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Abstract

Sexually-transmitted diseases (STDs) constitute a major public health concern. Mathematical models for the transmission

dynamics of STDs indicate that heterogeneity in sexual activity level allow them to persist even when the typical behavior of the

population would not support endemicity. This insight focuses attention on the distribution of sexual activity level in a population.

In this paper, we develop several stochastic process models for the formation of sexual partnership networks. Using likelihood-based

model selection procedures, we assess the fit of the different models to three large distributions of sexual partner counts: (1) Rakai,

Uganda, (2) Sweden, and (3) the USA. Five of the six single-sex networks were fit best by the negative binomial model. The

American women’s network was best fit by a power-law model, the Yule. For most networks, several competing models fit

approximately equally well. These results suggest three conclusions: (1) no single unitary process clearly underlies the formation of

these sexual networks, (2) behavioral heterogeneity plays an essential role in network structure, (3) substantial model uncertainty

exists for sexual network degree distributions. Behavioral research focused on the mechanisms of partnership formation will play an

essential role in specifying the best model for empirical degree distributions. We discuss the limitations of inferences from such data,

and the utility of degree-based epidemiological models more generally.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Sexually-transmitted diseases (STD), including HIV/
AIDS, constitute a major global public health concern.
UNAIDS estimates that there were 40 million adults
and children living with HIV/AIDS in 2001. In addition
to being a major humanitarian calamity, the AIDS
pandemic represents a substantial barrier to economic
development in many resource-poor settings throughout
the world.
STDs other than HIV have been labeled a ‘‘hidden

epidemic’’ by the National Institute of Medicine (1997),
who estimate that the annual economic cost of STDs
other than HIV/AIDS in the United States alone to be
$16.4 billion. While the prevalence of some of the
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traditional bacterial STDs such as Gonorrhea (Neisseria

gonorrhoeae) and Syphilis (Treponema pallidum) have
undergone steady decline over the last 20 years, others,
such as Chlamydia (Chlamydia trachomatis) have
increased in prevalence (Centers for Disease Control
and Prevention, 2001). Furthermore, some STDs on the
verge of elimination have made dramatic reversals, re-
establishing themselves as endemic infections (Williams
et al., 1999).
The control and eventual eradication of STDs is an

important public health goal. Both mathematical and
statistical models of infectious disease processes have
proven to be invaluable tools for infectious disease
epidemiology (Anderson and Garnett, 2000; Foulkes,
1998). However, developing useful models for STDs
presents a number of challenges. Prominent among
these is characterizing population heterogeneity in
sexual behavior. The average behavior of most popula-
tions is not sufficient either to allow an epidemic or
maintain an endemic STD infection. Mathematical
formalizations of STD infection dynamics indicate that
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heterogeneity in sexual behavior allows STDs, which
would otherwise fade out given average behavior, to
persist (Hethcote and Yorke, 1984; Anderson and May,
1991; Jones and Handcock, 2003a). The importance of
behavioral heterogeneity has focused attention on the
properties of the distribution of sexual partner number.
In this paper, we will present an analysis of the statistical
properties of empirical sexual partnership distributions.
These distributions play a key role in the mathematical
theory of STD transmission, and may hold the key to
their control (Morris, 1991, 1995).

1.1. Mathematical epidemiology of STDs

In the standard theory of infectious disease transmis-
sion dynamics (Bailey, 1975; Anderson and May, 1991),
the force of infection is an increasing function of the size
of the population, and populations will exhibit threshold
sizes below which an epidemic is impossible. These
behaviors are a consequence of the traditional assump-
tion of mass action. However, Anderson and May
(1991) note that there is no reason to assume that the
number of intimate contacts will increase with increas-
ing population size.
In addition to threshold population sizes for epi-

demics, the dynamics of an epidemic are governed by a
threshold parameter, R0; the basic reproductive number.
R0 represents the expected number of secondary cases
produced by a single index case in a population of
susceptibles. In the case of an unstructured population,
R0 is simply the product of three quantities: (1) the
transmissibility of the pathogen, (2) the duration of
infectiousness, and (3) the contact rate between suscep-
tible and infectious individuals. For more complexly
structured models, the calculation of R0 can be general-
ized in a fairly straightforward manner (Diekmann et al.,
1990), though the interpretation becomes more difficult.
Behavioral heterogeneity has been incorporated into

the formulation of R0 by Anderson et al. (1986).
Assuming random mixing with respect to the degree
distribution in a population structured by sexual
activity, they show that R0 increases linearly with the
variance of the degree distribution of the population
sexual contact graph.
Since surveys of sexual behavior reveal that the great

majority of people have one partner or fewer in the last
year, (Laumann et al., 1994; Lewin, 1996) the driving
factor for STDs is clearly the tail of the degree
distribution, and this is where the emphasis for inference
typically focuses (May and Lloyd, 2001; Liljeros et al.,
2001).

1.2. Social networks

By definition, socially communicable diseases are
transmitted from person to person. An intuitive and
mathematically convenient means of representing social
contacts is a graph (Wasserman and Faust, 1994). The
nodes of the graph represent individual people and the
edges represent contact. The number of edges adjacent
to a particular node is its degree, and the collection of
nodal degrees is the degree distribution of the popula-
tion.
Graph-theoretic network models have been used to

describe a wide variety of relational data (Borgatti and
Everett, 1992) including friendship networks among
children (Moody, 2001), scientific collaboration net-
works (Newman, 2001), social and economic exchange
networks (Bearman, 1997), and contact networks for the
spread of infectious disease (Morris, 1993a, 2004).

1.2.1. Models for degree distributions

Empirical degree distributions for sexual partnership
networks are highly skewed (Jones and Handcock,
2003a). The modal yearly degree is k ¼ 1 for nearly all
large representative surveys (e.g., Laumann et al., 1994;
Lewin, 1996; Hubert et al., 1998; Aral, 1999; Youm and
Laumann, 2002). The tremendous skew of sexual degree
distributions has, through analogy to a variety of
physical systems, suggested the possibility of power-
law scaling (Lloyd and May, 2001). Networks exhibiting
power-law scaling have been referred to as ‘‘scale-free’’
networks in Amaral et al. (2000) and subsequent
publications. This attribution is associated with proper-
ties of the implicit underlying stochastic mechanism, and
is often used loosely.
Let K be the degree of a randomly sampled person

from the population. Recent empirical work (Amaral
et al., 2000; Liljeros et al., 2001) has claimed that some
sexual network degree distributions have a probability
mass function (PMF) for network degree of the form,
PðK ¼ kÞEk�r; kb1; where PðK ¼ kÞ is the probability
of observing exact degree k and r is referred to as a
scaling parameter. Let f and g be two functions with
support the whole numbers. We take f ðkÞ^gðkÞ to
mean that there exist constants c1; c2 such that
0pc1of ðkÞ=gðkÞpc2oN for k ¼ 1;y : We then say
that PðK ¼ kÞ has power-law behavior if PðK ¼
kÞ^k�r:
Inference on the scaling parameter r of a power-law

model typically involves fitting a regression line through
the apparently linear region of a plot of the survival
function of the degree distribution plotted against the
distribution on double logarithmic axes (Amaral et al.,
2000; Liljeros et al., 2001). The measurement of
uncertainty is then taken as the standard error of the
estimated slope. This methodology is inappropriate for
the inference problem, yielding (1) biased estimates of
the scaling parameter, and (2) greatly underestimated
model uncertainty (Jones and Handcock 2003a, b).
Even for very large surveys (such as NHSLS

in the USA (Laumann et al., 1994)), the number of
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observations in the tail of the distribution is very small.
The information contained in the tail of a degree
distribution is therefore low. Consequently, the preci-
sion of inferences on the tail is extremely low.
The degree distribution, of course, was generated by

the behavior of the individual actors. The distribution at
any time point is probably best thought of as represent-
ing a dynamic equilibrium of underlying social and
epidemiological processes, rather than simply a static
pattern of sexual behavior (Kendall, 1961). Specifying a
plausible stochastic process by which the observed data
can have been generated provides a better strategy for
investigating the properties of sexual networks than
considering mathematical distributions with weak prox-
imate mechanisms. The equilibria of stochastic models
of network formation can be fit to empirical data using
likelihood techniques, allowing both the estimation
of parameters and the assessment of goodness-of-fit to
the data.

1.3. Stochastic models for network formation

We will discuss three general classes of stochastic
process model for sexual network formation: (1) non-
homogenous Poisson, (2) preferential attachment, and
(3) ‘‘vetting’’ models.

Non-homogeneous Poisson models: Consider the po-
pulation of individuals with at least one partner in a
given time period. Suppose that the number of
additional partners K � 1 that the person has in the
time period follows a Poisson distribution with expected
value l: There are many proximate mechanisms for this
(for example, the partners are accumulated at a constant
rate in time).
The assumption that all individuals have identical

propensities to form partnerships is unrealistic. Indivi-
duals differ by gender, age, marital status, attractive-
ness, and other fundamental characteristics that greatly
influence partnership formation. To model within-
population heterogeneity, we can represent the indivi-
dual expected values l as independent draws from a
distribution PðlÞ:
There are myriad reasonable models for PðlÞ: One

flexible choice is the Gamma distribution. A Poisson
distribution with Gamma-distributed rate parameter l is
a classical hierarchical model, with marginal distribution
of negative binomial (Johnson et al., 1992).
We employ a model in which li þ 1 is the expected

number of sexual partners of the ith individual, and
refer to the resulting partner distribution the shifted

negative binomial distribution. The shifted negative
binomial distribution can have quite a long left tail.
Nonetheless, the variance is finite. The negative bino-
mial distribution is flexible enough to model a variety of
shapes of degree distributions and is widely used in
ecology and epidemiology (Martin and Katti, 1965;
Alexander et al., 2000).

Preferential attachment models: In preferential attach-
ment models, the probability that a contact is made with
any particular individual is a function of that indivi-
dual’s current degree. Two models for preferential
attachment are (1) the Yule distribution (Simon, 1955;
Jones and Handcock, 2003a) and (2) the Waring
distribution (Irwin, 1963).
The underlying stochastic model motivating the

partnership distributions under the Yule begins with a
network of r connections. Assume that (1) there is a
constant probability ðr� 2Þ=ðr� 1Þ that the r þ 1st
partnership in the population will be initiated from a
randomly chosen person to a previously sexually
inactive person, and (2) otherwise the probability that
the r þ 1st partnership will be to a person with exactly k

partners is proportional to kf ðkjrÞ; where f ðkjrÞ is the
frequency of nodes with exactly k connections out of the
r total links in the population. Simon (1955) called the
limiting partnership distribution of this process the Yule

distribution, following the pioneering work of Yule
(1925).
Often a measure of passing time is associated with the

growth model. In some variants a partnership is
associated with each time increment, and in others a
person is associated with each time increment. However,
these formulations are equivalent in their essential
representation of the network.
This stochastic process has been rediscovered, appar-

ently without awareness, by several research groups
(Barabási and Albert, 1999; Albert and Barabási, 2000;
Dorogovtsev et al., 2000) and been used to characterize
Internet growth. The special case with r ¼ 3 has been
proposed by (Barabási and Albert, 1999). It is also
implicit in the analysis of the scaling properties of sexual
contact networks (Liljeros et al., 2001). It has been
described as the ‘‘rich get richer’’ model, as people in the
network with many partners tend to accumulate
partners faster than those with less. The resulting
distribution under this model has the desired property
that most people have very few partners, while a very
few have many sexual partners. The PMF of the Yule
distribution (Johnson et al., 1992) is

PðK ¼ kÞ ¼ ðr� 1ÞGðkÞGðrÞ
Gðk þ rÞ ; k ¼ 1; 2;y; ð1Þ

where GðrÞ is the Gamma function of r: The Yule
distribution has power-law behavior as PðK ¼ kÞ^k�r:
The Waring distribution is a natural generalization of

the Yule proposed by Irwin (1963). The motivating
stochastic process is identical to that of Simon, with the
exception that the probability that the r þ 1st partner-
ship in the population will be initiated from a randomly
chosen person to a previously sexually inactive person is
r�2

rþa�1: This model allows for the probability of
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non-preferential partnerships to be a separate parameter
from that governing the preferential process. As ak� 1
the probability that the tie is to a previously sexually
inactive person approaches unity. As a-N the prob-
ability of approaches zero. The limiting distribution is
given by

PðK ¼ kÞ

¼ ðr� 1ÞGðrþ aÞ
Gðaþ 1Þ � Gðk þ aÞ

Gðk þ aþ rÞ; a4� 1: ð2Þ

The Waring distribution has apparently been derived
independently by Levene et al. (2002) in the context of
modeling growth of the Internet.

Vetting models: The general idea underlying the
vetting models is that people form sexual partnerships
based on a two-stage process. First, they generate an
acquaintance list from which they, second, choose their
sexual partners. This class of model is extremely flexible
in that practically any probability distribution can be
specified for both of these processes. This process
focuses attention on the stopping rules that people
employ when forming sexual partnerships.
The Yule-vetting models are generalizations of the

Yule distribution that recognize that the formation of
sexual partnerships is not cost-less. Suppose that sexual
partners are chosen from a pool of acquaintances. First,
individuals form a random number A acquaintances
from a PMF PðA ¼ aÞ: In many situations the process
of acquaintance formation may be a relatively cost-less
process and PðA ¼ aÞ may have power-law behavior.
This process may represent social networking, geo-
graphic, or other processes. Second, suppose the
potential number L of sex partners an individual has
in the time period follows a distribution that is typically
short-tailed. For example, it could be a geometric or
negative binomial distribution. There are many prox-
imate mechanisms for this (e.g., the partners are from a
queue with constant rate). However, the actual number
of partners K is bounded by the number of acquain-
tances the person has, in the sense that it cannot exceed
that number: K ¼ minðA;LÞ:
The resulting distribution will resemble PðL ¼ kÞ

(e.g., short-tailed) when L is stochastically much smaller
than A: It will resemble PðA ¼ aÞ when L is stochasti-
cally much larger than A: These two situations
correspond to relatively large and small acquaintance
networks, respectively.
As before, the assumption that all individuals have

identical propensities to form sex partnerships is
unrealistic due to the individual characteristics such as
gender, age, marital status, attractiveness. We can model
this within-population heterogeneity, by independently
drawing the individual expected values from a distribu-
tion PðlÞ:
A distribution that may prove useful for generating
long-tailed acquaintance lists is the discrete Pareto

distribution (Johnson et al., 1992). Similarly, the
acquaintance list distribution can be modeled as Yule,
Waring, or negative binomial.
Vetting models represent many other degree distribu-

tions as special cases. On particular case of interest lies
in the intermediate parameter range of models with
power-law list generators in which it can be shown that
PðK ¼ kÞ^e�k=kk�a; where k ¼ 1=logð1þ 1=tmÞ: This
is the power-exponential distribution used by Newman
(2001) to model scientific collaboration networks and is
frequently referred to as the truncated power-law model.

1.4. Differential tail behavior

It is probable that the behavior that governs the
acquisition (and maintenance) of the first sexual partner
a person has in a given time interval will differ from the
process leading to the acquisition of further partners.
For example, the process leading to the choice of
marriage partner is likely to differ from the process
leading to the extra-marital affairs.
To account for the possibility of substantial differ-

ences between the process at low and high network
degree, we allowed for the inclusion of extra parameters
to fit the low-degree observations (e.g., k ¼ 1; 2). We
evaluated the improvement of fit effected by the
inclusion of such parameters in the model selection
stage (see Section 2.2.1). Network data collected on
sexual activity of ever-active people for a relatively short
interval, such as a single year, are likely to contain a
fraction of people for whom k ¼ 0: While it is
traditional to discard these values before performing
inference on the scaling behavior of the degree distribu-
tion (Amaral et al., 2000; Liljeros et al., 2001), the
number of zeros in a population holds a tremendous
amount of information about both the distribution and
the process that generated it. All models that we fit
contain a parameter for the frequency of degree k ¼ 0:
2. Methods

2.1. Data

There are a variety of forms of network data (Morris,
1997). Local network data result from collecting
information on the number and attributes of a focal
individual’s sexual partners ascertained using an epide-
miological/sociological survey instrument. For our
analysis, we use local network data gathered from men
and women as a part of three large, representative
surveys of sexual behavior. For all surveys, we used the
reported number of heterosexual partners in the last
year as the estimate of individual network degree.
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Table 1

Descriptive statistics for the three sexual history surveys

Survey Sex n Mean Variance HIV prevalence (%)

Rakai Women 803 0.89 0.27 16

Men 621 1.28 1.23

Sweden Women 1335 1.01 0.88 0.08

Men 1476 1.27 2.19

USA Women 1919 1.09 0.69 0.6

Men 1506 1.41 1.42

Means and variances are for the number of reported sexual partners in

the last year. HIV prevalence data are for the year 2000 and come from

Sewankambo et al. (2000) for Rakai and UNAIDS country fact sheets

for Sweden and the United States.
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Rakai project sexual network survey: The Rakai
district is an administrative unit of southern Uganda
with a mature AIDS epidemic and an HIV/AIDS
prevalence of approximately 16%. As with all of Sub-
Saharan Africa, the primary mode of HIV transmission
in Rakai is believed to be heterosexual. Data were
collected as part of a large international collaborative
research project.

Sex in Sweden: Data from Sweden come from the
1996 ‘‘Sex in Sweden’’ survey based on a nationwide
probability sample and financed by the Swedish
National Board of Health (Lewin, 1996).

National health and social life survey: Data from the
United States comes from the National Health and
Social Life Survey (NHSLS) (Laumann et al., 1994).
NHSLS was a national probability sample of the sexual
behavior of Americans. Sexual partner count was
ascertained by two different techniques for the NHSLS.
First, respondents were asked to indicate the number of
sexual partners they had had in the last year (and in
their lives) in face-to-face interviews. Second, respon-
dents were asked the same questions on a written
instrument in which partner numbers were binned into
categories of k ¼ f0; 1; 2� 5; 5� 10; 10� 20; 20� 100g:
There is considerable evidence that the latter method

generally yields more reliable results (Laumann et al.,
1994; Lewin, 1996). We therefore use the responses to
the written question for our model estimation. This
introduces some complications to the likelihood func-
tion which are nonetheless easily handled (see below).
Neither Sweden nor the United States is characterized

by a generalized HIV/AIDS epidemic with national
prevalence for both countries less than 1%. Table 1
presents summary statistics for the three studies.

2.2. Statistical inference

We adopt a likelihood framework to estimate the
model parameters and compare the different models
against each other. The likelihood framework provides a
set of powerful tools for inference. The method of
maximum likelihood estimation has been traditionally
regarded as optimal based on asymptotic arguments
(Casella and Berger, 2002). For most models the MLE is
approximately normally distributed (Johnson et al.,
1992) and for small sample sizes the uncertainty of the
MLE can be quantified by the bootstrap (Efron and
Tibshirani, 1993). Here, we employ bootstrap methods
to quantify the small sample properties of the MLEs and
calculate confidence intervals.
Like any sample from a population, the samples

obtained in the sexual surveys we analyze here are
imperfect representations of their populations. Errors
accrue due to sampling frame mis-specification, infor-
mant mis-report and non-response (Rubin, 1987;
Morris, 1993b). Likelihood methods enjoy the tremen-
dous advantage that the sampling design is ‘‘ignorable’’
for many standard (and non-standard) designs under the
likelihood framework (Thompson and Seber, 1996).
That is, the likelihood only depends on data in the
sample, and not on unknown missing data.
Since our models allow for the decoupling of the

behavior of the majority of observations and that of the
tail, the complete data likelihood will be somewhat more
complicated than a standard likelihood (Groeneboom
and Wellner, 1992). Define kmin as the degree above
which the parametric model (e.g., the Yule) is fit and
denote PðK ¼ kÞ ¼ pk for kpkmin: Given n total
observations with observed frequencies n0; n1;y on
network degree k ¼ 0; 1;y; the log-likelihood of the
data is

Lðp; yjK1 ¼ k1;y;Kn ¼ knÞ

¼
Xkmin

m¼0
nm logðpmÞ þ n �

Xkmin

m¼0
nm

 !
log 1�

Xkmin

m¼0
pm

 !

þ
XN

m¼kminþ1
nm logðPðK ¼ mjK4kminÞÞ: ð3Þ

The last term is the contribution to the likelihood of the
observed values given that they are in the tail of the
distribution. From the form of (4) the observed values in
the tail are sufficient for the parameter y: Similarly, the
MLEs of pm are given by the sample proportions, #pm ¼
nm=n;m ¼ 0; 1;y; kmin (see Appendix A).
Special care was needed in calculating the likelihood

for the NHSLS data, because the data on sexual partner
count were grouped. We employed a mixed parametric
likelihood approach to the problem (Groeneboom and
Wellner, 1992). The full data likelihood for NHSLS is
presented in the appendix.

2.2.1. Model selection

The different models we consider have different
numbers of parameters. In general, a model with more
parameters may be expected to fit data better than a
model with few parameters. The likelihoodL provides a
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measure of the goodness-of-fit of a model to the data
that does not adjust for the complexity of the model. If
the models are nested, in the sense that they form a
sequence with each model being a subset of a previous
more complex one, then likelihood ratio tests can be
used. Many solutions have been proposed for non-
nested situations, such as we are faced with here. We
adopt two different approaches: (1) the Akaike informa-
tion criterion (AIC) (Akaike, 1974; Burnham and
Anderson, 2002) and (2) the Bayesian information
Criterion (BIC) (Raftery, 1995). For a simple random
sample of n people with data K1;y;Kn; the AIC is
defined as AIC ¼ �2Lð#yjK1 ¼ k1;y;Kn ¼ knÞ þ 2d;
and BIC ¼ �2Lð#yjK1 ¼ k1;y;Kn ¼ knÞ þ logðnÞd:
A model is judged better than another model if it has

a smaller AIC (or BIC) value. Both AIC and BIC have
solid theoretical foundations: Kullback–Leibler distance
in information theory (for AIC), and integrated like-
Table 2

Top five best fitting models for each network ordered by the value of the A

Population Sex Model kmin d L

Uganda F nb 2 4 �525
yule 3 4 �525
geo 3 4 �525
nb 3 5 �524
tpl 3 5 �525

M geo 4 5 �781
zero-nb 4 6 �780
tpl 4 6 �781
nb 4 6 �781
yule 2 3 �784

Sweden F nb 1 3 �1068
yule 2 3 �1068
waring 2 4 �1067
g-y 2 4 1068

yule 3 4 �1068

M nb 1 3 �1509
g-y 2 4 �1508
tpl 2 4 �1508
nb-y 1 4 �1508
nb-y0 1 4 �1508

USA F yule 2 3 �1600
waring 1 3 �1601
tpl 4 6 �1598
pois 4 5 �1599
yule 3 4 �1600

M nb 1 3 �1599
nb 2 4 �1605
geo 2 3 �1608
nb 3 5 �1606
nb 4 6 �1607

kmin is the cutoff, d is the number of parameters of the model, logL is the log

the Bayesian information criterion, r is the scaling parameter for power di

binomial, geometric), scale is the second parameter of the distribution if

tpl ¼ truncated power law, zero-nb ¼ zero negative binomial, g-y ¼ geometr
lihood in Bayesian theory (for BIC). The BIC approach
has the benefit of incorporating model uncertainty and
sample size into the decision. The AIC has the
advantage of efficiency. That is, for large sample size,
it is the best approximation to the ‘‘true’’ model
(Burnham and Anderson, 2002). If the complexity of
the true model does not increase with the size of the data
set, the BIC is usually preferred, otherwise AIC is
preferred. However, both criteria should be used for
guidance and not used to unilaterally exclude models
solely based on ranking.
3. Results

The results of the model fits are presented in Table 2.
We have listed the five best-fitting models, by AIC. Four
out of the six networks were best fit by the shifted
IC

AIC BIC r/Mean Scale/s.d.

.17 1058.35 1077.10 0.27 1.90

.32 1058.64 1077.39 3.68 NA

.45 1058.91 1077.66 2.67 2.67

.89 1059.79 1083.23 1.88 0.11

.28 1060.57 1084.01 2.59 14.84

.10 1573.10 1595.26 2.72 2.72

.90 1573.80 1600.38 6.29 0.93

.02 1574.03 1600.62 4.54 0.88

.22 1574.44 1601.03 3.58 0.52

.25 1574.50 1587.79 5.43 NA

.45 2142.90 2158.27 0.38 3.62

.64 2143.27 2158.64 4.23 NA

.95 2143.91 2164.39 6.53 1.87

.16 2144.31 2164.80 2.89 4.62

.17 2144.33 2164.82 4.68 NA

.17 3024.34 3040.07 0.66 2.47

.21 3024.43 3045.39 2.47 7.35

.22 3024.44 3045.41 1.82 6.75

.27 3024.55 3045.51 1.51 1.23

.37 3024.55 3045.51 1.51 1.23

.74 3207.48 3224.03 3.84 NA

.34 3208.67 3225.23 3.11 �0.68

.64 3209.27 3242.38 33.07 0.14

.69 3209.39 3236.98 0.69 NA

.71 3209.42 3231.49 3.91 NA

.14 3204.28 3220.08 0.78 0.26

.31 3218.63 3239.70 1.43 1.75

.33 3222.66 3238.46 1.39 1.39

.58 3223.15 3249.49 1.65 2.09

.11 3226.21 3257.81 1.95 2.67

-likelihood of the model, AIC is Akaike’s information criterion, BIC is

stributions or the mean of the non-power distributions (e.g., negative

applicable. Models: nb ¼ shifted negative binomial, geo ¼ geometric;

ic-yule, pois ¼ Poisson; nb-y ¼ negative binomial yule.
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negative binomial model and one was best fit by the
special case of the negative binomial, the geometric. For
all networks but one, the best-fitting model had low kmin

(i.e., 1 or 2), whereas for the Ugandand men, kmin ¼ 4:
For all the networks but one, the top five best-fitting

models had similar values of the likelihood (AIC/BIC).
However, for the American men’s network, the negative
binomial model fit dramatically better than the next best
model.
For all networks in which a power-law model (i.e.,

Yule, Waring) appeared, the value of the scaling
parameter r43; indicating that all networks were
characterized by finite variance (Jones and Handcock,
2003a).
4. Discussion

A wide range of potential models for the degree
distributions exist and empirical data are often limited.
Frequently, many models will fit the empirical informa-
tion approximately equally well, at least superficially.
Thus sophisticated statistical methodology should be
used to assess the quality of the fit of proposed models,
and the plausibility of stochastic mechanisms underlying
the model must be weighed. Kendall (1961) emphasized
this point in his 1960 inaugural presidential address to
the Royal Statistical Society. He argued that for
statistical modeling in the social sciences to mature as
a scientific discipline, it must move beyond simple curve
fitting exercises and into tests of process models. While
revealing regular patterns in social systems is an
important first step in scientific understanding, their
existence does not entail a causal mechanism. Since the
observed patterns in the social world were generated by
the behavior of individual actors, specifying plausible,
testable stochastic processes by which larger patterns
emerge is essential in the scientific understanding of
social phenomena. Unfortunately, this message has
often been lost in the passage of time and the
segmentation of scientific enterprise.
Our results indicate that no unitary stochastic process

easily explains the formation of sexual networks in the
populations we have examined. It has been suggested
that sexual networks may display power-law behavior
(Liljeros et al., 2001; Dezso+ and Barabási, 2002). While
some of the power-law models appear to fit the women’s
networks, both the men’s and women’s networks were
generally better fit by the negative binomial and
variants. Preferential attachment is one stochastic
mechanism for the evolution of networks characterized
by power-law degree distributions (Albert and Barabási,
2000; Pastor-Satorras and Vespignani, 2001). Lloyd and
May (2001) suggested that such processes might be
relevant for human sexual contact networks and this
hypothesis found putative empirical support by Liljeros
et al. (2001) in the Swedish sexual networks analyzed in
this paper. We found the support for preferential
attachment to be mixed overall. While a preferential
attachment model (i.e., Yule, Waring) fell into the top
five best-fitting models for all networks but the
American and Swedish men, it was the top model only
in the case of American women.
Despite their appealing stochastic mechanism, the

vetting models performed poorly relative to the simpler
models.
As noted in Jones and Handcock (2003a), many of

these degree distributions are essentially L-shaped for all
three populations. That is, the distributions fall off very
rapidly from the mode of k ¼ 1; with a very small
number of observations in the tail. The L-shaped degree
distributions of these networks may favor the power-law
models, such as the Yule or discrete Pareto. However,
models fit by maximum likelihood are sensitive to
outliers induced by reporting error. While the great
majority of the data may indicate a certain range for the
parameter(s) of interest, an outlier, by definition, will
have very low probability at these parameter values.
Consequently, a distribution contaminated by reporting
errors may yield a maximum likelihood estimator that is
worse for more of the data.

4.1. The importance of heterogeneity

The stochastic mechanism most clearly supported by
the model selection procedure was individual hetero-
geneity in the propensity for forming partnerships. This
is reflected in the negative binomial fitting best for five of
the six networks, and in the magnitude of the likelihood
criteria supporting this model for the American men.
One interpretation for such a model is that each

individual person has a constant hazard of forming a
new sexual partnership, but that this hazard varies from
individual to individual. For the great majority of
people, this hazard is very low.

4.2. Limitations of exclusively degree-based models

Research on social networks with application to
epidemiology has focused on degree distribution as the
primary property of interest (Newman, 2002a, b;
Liljeros et al., 2001). This is a natural starting point,
both because of the theoretical focus on heterogeneity in
sexual activity (Anderson et al., 1986), and the relative
availability of local network data. However, there are
other features of sexual networks which have a bearing
on epidemic processes. Two such features that have
received a great deal of attention recently are clustering
and minimum path length, the determinants of the so-
called ‘‘small world’’ network effect. Small-world net-
works can arise from power-law models of the degree
distribution (Amaral et al., 2000). Small world graphs
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tend to have larger final epidemic sizes than other sparse
networks because of their relatively high connectedness
(Newman, 2002b).
Nodal attributes, such as gender, ethnicity or marital

status, are also of fundamental importance for the
formation of networks (Morris, 1991). The probability
that an actor will form a sexual contact with an alter is a
function of both the actor’s and the alter’s nodal
attributes, separately from their degree (Wasserman
and Pattison, 1996). Differential selectivity in interac-
tion is not easily accommodated in standard degree-
based epidemic theory. The standard model of hetero-
geneity (Anderson and May, 1991) assumes random
mixing conditional on activity class. More recent formal
treatments, which expressly deal with network structure,
deploy similar assumptions (Newman, 2002a).
In addition to the nodal attributes, other network

properties, which are not necessarily related to degree,
play a fundamental role in epidemics on networks. One
property of particular importance is concurrency.
Concurrency denotes the propensity to form simulta-
neous partnerships (Morris and Kretzschmar, 1995). In
both simulation (Morris and Kretzschmar, 1995, 1997)
and empirical studies, (Potterat et al., 1999) concurrency
has been demonstrated to have significant effects on
STD epidemics independent of the number of sexual
partnerships.
An alternative to strictly degree-based network

models that can accommodate all these features are
the exponential random graph models (ERGMs), also
known as p
 models (Frank and Strauss, 1986). While
the specification of such models presents a host of
technical challenges, recent advancements in statistical
computing have put them within reach. Specifically,
Markov–Chain Monte Carlo (MCMC) simulation
provides a means both for routinely calculating the
likelihoods of large ERGMs and simulation networks
with given nodal and structural characteristics. Recent
work into the properties of MCMC solutions to ERGM
models promises to overcome some of the traditional
difficulties in calculating likelihood estimates (Snijders,
2002; Handcock, 2002).

4.3. Limitations

Inference about the properties of the sexual network
degree distribution is limited by data quality. There are
three problematic features of available network data: (1)
potentially sizable sampling errors associated with
sexual history surveys (Brewer et al., 2000), (2) data
coarsening (particularly for NHSLS), (3) censoring of
very high-degree individuals due to AIDS mortality
(King Holmes, personal communication).
While these factors all limit our ability to infer

network properties, they are certainly not unique to the
likelihood-based procedures we have employed. The
likelihood framework, in fact, can deal with issues
associated with measurement error and bias more
effectively than previous methods used in this context
(Jones and Handcock, 2003a). However, the intrinsic
data limitations warrant caution for the interpretation
of stochastic models. Any stochastic model will be a
caricature of reality, and it is the modeler’s responsi-
bility to decide to what degree of precision a useful
model must conform.
A potentially greater problem for scientific progress in

this field is the dearth of behavioral data on how sexual
partnership networks are formed. In their critique of the
common practice of using observational data to
simultaneously choose a model and estimate its para-
meters, Burnham and Anderson (2002) note that the
scientific work in multi-model inference lies in the
development of a priori mechanistic models. These
models can be derived either empirically or deductively
from theory. In developing alternative models for this
paper, we have attempted to specify plausible behavioral
mechanisms by which networks form, allowing us to
confront existing models (e.g., Liljeros et al., 2001) with
alternatives. Progress on this front is clearly predicated
on careful behavioral work such as that of Gorbach et al.
(2002) on the formation of concurrent sexual partner-
ships.
Table 2 reveals substantial model uncertainty. Differ-

ent models yield similar AIC values for the same data.
This result suggests two important features of the
inference for sexual networks. First, it highlights the
need both for models based on plausible stochastic
processes and for behavioral data to allow us to
distinguish models based on mechanism. Second, it
indicates that model uncertainty should be accounted
for when attempting to make predictions regarding the
behavior of sexual networks or epidemics thereupon.
This uncertainty can be dealt with through, for example,
Bayesian model averaging (Hoeting et al., 2000).

4.4. Conclusion

The results we have presented here indicate that a
general behavioral model for the formation of human
sexual contact networks is still lacking. Preferential
attachment is one model that has been previously
suggested, and the assumptions of preferential attach-
ment have been incorporated into subsequent work.
However, this mechanism does not perform especially
well when confronted with alternative models. We
suggest that incorporating actor heterogeneity and
dependence is essential for future network models in
epidemiology. Furthermore, if we are to move beyond
ad hoc curve fits of network degree distributions and
make real progress in understanding the stochastic
mechanisms which generate empirical networks, two
points are essential: (1) we must recognize that there is
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much more to sexual networks than degree distribu-
tions, and (2) collaboration between network modelers,
epidemiologists, and behavioral scientists is essential.
Acknowledgments

We gratefully acknowledge the critical feedback and
support we have received from Martina Morris, King
Holmes, Julian Besag, Adrian Raftery, Steve Goodreau,
Mark Newman, Richard Hayes, Roy Anderson, and
Bob May. Virginia Rutter suggested the term ‘‘vetting
model.’’ Frederik Liljeros generously made available the
Swedish data used in Liljeros et al. (2001) We especially
wish to thank Dr. Bo Lewin, Professor of Sociology,
Uppsala University and head of the research team
responsible for the ‘‘Sex in Sweden’’ study for providing
the data used in this study. This research supported by
Grant R01-DA012831 from NIDA and Grants R01-
HD034957 and R01-HD41877 from NICHD.
Appendix A. Maximum likelihood estimator for pm

Eq. (4) presents the full data log-likelihood for the
models we use. Here we verify that the maximum
likelihood estimator #pm is simply the sample proportion
of m; nm=n:
The maximum likelihood estimator is given by,

@Lðp; yjK1 ¼ k1;y;Kn ¼ knÞ
@pk

¼ nk

pk

� n �
Pkmin

m¼0nm

1�
Pkmin

m¼0pm

;

which is zero, only if #pm ¼ nm

n
8m ¼ 0; ::: This partial is

not defined for pk ¼ 0 or
Pkmin

m¼0pm ¼ 1: However, in
these special cases the likelihood is maximized (with
probability 1) by the sample proportions.
The Hessian matrix of Eq. (4),

@2Lðp; yjK1 ¼ k1;y;Kn ¼ knÞ
@pk@pj

� �

is negative definite indicating that the MLE is the unique
global maximum.
Appendix B. Likelihood for NHSLS data

The NHSLS data for annual sexual partner count
were binned into categories k ¼ f0; 1; 2� 5; 6� 10; 11�
20; 21� 100g: Suppose the observations C are a
categories f1;y;Cg: The probability of an observation
in category c with inclusive range ½lc; uc
 is

PyðC ¼ cÞ ¼ PyðlcpKpucÞ ¼
Xuc

m¼lc

PðK ¼ mÞ;
where PyðK ¼ mÞ is the log-likelihood. The exact
observation of the degree is the special case where the
categories correspond to a single degree.
Suppose we observe categories C1 ¼ c1;y;Cn ¼ cn:

The full data likelihood for the grouped NHSLS data is
then

LðyjC1 ¼ c1;y;Cn ¼ cnÞ ¼
Xn

m¼1
logðPyðC ¼ cmÞÞ:
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