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To carry this argument further, look at what happens
when !/l is not small. Let I’ = | — 1, so we are back in
the jackknifing mode where now the subsubsamples are de-
fined to contain all but one of the observations in B;. Call
the observation that has been left out, X;. Essentially the
same computation as we used earlier for the jackknife es-
tablishes that

It follows that
2
T Xy = O _1
By - X = 21 (1-7)-

So as before, the estimation of o2 breaks down. I find it
somewhat curious that in Section 4.2 the authors specify
that !/n must be small, because as far as I can tell, neither
[ nor n have any physical meaning in the spatial applica-
tion. They both seem to be mere devices for driving the
asymptotics.

All of the computations I have discussed so far involve in-
dependent observations, and the whole point of spatial data
analysis is to deal with dependence. As originally defined,
the B;;’s define data with a balanced two-way analysis of
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variance (ANOVA) structure. Redefine X, (;_1y4x as Yk
for j =1,...,(/U') and k = 1,... 0. For fixed j, all of
the observations are in the same subsubsample taken from
B;. For fixed k, we are (rather artificially) looking at corre-
sponding observations in different subsubsamples from B;.
As earlier, we examine

i LR~ K= gy 06 Y

and again we are looking for an estimate of 2. From
standard ANOVA, if the observations are iid, this estimate
works. Using standard split-plot computations, if we as-
sume constant correlation within the subsubsamples (i.e.,
for fixed j), then we get an estimate of o2[(1—p)+0'p], and if
there is constant correlation for fixed k (admittedly a rather
artificial circumstance), we get an estimate of o2(1 — p).
Similarly, if there is constant correlation among all ob-
servations, then the estimate is 0(1 — p). I am not sure
what the implications are for spatial data, except that, taken
all together, the spatial correlations within each subsam-
ple, within each subsubsample, and across different possible
subsubsamples better be considerably weaker than constant
correlation.
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1. INTRODUCTION

In an increasing number of environmental applications,
the comparison of an attribute across regions requires con-
sideration of more than the usual summary measures of
level and variation. Environmental scientists are increas-
ingly interested in techniques for comparing changes in dis-
tributional shape as well as changes in mean levels. Tradi-
tionally, comparative research has relied heavily on mea-
sures that capture differences in average indices between
regions or rough measures of dispersion over time. These
summary measures leave untapped much of the information
inherent in a distribution.

Lahiri, Kaiser, Cressie, and Hsu (LKCH hereafter) have
developed a method for the prediction of the spatial cumu-
lative distribution function (SCDF). In doing this, they im-
plicitly moved the scientific attention from idealized point
spatial units to larger, more relevant, regional units. When
interest focuses on idealized point spatial units, the SCDF
and point spatial distribution coincide. I applaud this fo-
cus as the spatial distribution is a largely under appreciated
characteristic of spatial random fields.

Mark S. Handcock is Associate Professor, Department of Statistics, Pen-
nsylvania State University, University Park, PA 16802 (E-mail: handcock@
stat.psu.edu). The author thanks Soumendra Lahiri for providing the fo-
liage condition data.

The main contribution of the article is to explore the sta-
tistical characteristics of a subsampling method of predic-
tion. A better understanding of this method can be gained
by comparing it to an alternative, more explicitly model-
based viewpoint. Using the notation of LKCH, we assume
that

E{Z(s)} =f(s)B for scR,

where f(s) = {fi(s),...,fy(s)}’ is a known vector func-
tion and 3 is a vector of unknown regression coefficients.
Furthermore, we represent the covariance function by

cov{Z(s), Z(t)} = aKg(s,t) for s,teR

where a > 0 is a scale parameter, § € ® is a ¢ x 1 vector
of structural parameters, and © is an open set in IRP. For
simplicity of development, we assume in the following that
{Z(s): s € R} is Gaussian and return to this in the conclu-
sion. If we wish to predict characteristics of {Z(s): s € R},
then we need to express our uncertainty about the unknown
covariance structure through 8 and the mean through 3. Un-
der a simple Bayesian formulation (see Handcock and Stein
1993), we can specify the prior as

Pr(a, 8,0) x Pr(8)/a,
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so that the marginal posterior distribution,
Pr(6]2) < Pr(6) - |Kg|*/*|F'K g F|7/2a(6) "N -9/
captures our knowledge about 6. Here
&(8) = (1/N)(Z - FB(8)) Kp'(Z - Fj3(8))
and

B6) = (F'Kg'F)'F'Kp'Z
are the maximum likelihood estimators (MLEs) of o and 3

conditional on @ and

F = {fj(s:)}nxq,
and
Kg = {Kg(si,8;)}nxN-

To estimate the SCDF, F(z; R), we need to express our
understanding of Z(s) at each point s € R. As in the ap-
plications of LKCH, this set can be reduced to a finite grid
of locations. However, we need not restrict ourselves to
this situation, as we can operationally choose a large finite
subset of locations vy, ..., vy, as a surrogate for the con-
tinuum. For example, we could choose a very fine grid, or
a design adapted for numerical integration (Owen 1994).

Let Z = {Z(s1),..., Z(sn)}' be the sample, and let Zp =
{Z(v1),...,Z(vm)}. Then

z F
(7) ~ e | (55) =

It is well known that

Ky | Hy

7016, Z ~ t;m(Z0(0), k&(0){Jg — HyKg 'Hg

+ By(F'Kg'F)™'Bg})

0
and
Pr(ZO|Z):/9Pr(Zo|0, Z)Pr(6|Z) d6 (1)
where
Bg = F' — F'Kp 'Hyg,
Zo(8) = HpKg~'Z + Bpp(#),
and

K= N/(N-q)

These calculations are straightforward even for large m as
the conditional predictive distribution is multivariate ¢ with
the appropriate covariance matrix and inversion of the co-
variance matrix of Zy is not necessary. In some circum-
stances, it will be easier to use the formula

Pr(Zo|6, Z) Pr(8]|Z)
Pr(6]Z, Zo)

Pr(%|7) =
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(Besag 1989), rather than do the p-dimensional integral di-
rectly. The posterior distribution of Fi(z; R) can then be
approximated by that of

m

FP(5R) = =3 T(Z () < 2), @)

m <
=1

where {Z(v1),...,Z(vy)} is a random draw from (1). The
approximation can be made arbitrarily accurate by choos-
ing m large. One simple approach is to draw samples di-
rectly from Pr(Zy|Z) and use (2) for a range of z values
to obtain draws from posterior of Fi,(z; R). The analysis
of these draws would be very useful in understanding the
behavior of Fi,(z; R). In particular they can be used to de-
fine pointwise probability limits and prediction bounds for
F,.(z; R), in analogy with the prediction bounds described
in the article.

I have applied the method just described to the exam-
ple on forest health in Section 5. For simplicity, I used
the Matérn class of covariances and prior distributions de-
scribed by Handcock and Wallis (1994). The model is fit
only to the 77 real values and not the 52 imputed ones.
Based on an analysis of the likelihood surfaces for the co-
variance structure, the range of the spatial dependence is
reasonable accurately known, and the MLE of the nugget
effect is 0. Conditional on a 0 nugget effect, the random field
is somewhat rougher than a Spherical or an Exponential
process. However, there is likelihood evidence for nonneg-
ligible nugget effects, and so I allow for them here. There is
also some evidence that the process is log-Gaussian, rather
than Gaussian. The foregoing method can be directly ap-
plied in this case; for simplicity, I describe the analysis on
the recorded scale.

For this example, I use the m = 129 locations of the
complete hexagonal tessellation over the region of interest.
My Figure 1 is the analog of the 90% prediction bands given
in Figure 4 of LKCH. The point estimate is the mean curve
from (2). The bounds delineate a 90% probability region for
the SCDF. The point estimate is smooth as I am averaging
over many possible spatial dependence structures and
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Figure 1. Posterior Mean (——) and 90% Simuitaneous Prediction
Bands (--—) for the SCDF of Red Maple CDI in the State of Maine. The
figure is @ model-based analog of Figure 4 in LKCH.
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nugget effects. If I assume that the random field does not
have a nugget effect, then the estimator is much rougher,
but the bounds are tighter as I presume to know 77 of the
129 values that compose the SCDF. The point-predicted
value for F,.(12.5; R) was .64 with a 90% prediction in-
terval of (.57,.72). For comparison, the interval assuming
a 0 nugget effect is (.65, .76). The computations required 7
minutes on a desktop workstation.

A comparison of my perspective with LKCH’s leads to a
better understanding on the subsampling method. The sub-
sampling procedure requires the samples and the region of
interest to be on a regular lattice structure, whereas my
method does not. In addition, data are needed at each lo-
cation on the lattice. If sample data do not exist, it is nec-
essary to impute data to use the method. In addition, the
subsampling method assumes that the imputed values have
the same spatial structure as the sample data. However, im-
putation is always problematic, especially if only a single
imputation is used (Schafer 1997). As 52/129 = 40% of the
data are imputed, I am concerned about this issue in the
application. In particular, the extremely large nugget effect
(78% of the point variation) may be an artifact of the impu-
tation. Given the strict requirements of the method (p. 20),
there is a concern that less careful practioners may make
scientific compromises to shoehorn the data into a form
amenable to the method.

One should also note that the asymptotic framework is
chosen partly for technical reasons, and under other reason-
able asymptotic frameworks (e.g., pure infill asymptotics),
the asymptotic properties may not hold. The asymptotic
justification will need to be affirmed by simulation for the
lattices, sample sizes, and subgrid choices used in an appli-
cation.

Although the estimation of the SCDF is the primary
goal, exploring the spatial structure of Z(s) is also impor-
tant. The approach described in this comment uses a likeli-
hood framework to represent the uncertainty about the spa-
tial structure, ignored by point estimates. This framework
makes available exploratory graphical tools useful for infer-
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ence about the underlying random field (Handcock, Meier,
and Nychka 1994). These tools can identify when an ap-
proach is lacking. For example, one may want to distin-
guish between a region with a simple north-south gradient
and one with unstructured variation.

Neither prior imputation, nor a regular lattice, nor asymp-
totic justification are required for the approach described in
this comment. It takes into account the nonstationarity in
the mean of a regression form. Model-based approaches
require the choice of a modeling class and specification of
prior information. These play the same role as the choice of
subgrid P’ and the grid Q' do in the subsampling method. A
model-based approach such as the one described here cou-
pled with a broad class of covariance structures will cap-
ture a wide range of spatial variation. However, in many
cases the underlying random field can not be assumed to
be Gaussian. As LKCH note, the models described by Dig-
gle, Tawn, and Moyeed (1998) greatly broaden the form of
spatial variation that can be represented. These models im-
prove on the simple model described here at the expense of
some computational complexity. Indeed, I am much more
hopeful about the future of such models than the authors
appear to be.
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1. INTRODUCTION AND BACKGROUND
The article by Lahiri, Kaiser, Cressie, and Hsu (LKCH)
presents an important new application of the *“block-

subsampling” principle. The context is novel because of the
underlying continuously indexed random field {Z(s):

Michael Sherman is Assistant Professor, Department of Statistics, Texas
A&M University, College Station, TX 77843-3143. Edward Carlstein is
Professor, Department of Statistics, University of North Carolina, Chapel
Hill, NC 27599. M. Sherman’s research was partially supported by Na-
tional Cancer Institute grant 1 R29 CA72015-01 and by the Texas A&M
Center for Rural and Environmental Health via National Institute of En-
vironmental Health Sciences grant ES09106.

s € D} because the inference target F,, is an unobserv-
able random quantity depending on the entire random field,
and because the observed sample data sequence combines
both increasing-domain and infill features. Extension of the
block-subsampling principle to this context is of consider-
able practical value and is theoretically interesting and chal-
lenging.

The usual objective in subsampling is to construct an
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