
Latent Space Approaches to Social Network Analysis
Author(s): Peter D. Hoff, Adrian E. Raftery, Mark S. Handcock
Source: Journal of the American Statistical Association, Vol. 97, No. 460 (Dec., 2002), pp. 1090-
1098
Published by: American Statistical Association
Stable URL: http://www.jstor.org/stable/3085833
Accessed: 03/10/2009 01:54

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=astata.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Statistical Association is collaborating with JSTOR to digitize, preserve and extend access to Journal
of the American Statistical Association.

http://www.jstor.org

http://www.jstor.org/stable/3085833?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=astata


Latent Space Approaches to Social Network Analysis 
Peter D. HOFF, Adrian E. RAFTERY, and Mark S. HANDCOCK 

Network models are widely used to represent relational information among interacting units. In studies of social networks, recent 
emphasis has been placed on random graph models where the nodes usually represent individual social actors and the edges represent the 
presence of a specified relation between actors. We develop a class of models where the probability of a relation between actors depends 
on the positions of individuals in an unobserved "social space." We make inference for the social space within maximum likelihood and 
Bayesian frameworks, and propose Markov chain Monte Carlo procedures for making inference on latent positions and the effects of 
observed covariates. We present analyses of three standard datasets from the social networks literature, and compare the method to an 
alternative stochastic blockmodeling approach. In addition to improving on model fit for these datasets, our method provides a visual 
and interpretable model-based spatial representation of social relationships and improves on existing methods by allowing the statistical 
uncertainty in the social space to be quantified and graphically represented. 

KEY WORDS: Conditional independence model; Latent position model; Network data; Random graph; Visualization. 

1. INTRODUCTION 

Social network data typically consist of a set of n actors 
and a relational tie Y;, J• measured on each ordered pair of 
actors i, j = 1, ... , n. This framework has many applications 
in the social and behavioral sciences including, for exam­
ple, the behavior of epidemics, the interconnectedness of the 
World Wide Web, and telephone calling patterns. Quantitative 
research on social networks has a long history, going back at 
least to Moreno (1934). The development of log-linear statisti­
cal models by Holland and Leinhardt (1981); Fienberg, Meyer, 
and Wasserman (1985); Wang and Wong (1987); and others 
represent major advances. 

In the simplest cases, Yi,J is a dichotomous variable indi­
cating the presence or absence of some relation of interest, 
such as friendship, collaboration, transmission of information 
or disease, and so forth. The data are often represented by 
an n x n sociomatrix Y. In the case of binary relations, the 
data can also be thought of as a graph in which the nodes are 
actors and the edge set is {(i,j): Yi,J = 1}. If (i,j) is in the 
edge set, then we write i -+ j. If ties are undirected, in that 
Y;, 1 = YJ,; for all i # j by logical necessity, then we write i "' j 
if Yi,J = 1. However, even in the case of directed relations, 
ties often tend to be reciprocal (Y;, J = YJ,; with high probabil­
ity) and transitive (i-+ j, j-+ k::::} i-+ k with high probabil­
ity). As such, probabilistic models of network relations have 
typically allowed for some sort of dependence between ties. 
For example, the PI model of Holland and Leinhardt (1981) 
includes parameters for the propensity of ties to be recipro­
cal, as well as parameters for the number of ties and individ­
ual tendencies to give or receive ties. However, these models 
are restrictive, as they assume the G) dyads (Y;,J• yJ,;) to be 
independent. 

Frank and Strauss (1986) characterized the exponential fam­
ily of random graph models by elaborating work of Besag 
(1974) developed in the context of spatial statistics. These 
have been referred to as the p* class of models in the psychol­
ogy and sociology literature (Wasserman and Pattison 1996). 
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ported by Office of Naval Research grant NOOOI4-96-I-1092, and Handcock's 
research was supported by National Institutes of Health grant ROI DAI2831-
0 I. The authors thank two referees for helpful comments. 

Given their general nature and applicability, we refer to them 
simply as (exponentially parameterized) random graph mod­
els. Frank and Strauss (1986) also proposed models with 
Markov structure that allow for forms of dyad dependence, 
often referred to as homogeneous monadic Markov mod­
els. Recent work of Corander, Dahmstrom, and Dahmstrom 
(1998); Crouch, Wasserman, and Trachtenberg (1998); Besag 
(2000); Handcock (2000); and Snijders (2002) has developed 
likelihood-based inference for these models based on Markov 
chain Monte Carlo (MCMC) algorithms. Approximate max­
imum likelihood approaches have been developed by Frank 
and Strauss (1986). Alternative estimating procedures based 
on the concept of pseudolikelihood (Besag 1974) have been 
proposed by Strauss and Ikeda (1990) and Wasserman and 
Patterson (1996); however, the statistical properties of pseu­
dolikelihood estimators in this context have been criticized by 
Besag (2000) and Snijders (2002). 

Recent works have explored the properties of homoge­
neous monadic Markov models. Results of Besag (2000), 
Handcock (2000), and Snijders (2002) suggest that commonly 
used models are more global than local in structure and that 
this contributes to model degeneracy and instability problems 
(Ruelle 1968). These issues are not resolved by alternative 
forms of estimation, but rather represent defects in the mod­
els themselves-at least to the extent that they are useful for 
modeling realistic social networks. These factors have moti­
vated the development of alternative models without these 
restrictions. 

For networks in which actors belong to prespecified groups 
Wang and Wong (1987) developed a stochastic blockmodel, an 
extension of the PI model that includes parameters describing 
differential rates of between-group and within-group ties. For 
cases in which group membership is not observed, Nowicki 
and Snijders (2001) presented a model in which the dyads in a 
social network are conditionally independent, given the latent 
class membership of each actor. In such a model, actors within 
a latent class are treated as stochastically equivalent; that is, 
the events (ii -+ ji) and (i2 -+ j 2 ) have the same probabil­
ity if actors ii and ji are in the same respective latent classes 
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as i2 and j 2 • Such a model may prove useful in identifying 
clusters of individuals for whom stochastic equivalence holds, 
that is, clusters of individuals who relate to all other actors in 
the system in a similar way. However, models based on dis­
tinct clusters may not fit well when many actors fall between 
clusters, or when relations are transitive yet there is no strong 
clustering. 

In some social network data, the probability of a relational 
tie between two individuals may increase as the character­
istics of the individuals become more similar. A subset of 
individuals in the population with a large number of social 
ties between them may be indicative of a group of individu­
als who have nearby positions in this space of characteristics, 
or "social space." Various concepts of social space have been 
discussed by McFarland and Brown (1973) and Faust (1988). 
In the context of this article, social space refers to a space 
of unobserved latent characteristics that represent potential 

. transitive tendencies in network relations. A probability mea­
sure over these unobserved characteristics induces a model in 
which the presence of a tie between two individuals is depen­
dent on the presence of other ties. Relations modeled as such 
are probabilistically transitive in nature. The observation of 
i ~ j and j ~ k suggests that i and k are not too far apart 
in social space, and therefore are more likely to have a tie. In 
Section 2 we develop a latent variable model for such tran­
sitive relations in which it is assumed each actor i has an 
unknown position Z; in social space. The ties in the network 
are assumed to be conditionally independent given these posi­
tions, and the probability of a specific tie between two indi­
viduals is modeled as some function of their positions, such 
as the distance between the two actors in social space. Estima­
tion of positions is simplified by the use of a logistic regres­
sion model, and confidence regions for latent positions are 
computable using standard MCMC algorithms, as we describe 
in Section 3. In Section 4 we fit these latent-space models 
to a number of standard datasets and compare their perfor­
mance in terms of model fit to alternative stochastic block­
models. In addition to improving on model fit, the results 
from our approach are relatively easy to interpret, and model­
ing the positions as belonging to a low-dimensional Euclidean 
space provides a model-based means of graphically represent­
ing social network data. 

2. LATENT POSITION METHODS 

The data we model in this article consist of an n x n 
sociomatrix Y with entries y . . denoting the value of the rela-

' I. J 

tion from actor i to actor j, and possibly additional covariate 
information X. We focus on binary-valued relations, although 
the methods in this article can be extended to more general 
relational data using ideas from generalized linear models. 
Both directed and undirected relations can be analyzed with 
our methods, although the features of the model are slightly 
different in the two cases, as described below. 

We take a conditional independence approach to modeling 
by assuming that the presence or absence of a tie between two 
individuals is independent of all other ties in the system, given 
the unobserved positions in social space of the two individuals, 

P(YIZ, X, 8) = 0 P(ydz;, zi, xi.J• 8), 
i#j 

1091 

where X and x . are observed characteristics which are poten­
'· J 

tially pair-specific and vector-valued and 8 and Z are param-
eters and positions to be estimated. 

2.1 Distance Models 

A convenient parameterization of P(Y;)Z;, zi, xi.j• 8) is the 
logistic regression model in which the probability of a tie 
depends on the Euclidean distance between Z; and zi, as well 
as on observed covariates x,. . that measure characteristics of , J 

the dyad, 

1/i,j = logodds(Y;,j =liz;, zi, xi,J' a, /3) 

= a+f3'x;,J -lz; -zJ (1) 

This model has a simple interpretation: For two actors j and 
k equidistant from i, the log odds ratio of i ~ j versus i ~ k 
is f3'(x;,j- xi.k), 

Note that the lz;- zls could be replaced by an arbi­
trary set of distances { d;, J, satisfying the triangle inequal­
ity d . < d k + dk . V { i, j, k}, A semi parametric modeling 

' 1,) - I, ,) 

approach would impose no further constraints on the distances, 
and so the parameter space would include (;) distances to 
estimate, subject to the inequality constraints. Generally, we 
Prefer to model the d . .'s as distances between actors in some 

I, J 

low-dimensional Euclidean space for reasons of parsimony 
and ease of model interpretability. 

The latent position model is inherently reciprocal and transi­
tive: If i ~ j and j ~ k, then d;,j and dj,k are probably not too 
large, making the events j ~ i (reciprocity) and i ~ k (tran­
sitivity) more probable. One interesting feature of the model 
is that it provides an essentially perfect model fit for many 
social network datasets with undirected relations, in a param­
eter space of much lower dimension than that of the data [ nk 
vs. n(n -1)]. To explore this feature further, consider the fol­
lowing reparameterization of (1) in the case of no covariate 
information and an undirected relation Y;, i = Yj,;: 

We say a set of distances { d;, i} represents the network Y if 

{d;,j>1 Vi,j:y;,J=O} 

and 

{d;,j < 1 Vi,j: Yi,J = 1}. (3) 

For such a set of distances, the probability of the data under 
parameterization (2) will converge to unity as a~ oo. As we 
model the distances as being Euclidean distances in some k­
dimensional space, we say that a network is dk representable if 
there exist points Z; E mk such that the distances d;, j = lz; - z j I 
satisfy (3). In such a space, dk representability is equivalent 
to being able to find a set of points for the actors such that 
i "'j if and only if i and j lie within k-dimensional unit balls 
centered around each other. 

It is interesting to note there are many examples of social 
networks which are dk representable for k much smaller than 
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n, and even for k = 2. Consider, for example, an n-star net­
work composed of one central actor having ties to n - 1 oth­
erwise unconnected actors. Such a network is trivially dL 1 

2 

representable for any n, by positioning pairs of noncentral 
actors on either sides of the central actor along one of the 
n/2 coordinate axes. As another example, consider ann-chain 
network, in which there is an ordering of n actors so that 
1 ""' 2 ""' 3 ""' · · · ""' n ""' 1. This network is d2 representable 
for all n by placing the actors equidistant from the origin but 
separated by equal angles. Such results suggest that distance­
based models may provide a good method of data reduction 
and presentation for undirected relational data. Although the 
foregoing examples may seem contrived, in Section 4.2 we 
analyze a real-life 15-actor network that is d2 representable. 

2.2 Projection Models 

The distance model presented earlier is inherently symmet­
ric in that p(i--+ j) = p(j--+ i). However, in many networks 
such symmetry is not achieved. For example, perhaps actor 
i sends a large number of ties, whereas j sends ties to a 
small subset of the actors receiving ties from i. In this case 
we want to model that i and j are "similar" but i is more 
"socially active." Such a model could be achieved by including 
actor-specific activity parameters, an approach used by Wang 
and Wong (1987) to allow for actor-level variability in their 
stochastic blockmodel. 

Alternatively, variable levels of activity can be modeled par­
simoniously in the context of a latent position model which 
allows for probabilistic transitivity in the relations, as well as 
individual-specific levels of social activity. Suppose each actor 
i has an associated unit-length k-dimensional vector of char­
acteristics V;. These characteristics can be thought of as points 
on a k-dimensional sphere of unit radius. We might imagine 
that i and j are prone to having ties if the angle between them 
is small, neutral to having ties if the angle is a right angle, 
and averse to ties if the angle is obtuse. These three situations 
correspond to v;vi > 0, v;vi = 0, and v;vi < 0, respectively. In 
other words, i and j are more likely to have a tie if the char­
acteristics of i and j are in the same direction, and less likely 
to have a tie if they have characteristics in opposite directions. 
Adding a parameter for each node to allow for different lev­
els of activity is equivalent to having latent vectors of various 
lengths: Letting a; > 0 be the activity level of actor i, we can 
model the probability of a tie from i to j as depending on the 
magnitude of a;v;vi or, equivalently, z;zi/lzii' where Z; = a;V;. 
This is the signed magnitude of the projection of Z; in the 
direction of zi and can be thought of the extent to which i 
and j share characteristics, multiplied by the activity level of 
i. For convenience, we parameterize the probability of a tie 
from i to j using the logistic regression model as before, 

, z;zi 
logodds(Y;,j = liz;. zi, xi,j• a, {3) =a+ f3 xi,j + ~-

In some situations we may wish to model differential rates 
of accepting ties. In this case, the foregoing probability could 
depend on the latent vectors through z;zi/lzJ 
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3. ESTIMATION 

In contrast to the p* and Markov random graph models, 
the log-likelihood of a conditional independence model 1s 
relatively simple, 

logP(YI77) = L{71;,jYi,j-log(l+e11'·j)}, (4) 
if.j 

where 71 is a function of parameters, unknown positions, and 
perhaps known explanatory variables. As such, likelihood­
based estimation methods, such as maximum-likelihood and 
Bayesian inference, are feasible. 

The likelihood (4) is strictly concave in the matrix 71 = 
{ 71;,j}. Consider first the semiparametric model 71 =all'- D, 
where D is constrained only to be a positive symmetric matrix 
of values satisfying the triangle inequality. As the parllflleter 
space {a, D} is convex and 71(a, D) is affine, there is a unique 
value of all'- D maximizing the likelihood. (Note, however, 
a is confounded with D, as the addition of a positive con-· 
stant to a set of distances gives a set of distances.) Unfortu­
nately, the log-likelihood is not generally concave in {a, Z} 
for either the distance model or the projection model, because 
the function 71 = 71(a, Z) is not affine. This makes identifica­
tion of a global maximum likelihood estimator (MLE) prob­
lematic. However, one approach is to first identify a set of 
distances, not necessarily Euclidean, that maximize the likeli­
hood (a convex minimization problem). A set of positions in 
ffik approximating the distances can then be found using mul­
tidimensional scaling methods. This set of positions can be 
used as a starting point in a nonlinear optimization routine. A 
simpler approach that works well in the examples in this arti­
cle is to obtain a set of dissimilarities between nodes based on 
an ad hoc measure, such as the Euclidean distances between 
rows or columns of the sociomatrix or the geodesic distance 
(path length) between the nodes (Wasserman and Faust 1994). 
Starting values for the positiqns can then be found using mul­
tidimensional scaling. 

Distances between a set of points in Euclidean space are 
invariant under rotation, reflection, and translatio~. Therefore, 
for each k x n matrix of latent positions Z, there is an infi­
nite number of other positions giving the same log-likelihood. 
More specifically, logPr(YIZ, a) = logPr(YIZ*, a) for any 
Z* that is equivalent to Z under the operations of reflection, 
rotation, or translation. A confidence region that incJpdes two 
equivalent positions Z1 and Z2 is in a sense overestimating the 
variability in the qnknown positions (although not overestiJ11at­
ing the variability iq distances or relative positions, because 
these are identical for Z1 and Z2). Fortunately, this problem 
~an be resolved by basing inference on equivalence classes of 
i&tent positions: Let [Z] be the class of positions equivalent 
to Z under rotation, reflection, and translation. For each [Z], 
there is one set of distances. between the nodes. We call thi's 
class of positions ·a configuration. 

We make inferen~e on configurations via inference on par­
ticular elements of configurations that are comparable across 
configuration,~. For ~,.~\~en configuration [Z], we select for 
inference Z* = argminrz tr(Z0 - TZ)'(Z0 - TZ), where Z0 is 
a fixed set of positions and T ranges over the set of rotations, 
reflections, and translations. Z* is a "Procrustean" transfor­
mation of Z, being the element of [ Z] closest to Z0 in terms 
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of the sum of squared positional difference and is unique if 
Z0Z' is nonsingular (Sibson 1979). Z* is relatively easy to 
compute: Assuming Z and Z0 are both centered at the origin, 
Z* is given by Z* = Z0Z'(ZZbZ0Z')-112z. We typically take 
Z0 = Z, an MLE of the latent positions centered at the origin. 

Given prior information on a, {3, and Z, our procedure for 
sampling from the posterior distribution is as follows: 

1. Identify an MLE Z of Z, centered at the origin, by direct 
maximization of the likelihood. 

2. Using Z0 = Z as a starting value, construct a Markov 
chain over model parameters as follows: 

a. Sample a proposal Z from J(ZIZk), a symmetric pro­
posal distribution. 

b A t Z Z 'th b bTt p(YjZ,atof:ltoXl 1r(Z) • . ccep as k+I WI pro a 11 Y p(YIZtoatof:lt-Xl 1r(Zt), 

otherwise, set zk+l = zk. 
c. Store Zk+I = argminrzk+, tr(Z- TZk+ 1)'(Z- TZk+1). 

3. Update a and {3 with a Metropolis-Hastings algorithm. 

Because each configuration can be represented by its unique 
Procrustean statistic, the posterior distribution of the config­
uration around Z is represented by samples of Z from the 
Markov chain. 

The computational details for the projection model are the 
same as before, except that the likelihood is invariant under 
rotation and reflection of positions, but not under transla­
tion. Therefore, the only modification to the foregoing is to 
let Zk+1 = argminrzk+, tr(Z- TZk+ 1)'(Z- TZk+ 1), where T 
ranges over the set of rotations and reflections. 

4. EXAMPLES 

Here we analyze three standard datasets from the social 
networks literature: Sampson's (1968) Monk data, Padgett and 
Ansell's (1993) data on marriage relations between Florentine 
families, and Hansell's (1984) classroom data. 

4.1 Monk Data 

Sampson (1968) collected data on a variety of interpersonal 
relations among 18 monks. Of particular interest has been 
the data on positive affect relations, in which each monk was 
asked whether he had positive relations to each of the other 
monks. Based on the network and other data, Sampson origi­
nally classified each monk as belonging to one of four gr~ups: 
the loyal opposition (monks 2-6), the young Turks (monks 
8-14), the outcasts (monks 16-18), or the waverers (monks 
1, 7, and 15). Subsequent data analyses have placed monks 1 
and 7 with the loyal opposition and monk 15 with the outcasts. 

These data are standard in the social network analysis liter­
ature, having been modeled by Holland and Leinhardt (1981), 
Reitz (1982), Holland, Laskey, and Leinhardt (1983), and 
Fienberg et al. (1981). Wang and Wong 0987) extended these 
models by allowing for individual-level variation in relations 
as well as group-level preferences for ties, and obtained a 
substantially improved fit. Specifically, their stochastic block­
model modeled each pair {Yi,j• Yi,J as depending on param­
eters for actor-specific rates of sending and receiving ties, a 
parameter representing mutuality of ties, and a parameter rep­
resenting the preference of actors to send ties to members of 

1093 

their own group. Note that Wang and Wong took the group 
membership information as given, even though it was derived 
to some extent from the data. 

The relations between the monks are somewhat transitive. 
The number of nonvacuously transitive ordered triples (i-+ j, 
j-+ k, i-+ k) is 49. In 500 random reallocations of ties, hold­
ing the number of ties sent by each actor constant, the largest 
number of nonvacuously transitive triads was 35. The distance 
model takes advantage of this transitivity and can achieve a 
better fit than Wang and Wong's model, using fewer parame­
ters and not presuming the a priori existence of distinct groups. 
Our model is the distance model presented in Section 2.1, 

and 

n 

P(Yia, Z) = np(yi)a, zi, z) 
i#j 

(5) 

where the z/s lie in ffi2 • Note that the probability of the 
data depends only on the distances, which are invariant under 
reflection, rotation, and location shift. As a result, 3 of the 
18 x 2 model parameters can be fixed, so this model has 
33 + 1 = 34 parameters (including a). 

The distance between each pair of nodes was first calculated 
as the average of the two directed path lengths between each 
pair. Crude estimates of latent positions were then found using 
multidimensional scaling, and the results were used as starting 
values for the nonlinear minimizer optim in the R statistical 
programming environment. Random sampling of starting val­
ues from a normal distribution produced identical results. 

As shown in Table 1, the maximized log-likelihood is 
-66.02 with 34 parameters, compared with the maximized 
log-likelihood of the stochastic blockmodel fit of -82.12 with 
37 parameters (Wang and Wong 1987). The improvement of 
the position-based model over the stochastic blockmodel of 
Wang and Wong suggests that because relationships are indeed 
transitive to some extent, modeling them as such leads to 
an improvement in model fit. The maximum likelihood esti­
mates of monk positions from the distance model are shown 
in Figure 1(a). 

The conditional independence model lends itself relatively 
easily to a Bayesian analysis. Priors can be formulated for a 
and Z, and posterior inference can be made about each. In par­
ticular, this provides a means of making confidence regions for 
the positions of the actors in social space. Using diffuse inde­
pendent normal priors for a and Z with mean 0 and standard 
deviation 100, we performed a Bayesian analysis via 2.5 x 106 

scans from a Markov chain as described in Section 3. The 
chain mixes reasonably quickly in the zi 's and the pairwise 

Table 1. Model Fitting Results for the Monk Data 

Model 

Distance model (!R3) 

Distance model (!R2) 

Stochastic blockmodel 

Maximized 
log-likelihood 

-34.04 
-66.02 
-82.12 

Number of 
parameters 

50 
34 
37 
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(a) (b) 

14 

12 Jk=:::::::"k::---~ 17 
18 

4 

Figure 1. Maximum Likelihood Estimates (a) and Bayesian Marginal 
Posterior Distributions (b) for Monk Positions. The direction of a relation 
is indicated by an arrow. 

distances between nodes, but quite slowly in a , as shown in 
Figure 2(b ). Output from the chain was saved every 2,000 
scans, and positions of the different monks are plotted for each 
saved scan in Figure l(b) (the plotting color for each monk 
is based on their mean angle from the positive x-axis and 
their mean distance from the origin). The categorization of the 
monks given at the beginning of this section is validated by the 
distance model fitting, as there is little between-group overlap 
in the posterior distribution of monk positions. Additionally, 
this model is able to quantify the extent to which some actors 
(such as monk 15) lie between other groups of actors. 

The extent to which model fit can be improved by increas­
ing the dimension of the latent space was examined by fitting 
the distance model in ffi3, that is, Z; E ~)13 for i = 1, ... , n. The 
maximum likelihood for this model is -34.04 in 50 param­
eters, a substantial improvement over the fit in ffi2 at a cost 
of 16 additional parameters. It is interesting to note that the 
fit cannot be improved by going into higher dimensions. This 
can be seen as follows. For a given dataset Y, the best-fitting 
symmetric model (P;,j = Pj,;) has the property that Pi, j = 1 
for Y;, j = Yj , i = 1, P;, j = 0 for Y; , j = Yj , i = 0, and Pi , j = 1/2 
for Y;, j =f. Yj, ;· The log-likelihood of such a fit is thus -a log 4, 
where a is the number of asymmetric dyads. For the monk 

(a) (b) 

~ 
0 
a) 

"0 
~ 

0 
00 

"' :EO> 
a; .<::: 

a. 
:E "iiiro 
Cl 
.l2o 
~ 

<0 

0 

... 
0 200 600 1000 0 200 600 1000 

scan/(2x 103) scan I (2 x 10") 

Figure 2. MCMC Diagnostics for the Monk Analysis. (a) Log­
likelihood; (b) alpha. 
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dataset, the number of asymmetric dyads is 26, and so the 
maximum possible log-likelihood under a symmetric model is 
-26log4 = -36.04, which is achieved by the distance model 
in ffi3. More precisely, there exists a set of positions Z; E ffi3 

and a rate parameter a such that limc-.c,logP(Yica, cZ) = 
-26log4. 

4 .2 Florentine Families 

Padgett and Ansell (1993) compiled data on marriage 
and business relations between 16 historically prominent 
Florentine families, using a history of this period given by 
Kent (1978). We analyze data on the marriage relations tak­
ing place during the 15th century. The actors in the population 
are families, and a tie is present between two families if there 
is at least one marriage between them. This is an undirected 
relation, as the respective families of the husband and wife in 
each marriage were not recorded. One of the 16 families had 
no marriage ties to the others, and was consequently dropped 
from the analysis. If included, this family would have infinite 
distance from the others in a maximum likelihood estimation 
and a large but finite distance in a Bayesian analysis, as deter­
mined by the prior. 

Modeling d;, j = lz; - zjl• Z;, zj E ffi2 and using the param­
eterization 'YJ;,j = a(l- d; ,) as described in Section 2, the 
likelihood of (a, Z) can be made arbitrarily close to 1 as 
a ---+ oo for fixed Z = Z; that is, the data are d2 representable. 
Such a representing Z is plotted in Figure 3(a). Family 9 is 
the Medicis, whose average distance to others is greater only 
than that of families 13, the Ridolfis and 16, the Tornabuonis. 
Another d2' representation is given in Figure 3(b ). This config­
uration is similar in structure to the first, except that the seg­
ments 9-1 and 9-14-10 have been rotated. This is somewhat 
of an artifact of our choice of dimension: When modeled in 
three dimensions, 1 and 14 are fit as being relatively equidis­
tant from 6. 

One drawback of the MLEs presented earlier is that they 
overfit the data in a sense, as the fitted probabilities of ties are 
all either 0 or 1 (or nearly so, for very large a). Alternatively, 
a prior for a can be formulated to keep predictive probabilities 
more in line with our beliefs; for example, that the probabil­
ity of a tie rarely goes below some small, but not infinitesi­
mal value. Using the MCMC procedure outlined in Section 3, 
the marriage data were analyzed using an exponential prior 
with mean 2 for a and diffuse independent normal priors for 
the components of Z (mean 0, standard deviation 100). The 
MCMC algorithm was run for 5 x 106 scans, with the output 
saved every 5,000 scans. This chain mixes faster than that of 
the monk example, as can be seen in the diagnostic plots of 
Figure 4 and in plots of pairwise distances between nodes (not 
shown). Marginal confidence regions are represented by plot­
ting samples of positions from the Markov chain, shown in 
Figure 3(c). Note that the confidence regions include both the 
configurations given in Figure 3(a) and (b). Actors 14 and 10 
(in red and purple) are above or below actor 1 (in green) for 
any particular sample; the observed overlap of these actors in 
the figure is due to the bimodality of the posterior and that the 
plot gives the marginal posterior distributions of each actor. 
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(a) (b) (c) 

Figure 3. (a) and (b) Alternate d2 Representations of the Florentine Family Data. (c) Marginal posterior distributions of family positions. 

4.3 Classroom Data 

Hansell's (1984) data measure the existence of strong 
friendship ties between 13 boys and 14 girls in a sixth-grade 
classroom. Each student was asked whether he or she liked 
each other student "a lot," "some," or "not much." A strong 
friendship tie is considered present if a student likes another 
student "a lot." 

The number of ties sent by each student varies consider­
ably, ranging from 0 to 19 with a mean of 5.8 and a standard 
deviation of 4.7. (The standard deviation of the number of 
ties received W!!S 3.2.) For this reason, we choose to analyze 
the data using the projection model described in Section 2.2, 
which allows for a variable rate in sending ties across students. 
Additionally, 72% of the ties are same sex, indicating that the 
friendship relation is more prevalent within sex. Finally, the 
relations are transitive, in that the number of nonvacuously 
transitive ordered triples is 400, compared to a maximum of 
347 in 500 random reallocations of ties, holding constant the 
number of ties sent by each student. 

To illustrate the features of the projection model, we fit 
models both with and without covariate information on the 
sex of the students, that is, we consider both of the following 
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formulations: 

• Projection model, no covariate: logit(P;,) = a+z;zj/lzjl 
• Projection model, one covariate: logit(P;, j) = a+ f3x; , j + 

z;zj/lzjl· 

The covariate x;,j is the indicator of actors i and j being of 
the same sex. We also compare these models to the stochastic 
blockmodel fit of Wang and Wong (1987). 

We first obtained distance estimates for both models by cal­
culating the average of the directed path lengths between each 
pair. Crude positions in a single dimension were found using 
Sammon's (1969) nonlinear mapping. These positions were 
converted into positions on a circle, which became the start­
ing values of the latent vectors in the optimization routine. 
Randomly sampled starting values give the same optimum fit 
(Table 2). The projection model with sex as a covariate gives 
the best fit, with the coefficient f3 being nominally significant 
based on a likelihood ratio test. 

Fitting the model without the covariate information on sex 
gives the estimates of positions shown in Figure 5(a). Here 
the students are plotted along the circumference of a circle 
according to the angle of their latent vector, and the size of the 
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Figure 4. MCMC Diagnostics for the Florentine Family Analysis. (a) Log-likelihood; (b) alpha. 
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Table 2. Model-Fitting Results for Classroom Data 

Model 

Projection, with covariate 
Stochastic blockmodel 
Projection, no covariate 

Maximized 
log-likelihood 

-224.58 
-227.57 
-229.05 

Number of 
parameters 

55 
55 
54 

plotting character for a student is increasing in the magnitude 
of their vector. The model identifies two somewhat orthogonal 
groups of actors falling on vectors emanating from the origin, 
one consisting of mostly boys (D); the other, girls ( o ). The 
difference between the boys' and girls' median angles, plotted 
in dashed lines, is 76 degrees. 

Note that if the sexes were separated by 180 degrees, then 
based on the model, it would be improbable for actors to 
have ties to both boys and girls, which is not completely 
uncommon in the data. By having the group vectors sepa­
rated by 76 degrees, the model predicts ties between the sexes 
as rare, although it allows for a nonnegligible probability of 
some actors sending ties to both groups or even sending ties 
primarily to members of the opposite group. 

A further application of the projection model is as a means 
of identifying boys and girls who may be in similar social 
groups, after having accounted for the fact that the frequency 
of between-sex friendship ties is low. The estimated posi­
tions after having partially accounted for this known covariate 
structure are shown in Figure 5(b). Note there is still con­
siderable separation of the sexes, although the difference in 
median angles has been reduced to 60 degrees. This suggests 
that the single covariate xi, i does not fully explain the dif­
ferent rates of within-sex and between-sex friendship ties. A 
"full" model would have different baseline rates for the four 
different types of ties (boy ~ boy, boy ~ girl, girl ~ girl, and 
girl~ boy). Indeed, inclusion of these parameters reduces the 
median angle between the sexes to 13 degrees. We present 
only the model with the single covariate, as this data analysis 
is meant primarily as an illustrative example. 

(a) (b) 
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The foregoing model could also be used as a means of mak­
ing inference on the preference for within-sex friendship ties. 
A naive approach to inference would be to treat each possible 
tie as a Bernoulli random variable, independent of the other 
ties. Using logistic regression, we would estimate the log-odds 
ratio of a between-sex pair being friends compared with that 
of a within-sex pair being friends as 1.3, with a standard error 
of .2. Of course, we would expect a confidence interval based 
on such an analysis to be too small, because ties between 
individuals are not independent, unconditional on the latent 
positions. As an alternative, we performed a Bayesian analysis 
as outlined in Section 3. We constructed a Markov chain of 
length 5 x 106 scans, starting at the MLE. Output was saved 
every 1,000 scans, which we then used to make marginal pos­
terior inference on {3. The marginal posterior density of f3 is 
given in Figure 5( c), in which the solid vertical line represents 
the MLE from the projection model and the dashed lines rep­
resent the MLE plus and minus two standard errors, based on 
an ordinary logistic regression. As we would expect, a 95% 
confidence region from the Bayesian analysis would be longer 
than the one based on the ordinary logistic regression. 

5. DISCUSSION 

This article proposes a new model for social networks based 
on spatial representation for which maximum likelihood and 
Bayesian inference are practical to implement. The approach 
has some advantages over existing social network models and 
inferential procedures. First, the proposed method provides a 
visual and interpretable model-based spatial representation of 
network relationships. Second, it improves on existing meth­
ods by allowing the statistical uncertainty in the social space 
to be quantified and graphically represented. Third, it is flex­
ible and can be easily generalized to allow for multiple rela­
tionships, ties with varying strengths (using generalized linear 
models), and time-varying relations (by modeling the latent 
positions as stochastic processes). Fourth, it deals easily with 
missing data, at least if information on ties is missing at 
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Figure 5. Maximum Likelihood Estimates of Student Positions (a) No covariate information; (b) using indicator of same sex, and (c) the 
posterior of {3. 
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random: The likelihood includes only terms corresponding to 
observed ties. Finally, the model is inherently transitive, and 
so we can expect an improved fit over models lacking such 
structure (such as the stochastic blockmodel) when the rela­
tions are transitive in nature. 

It may be desirable to allow for further dependence in 
the model. For example, the data might exhibit more or less 
reciprocity (Yi.i = Yi.J than is estimated by the model. In 
such a case, the model can be extended by treating each 
dyad (Yi,j• Yj,i) as independent of other dyads, given posi­
tions Z and parameters a and 'Y, where 'Y models the depen­
dence between ties within a dyad. In the absence of such a 
model, some aspects of potential lack of fit can be checked. 
For example, using the fitted probabilities of ties and assum­
iqg the conditional independence model, we can calculate 
the expected number of reciprocal, nonreciprocal, and null­
reciprocal dyads in a dataset and compare these with the 
observed numbers. For the monk data using the distance 
model in ffi2, the expected counts are (17.3, 21.4, 114.3), 
and the observed counts are (15, 26, 112). For the class­
room data, the model with one covariate gives expected 
counts of (26.7, 103.6, 220.7), whereas the observed counts 
are (24, 109, 218), indicating a reasonable fit according to this 
criteria (although both datasets exhibit slightly less reciprocity 
than suggested by the estimated models). 

The nonconcavity of the log-likelihood as a function of the 
latent positions presents difficulties in finding MLEs of the 
parameters. The likelihood surface needs to be carefully exam­
ined to differentiate between global and local maxima. MCMC 
methods can be a useful tool in this regard. For example, in 
the analysis of the Florentine family data, the MCMC proce­
dure was able to identify and mix over two separate maxima. 
Additionally, we reiterate that the log-likelihood is concave 
in (a, D), where D is the set of distances not constrained to 
be Euclidean. One could potentially do model fitting in this 
high-dimensional space and then examine (graphically or oth­
erwise) pairs or subnetworks in lower dimensions. 

We have not discussed in detail the choice of a prior distri­
bution for latent positions in this article. Although simple, the 
diffuse independent normal priors presented in the examples 
may not accurately represent prior beliefs about the structure 
of social networks. More appropriate might be clustered point 
processes or mixtures of normals with an unknown number of 
components. Such priors could allow one to incorporate prior 
information on tendencies for clustering, without specifying 
cluster membership. This would add another level of hierarchy 
to the analysis, although the resulting model would be more 
flexible and perhaps more accurately represent any tendencies 
of populations to form segregating groups. 

As an alternative to the models presented in this arti­
cle, multiple-dimensional scaling (MDS) is a widely used 
method of representing the spatial structure of a social net­
work (Breiger, Boorman, and Arabie 1975; Faust and Romney 
1985). In this context, MDS is a class of methods that can be 
used to produce a spatial representation of individuals based 
on similarity or dissimilarity measures between pairs of indi­
viduals. Such applications of MDS differ from the models pre­
sented here in that MDS is used primarily as a data-analytic 
means of visualizing given dissimilarities, whereas our method 
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is a model-based representation of the measured relations and 
latent positions, although recently DeSarbo, Kim, and Fong 
(1999) and Oh and Raftery (2001) developed model-based 
MDS applicable to two-mode networks within a Bayesian 
framework. Our model has a number of advantages over 
MDS. First, our method directly models the response, whereas 
the usual choices for dissimilarities in MDS are ad hoc and 
do not reflect the stochastic nature of the sociomatrix. Sec­
ond, current versions of MDS use maximum likelihood or 
other optimization methods over large numbers of parame­
ters (e.g., linear in the number of individuals). The asymp­
totic properties of these methods are largely unknown, and the 
uncertainty in the latent positions is difficult to quantify. To 
avoid this, some versions of MDS assume that individuals can 
be grouped into homogeneous clusters-so-called latent class 
MDS (Lazarsfeld and Henry 1968; DeSarbo et al. 1994). How­
ever, individual-specific variability in relative position is often 
the primary focus in the social network context-something 
that can be quantified in an interpretable way via a Bayesian 
analysis of one of the position-based models discussed in this 
article. 

R-code for implementing the proposed methods will 
be available through the first author's website, www.stat. 
washington. edulhoff. 

[Received November 2001. Revised April 2002.] 
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