10") represents a hypothetical posterior for the 
static areal mean temperature based on that 10 winters of 
data. Note that there is still marked overlap with the sum- 
mary from the last 50 winters (solid line). This indicates that 
it would be extremely difficult to discern such a gradual in- 
crease after only 10 winters. 

Also plotted are the hypothetical posteriors after collecting 
20, 30, and 50 winters of information. Only after about 30- 
40 winters is the gradual level increase discernible with high 
probability. If additional winters of data were available and 
incorporated, then the posterior would become narrower. 
Thus the changes would be discernible earlier than the 30- 
40 years indicated. 

Figure 12 graphically represents the projection of the un- 
certainty into the future. The objective of this representation 
is not to decide whether warming will occur, nor to test 
whether it has occurred if we have 50 additional winters of 
data. Rather, the objective is to decide whether 50 additional 
winters of data will, assuming a warming scenario, allow a 
decision to be made within the historical variation in tem- 
perature. Under a hypothesis testing analogy, we are under- 
taking a power calculation, rather than conducting the sta- 
tistical test itself. 
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Figure 12. The Predictive Distribution for the Static Areal Mean Tem- 
perature for 1937-1 986. The solid line represents a distribution based on 
the historical record for 1937-1986. The dashed distributions represent 
hypothetical posterior knowledge for the static areal mean temperature 
based on additional winters of data: . . . . a ,  hypothetical for information 
collected over the next 10 years; - . - , hypothetical for information collected 
over the next 20 years; - -, hypothetical for information collected over 
the next 30 years; and - . . , hypothetical for information collected over 
the next 50 years. 

6 .  CONCLUSION 

Our approach facilitates the calibration of changes in the 
areal mean temperature against the historical record. For the 
scenario of a gradual increase of 5°F over 50 winters, it will 
take 30-40 winters of data before the change will be dis- 
cernible from the natural variation in temperatures. By the 
time the necessary information had accumulated, an increase 
of 3-4°F would already have occurred. The application of 
the model to alternative scenarios is straightforward. There 
is no indication that the areal mean temperature for this 
time of the year in this region has changed over the last half 
century. The observed lack of temporal trend for this region 
and period was somewhat of a surprise; however, this finding 
is consistent with that obtained using different statistical ap- 
proaches (Lettenmaier, Wood and Wallis 1993). It is also 
evident from this later study that the results would have been 
quite different had other regions or periods been picked. 

Similar models investigating summer temperatures and 
precipitation for this region will be reported elsewhere. These 
facilitate the measurement of runoff and hence address the 
central issue of the evaluation of water resources. 

[Received April 1991. Revised December 1992.1 
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