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NEW SPECIFICATIONS 
FOR EXPONENTIAL 
RANDOM GRAPH MODELS 

Tom A. B. Snijders* 
Philippa E. Pattison t 
Garry L. Robinst 
MarkS. Handcock+ 

The most promising class of statistical models for expressing struc­
tural properties of social networks observed at one moment in time 
is the class of exponential random graph models (ERG M s), also 
known asp • models. The strong point of these models is that they 
can represent a variety of structural tendencies, such as transitivity, 
that define complicated dependence patterns not easily modeled 
by more basic probability models. Recently, Markov chain Monte 
Carlo ( MCMC) algorithms have been developed that produce ap­
proximate maximum likelihood estimators. Applying these models 
in their traditional specification to observed network data often has 
led to problems, however, which can be traced back to the fact that 
important parts of the parameter space correspond to nearly de­
generate distributions, which may lead to convergence problems of 
estimation algorithms, and a poor fit to empirical data. 
This paper proposes new specifications of exponential random 
graph models. These specifications represent structural properties 
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such as transitivity and heterogeneity of degrees by more compli­
cated graph statistics than the traditional star and triangle counts. 
Three kinds of statistics are proposed: geometrically weighted de­
gree distributions, alternating k-triangles, and alternating indepen­
dent two-paths. Examples are presented both of modeling graphs 
and digraphs, in which the new specifications lead to much better 
results than the earlier existing specifications of the ERGM. It is 
concluded that the new specifications increase the range and appli­
cability of the ERGM as a too/for the statistical analysis of social 
networks. 

1. INTRODUCTION 

Transitivity of relations-expressed for friendship by the adage "friends 
of my friends are my friends" -has resisted attempts to be expressed in 
network models in such a way as to be amenable for statistical infer­
ence. Davis (1970) found in an extensive empirical study on relations of 
positive interpersonal affect that transitivity is the outstanding feature 
that differentiates observed data from a pattern of random ties. Transi­
tivity is expressed by triad closure: if i and j are tied, and so are j and 
h, then closure of the triad i,j, h would mean that i and hare also tied. 
The preceding description is for nondirected relations, and it applies in 
modified form to directed relations. Davis found that triads in data on 
positive interpersonal affect tend to be transitively closed much more 
often than could be accounted for by chance, and that this occurs con­
sistently over a large collection of data sets. Of course, in empirically 
observed social networks transitivity is usually far from perfect, so the 
tendency towards transitivity is stochastic rather than deterministic. 

Davis's finding was based on comparing data with a non transitive 
null model. More sophisticated methods along these lines were devel­
oped by Holland and Leinhardt (1976), but they remained restricted 
to the testing of structural characteristics such as transitivity against 
null models expressing randomness or, in the case of directed graphs, 
expressing only the tendency toward reciprocation of ties. A next step 
in modeling is to formulate a stochastic model for networks that ex­
presses transitivity and could be used for statistical analysis of data. 
Such models have to include one or more parameters indicating the 
strength of transitivity, and these parameters have to be estimated and 
tested, controlling for other effects-such as covariate and node-level 
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effects. Then, of course, it would be interesting to model other network 
effects in addition to transitivity. 

The importance of controlling for node-level effects, such as ac­
tor attributes, arises because there are several distinct localized social 
processes that may give rise to transitivity. In the first, social ties may 
"self-organize" to produce triangular structures, as indicated by the 
process noted above, that the friends of my friends are likely to become 
my friends (i.e., a structural balance effect). In other words, the pres­
ence of certain ties may induce other ties to form, in this case with the 
triangulation occurring explicitly as the result of a social process in­
volving three people. Alternatively, certain actors may be very popular, 
and hence attract ties, including from other popular actors. This process 
may result in a core-periphery network structure with popular actors 
in the core. Many triangles are likely to occur in the core as an out­
come of tie formation based on popularity. Both of these triangulation 
effects are structural in outcome, but one represents an explicit social 
transitivity process whereas the other is the outcome of a popularity 
process. In the second case, the number of triangles could be accounted 
for on the basis of the distribution of the actors' degrees without re­
ferring to transitivity. In a separate third possibility, however, ties may 
arise because actors select partners based on attribute homophily, as 
reviewed in McPherson, Smith-Lovin, and Cook (2001), or some other 
process of social selection, in which case triangles of similar actors may 
be a by-product of homophilous dyadic selection processes. An often 
important question is whether, once accounting for homophily, there 
are still structural processes present. This would indicate the presence 
of organizing principles within the network that go beyond dyadic se­
lection. In that case, can we determine whether this self-organization is 
based within triads, or whether triangulation is the outcome of some 
other organizing principle? Given the diversity of processes that may 
lead to transitivity, the complexity of statistical models for transitivity 
is not surprising. 

It can be concluded that transitivity is widely observed in net­
works. For a full understanding of the processes that give rise to 
and sustain the network, it is crucial to model transitivity adequately, 
particularly in the presence of-and controlling for-attributes. In a 
wide-ranging review, Newman (2003) deplores the inadequacy of ex­
isting general network models in this regard. When the requirement is 
made that the model is tractable for the statistical analysis of empirical 
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data, exponential random graph (or p*) models offer the most promis­
ing framework within which such models can be developed. These 
models are described in the next section; it will be explained, how­
ever, that current specifications of these models often do not provide 
adequate accounts of empirical data. It is the aim of this paper to 
present some new specifications for exponential random graph mod­
els that considerably extend our capacity to model observed social 
networks. 

1.1. Exponential Random Graph Models 

The following terms and notation will be used. A graph is the mathe­
matical representation of a relation, or a binary network. The number 
of nodes in the graph is denoted by n. The random variable Yy indicates 
whether there exists a tie between nodes i andj (Yy = 1) or not (Yy = 
0). We use the convention that there are no self-ties-i.e., Yii = 0 for all 
i. A random graph is represented by its adjacency matrix Y with ele­
ments Yy. Graphs are by default nondirected (i.e., Yy = l}i holds for all 
i, j), but much attention is given also to directed relations, represented 
by directed graphs, for which Yy indicates the existence of a tie from i 
to j, and where Yy is allowed to differ from lJi· Denote the set of all 
adjacency matrices by Y. The notational convention is followed where 
random variables are denoted by capitals and their outcomes by small 
letters. We do not consider nonbinary ties here, although they may be 
considered within this framework (e.g., Snijders and Kenny 1999; Hoff 
2003). 

A stochastic model expressing transitivity was proposed by 
Frank and Strauss (1986). According to their definition, a probabil­
ity distribution for a graph is a Markov graph if the number of nodes 
is fixed at n and possible edges between disjoint pairs of nodes are in­
dependent conditional on the rest of the graph. This can be formulated 
less compactly, for the case of a nondirected graph: if i,j, u, v are four 
distinct nodes, the Markov property requires that Yy and Yuv are inde­
pendent, conditional on all other variables Yrs· This is an appealing but 
quite restrictive definition, generalizing the idea of Markovian depen­
dence for random processes with a linearly ordered time parameter and 
for spatial processes on a lattice (Besag 1974). The basic idea is that two 
possible social ties are dependent only if a common actor is involved in 
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both. In Section 3.2 we shall discuss the limitations of this dependence 
assumption in modeling observed social structures. 

Frank and Strauss (1986) obtained an important characteriza­
tion of Markov graphs. They used the assumption of permutation invari­
ance, stating that the distribution remains the same when the nodes are 
relabeled. Making this assumption and using the Hammersley-Clifford 
theorem (Besag 1974), they proved that a random graph is a Markov 
graph if and only if the probability distribution can be written as 

where the statistics Sk and Tare defined by 

number of edges 

number of k-stars (k ~ 2) 

number of triangles, 

(2) 

the Greek letters () k and r indicate parameters of the distribution, and 
1/1( (), r) is a normalizing constant ensuring that the probabilities sum to 
1. Replacing an index by the + sign denotes summation over the index, 
so Yi+ is the degree of node i. A configuration (i, h, .. . , A) is called 
a k-star if i is tied to each of j 1, j 2, up to jk. For all k, the number of 
k-stars in which node i is involved, is given by (Y1+). An edge is a one­
star, so S 1(y) is also equal to the number of one-stars. Some of these 
configurations are illustrated in Figure 1. 

It may be noted that this family of distributions contains for 
02 = ... = On-l = r = 0 the trivial case of the Bernoulli graph-i.e., the 
purely random graph in which all edges occur independently and have 
the same probability e81 /(1 + e81 ). 

Frank and Strauss (1986) elaborated mainly the three-parameter 
model where 03 = ... = On-l = 0, for which the probability distribution 
depends on the number of edges, the number of two-stars, and the num­
ber of transitive triads. They observed that parameter estimation for 
this model is difficult, and they presented a simulation-based method 
for the maximum likelihood estimation of any one of the three parame­
ters in this model, given that the other two are fixed at 0, which is only of 
theoretical value. They also proposed the so-called pseudo-likelihood 
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FIGURE 1. Some configurations for nondirected graphs. 

estimation method for estimating the complete vector of parameters. 
This is based on maximizing the pseudo-loglikelihood defined by 

e(9) = L ln(Pe { }jj = Yij I Yuv = Yuv for all u < v, (u, v) =F (i, j)} ). 
i<j (3) 

This method can be carried out relatively easily, as the algorithm is 
formally equivalent to a logistic regression. However, the properties of 
pseudo-loglikelihood estimators have not been adequately established 
for social networks. In analogous situations in spatial statistics, the maxi­
mum pseudo-loglikelihood estimator has been observed to overestimate 
the dependence in situations where the dependence is strong and to per­
form adequately when the dependence is weak (Geyer and Thompson 
1992). For most social networks the dependence is strong and the max­
imum pseudo-loglikelihood is suspect. 

The paper by Frank and Strauss (1986) was seminal and led to 
many papers published in the 1990s. In the first place, Frank (1991) and 
Wasserman and Pattison (1996) proposed to use a model of this form, 
both for nondirected and for directed graphs, with arbitrary statistics 
u(y) in the exponent. This yields the probability functions 

Pe{ Y = y} = exp (9'u(y) -l/1(9)) y e Y (4) 

where y is the adjacency matrix of a graph or digraph and u(y) is any 
vector of statistics of the graph. Wasserman and Pattison called this 
family of distributions the p* model. As this is an example of what 
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statisticians call an exponential family of distributions (e.g., Lehmann 
1983) with u( Y) as the sufficient statistic, the family also is called an 
exponential random graph model (ERGM). 

Various extensions of this model to valued and multivariate re­
lations were published (among others, Pattison and Wasserman 1999; 
Robins, Pattison, and Wasserman 1999), focusing mainly on subgraph 
counts as the statistics included in u(y), motivated by the Hammersley­
Clifford theorem (Besag 1974). To estimate the parameters, the pseudo­
likelihood method continued to be used, although it was acknowledged 
that the usual chi-squared likelihood ratio tests were not warranted here, 
and there remained uncertainty about the qualities and meaning of the 
pseudo-likelihood estimator. The concept of Markovian dependence 
as defined by Frank and Strauss was extended by Pattison and Robins 
(2002) to partial conditional independence, meaning that whether edges 
Y!i and Yuv are independent conditionally on the rest of the graph de­
pends not only on whether they share nodes but also on the pattern of 
ties in the rest of the graph. This concept will be used later in this paper. 

Recent developments in general statistical theory suggested 
Markov chain Monte Carlo (MCMC) procedures both for obtaining 
simulated draws from ERGMs, and for parameter estimation. MCMC 
algorithms for maximum likelihood (ML) estimation of the parameters 
in ERGMs were proposed by Snijders (2002) and Handcock (2003). 
This method uses a general property of maximum likelihood estimates 
in exponential families of distributions such as (4). That is to say, the 
ML estimate is the value 0 for which the expected value of the statistics 
u(Y) is precisely equal to the observed value u(y): 

E0u(Y) = u(y). (5) 

In other words, the parameter estimates require the model to reproduce 
exactly the observed values of the sufficient statistics u(y). 

The MCMC simulation procedure, however, brought to light se­
rious problems in the definition of the model given by (1) and (2). These 
were discussed by Snijders (2002), Handcock (2002a, 2002b, 2003), and 
Robins, Pattison, and Woolcock (2005), and they go back to a type of 
model degeneracy discussed in a more general sense by Strauss (1986). 
A probability distribution can be termed degenerate if it is concentrated 
on a small subset of the sample space, and for exponential families this 
term is used more generally for distributions defined by parameters on 
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the boundary of the parameter space; near degeneracy here is defined 
by the distribution placing disproportionate probability on a small set 
of outcomes (Handcock 2003). 

A simple instance of the basic problem with these models occurs 
as follows. If model (1) is specified with only an edge parameter fh and 
a transitivity parameter r, while e 1 has a moderate and r a sufficiently 
positive value, then the exponent in (1) is extremely large when y is the 
complete graph (where all edges are present-i.e., Yij = 1 for all i, j) 
and much smaller for all other graphs that are not almost complete. 
This difference is so extreme that for positive values of r-except for 
quite small positive values-and moderate values of e 1, the probability 
is almost 1 that the density of the random graph Y is very close to 1. On 
the other hand, if r is fixed at a positive value and the edge parameter 
e 1 is decreased to a sufficient extent, a point will be reached where the 
probability mass moves dramatically from nearly complete graphs to 
predominantly low density graphs. This model has been studied asymp­
totically by Jonasson (1999) and Handcock (2002a). If r is nonnega­
tive, Jonasson shows that asymptotically the model produces only three 
types of distributions: (1) complete graphs, (2) Bernoulli graphs, and 
(3) mixture distributions with a probability p of complete graphs and 
a probability 1 - p of Bernoulli graphs. These distributions are not 
interesting in terms of transitivity. This near-degeneracy is related to 
the phase transitions known for the Ising and some other models (e.g., 
Besag 1974; Newman and Barkema 1999). The phase transition was 
studied for the triangle model by Haggstrom and Jonasson (1999) and 
Burda, Jurkiewicz, and Krzywicki (2004), and for the two-star model 
by Park and Newman (2004). 

Some examples of more complex models are given in Sections 4 
and 5 below. The phase transition occurs in such models as a near dis­
continuity of the expected value Eeu( Y) as a function of 0-i.e., as the 
existence of a value of e where a plot of coordinates Eeuk(Y) graphed 
as a function of the coordinate e k (or of other coordinates e k!) shows 
a sudden and big increase, or jump (e.g., see, the Figure 16 a). Mathe­
matically, the function still is continuous, but the derivative is extremely 
large. In many network data sets this increase of E euk( Y) jumps right 
over the observed value uk(y); and for the parameter value where the 
jump occurs-which has to be the parameter estimate satisfying the like­
lihood equation (5)--the probability distribution of uk(y) has a bimodal 
shape, reflecting that here the random graph distribution is a mixture of 
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the low-density graphs produced to the left of the jump, and the almost 
complete graphs produced to its right. Hence, although the parame­
ter estimate does reproduce the observation u(y) as the fitted expected 
value, this expected value is far from the two modes of the fitted distri­
bution. This fitted model does not give a satisfactory representation of 
the data. Illustrations are given in later sections. 

One potential way out of these problems might be to condition 
on the total number of ties-i.e., to consider only graphs having the 
observed number of edges. However, Snijders (2002) showed that al­
though conditioning on the total number of ties does sometimes lead to 
improved parameter estimation, the mentioned problems still occur in 
more subtle forms, and there still are many data sets for which satisfac­
tory parameter estimates cannot be obtained. 

A question, then, must be answered: To what extent does model 
(1) when applied to empirical data produce parameter estimates that are 
in, or too close to, the nearly degenerate area, resulting in the impossi­
bility of obtaining satisfactory parameter estimates. A next question is 
whether a model such as (1) will provide a good fit. Our overall experi­
ence is that, although sometimes it is possible to attain parameter esti­
mates that work well, even though they are close to the nearly degenerate 
area, there are many empirically observed graphs having a moderate or 
large degree of transitivity and a low to moderate density, which cannot 
be well represented by a model such as (1 ), either because no satisfac­
tory parameter estimates can be obtained or because the fitted model 
does not give a satisfactory representation of the observed network. 
This model offers little medium ground between a very slight tendency 
toward transitivity and a distribution that is for all practical purposes 
concentrated on the complete graph or on more complex "crystalline" 
structures as demonstrated in Robins, Pattison, and Woolcock (2005). 

The present paper aims to extend the scope of modeling social 
networks using ERGMs by representing transitivity not only by the 
number of transitive triads but in other ways that are in accordance 
with the concept of partial conditional independence of Pattison and 
Robins (2002). We have couched this introduction in terms of the impor­
tant issue of transitivity, but the modeling of transitivity also requires 
attention to star parameters, or equivalently, aspects of the degree distri­
bution. New representations for transitivity and the degree distribution 
in the case of nondirected graphs are presented in Section 3, preceded by 
a further explanation of simulation methods for the ERGM in Section 2. 
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After the technical details in Section 3, we present in Section 4 some 
new modeling possibilities made possible by these specifications, based 
on simulations, showing that these new specifications push back some 
of the problems of degeneracy discussed above. In Section 5 the new 
models are applied to data sets that hitherto have not been amenable to 
convergent parameter estimation for the ERGM. A similar development 
for directed relations is given in Section 6. 

2. GIBBS SAMPLING AND CHANGE STATISTICS 

Exponential random graph distributions can be simulated, and the pa­
rameters can be estimated, by MCMC methods as discussed by Snijders 
(2002) and Handcock (2003). This is implemented in the computer pro­
grams SIENA (Snijders et al. 2005) and stat net (Handcock et al. 2005). 
A straightforward way to generate random samples from such distri­
butions is to use the Gibbs sampler (Geman and Geman 1983): cycle 
through the set of all random variables Y !i (i '# j) and simulate each in 
turn according to the conditional distribution 

Pe{lij=Yij I Yuv=Yuv forall(u,v)=ft(i,j)}. (6) 

Continuing this procedure a large number of times defines a Markov 
chain on the space of all adjacency matrices that converges to the desired 
distribution. Instead of cycling systematically through all elements of 
the adjacency matrix, another possibility is to select one pair (i, j) ran­
domly under the condition i =ft j, and then generate a random value of 
Y !i according to the conditional distribution ( 6); this procedure is called 
mixing {Tierney 1994). Instead of Gibbs steps for stochastically up­
dating the values Y!i, another possibility is to use Metropolis-Hastings 
steps. These and some other procedures are discussed in Snijders (2002). 

For the exponential model (4), the conditional distributions (6) 
can be obtained as follows, as discussed by Frank (1991) and Wasserman 
and Pattison (1996). For a given adjacency matrix y, define by ji(l){i, j) 
and y<0)(i, j), respectively, the adjacenc~ matrices obtained by defining 
the (i,j) element as ~y(i, j) = 1 and ~/{i. j) = 0 and leaving all other 
elements as they are in y, and define the change statistic with (i,j) element 
by 
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Zij = u(.y(l)(i, j)) - u(ji<0>(i, j)). (7) 

The conditional distribution (6) is formally given by the logistic regres­
sion with the change statistics in the role of independent variables, 

logit(Po { Y;i = 1 I Yuv = Yuv for all (u, v) =f. (i, j)}) = O'zij. (8) 

This is also the form used in the pseudo-likelihood estimation procedure, 
shown in (3). 

The change statistic for a particular parameter has an interpre­
tation that is helpful in understanding the implications of the model. 
When multiplied by the parameter value, it represents the change in 
log-odds for the presence of the tie due to the effect in question. For in­
stance, in model (1 ), if an edge being present on (i,j) would thereby form 
three new triangles, then according to the model the log-odds of that tie 
being observed would increase by Jr due to the transitivity effect. 

The problems with the exponential random graph distribution 
discussed in the preceding section reside in the fact that for specifica­
tions of the statistic u(y) containing the number of k-stars fork ~ 2 
or the number of transitive triads, if these statistics have positive pa­
rameters, changing some value y iJ can lead to large increases in the 
change statistic for other variables Yuv· The change in Yuv suggested by 
these change statistics will even further increase values of other change 
statistics, and so on, leading to an avalanche of changes which ulti­
mately leads to a complete graph from which the probability of escape is 
negligible-hence the near degeneracy. Note that this is not intrinsically 
an algorithmic issue-the algorithm merely reflects the full-conditional 
probability distributions of the model. The cause is that the underlying 
model places significant mass on complete (or near complete) graphs. 
A theoretical analysis of these issues is given by Handcock (2003). 

This can be illustrated more specifically by the special case of the 
Markov model defined by (1) and (2) for nondirected graphs where only 
edge, two-star, and triangle parameters are present. The change statistic 
is 

(
Z!ij) 
Z2ij 

Z3ij 

= ( :-:(0)(. ") 
1 

:-:(0)(. ")) Yi+ z, J + Yj+ z, J 

L2ii 

= ( Yi+ + Yi~ - 2 Yii) (9) 

~ij 
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where y<0)(i, /,)denotes, as above, the adjacency matrix obtained fromy 
by letting .Y';J (i, j) = 0 and leaving all other Yuv unaffected, and y';~ (i, j) 

and jin (i, j) are for this reduced graph the degrees of nodes i and j; while 
L2if is the number of two-paths connecting i andj, 

~ij = LYihYhj· 
hf.i,j 

(10) 

The corresponding parameters are fh, fh, and -r. The avalanche effect, 
occurring for positive values of the two-star parameter(} 2 and the tran­
sitivity parameter -r, can be understood as follows. 

All the change statistics are elementwise nondecreasing functions 
of the adjacency matrix y. Therefore, given that 02 and -r are positive, 
increasing some element y if from 0 to 1 will increase many of the change 
statistics and thereby the logits (8). In successive simulation steps of the 
Gibbs sampling algorithm, an accidental increase of one element y if will 
therefore increase the odds that a next variable Yuv will also obtain the 
value 1, which in the next simulation steps will further increase many 
of the change statistics, etc., leading to the avalanche effect. Note that 
the maximum value of z2 is 2(n - 2) and the maximum of z3 is (n - 2), 
both of which increase indefinitely as the number of nodes of the graph 
increases, and this large maximum value is one of the reasons for the 
problematic behavior of this model. It may be tempting to reduce this 
effect by choosing the edge parameter (} 1 strongly negative. However, 
this forces the model toward the empty graph. If the two forces are 
balanced, the combined effect is a mixture of (near) empty and (near) 
full graphs with a paucity of the intermediate graphs that are closer 
to realistic observations. If the Markov random graph model contains 
a balanced mixture of positive and negative star parameter values, this 
avalanche effect can be smaller or even absent. This property is exploited 
and elaborated in the following section. 

3. PROPOSALS FOR NEW SPECIFICATIONS FOR STAR 
AND TRANSITIVITY EFFECTS 

We begin this section by considering proposals that will model all k­
star parameters as a function of a single parameter. Since the number 
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of stars is a function of the degrees, this is equivalent to modeling the 
degree distribution. Suitable functions will ensure that the avalanche 
effect referred to in the previous section will not occur, or will at least 
be constrained. These steps can be taken within the framework of the 
Markov dependence assumption. 

We then turn to transitivity, which is more important from a the­
oretical point of view but is treated after the models for k-stars and 
the degree distribution because of the greater complexity of the graph 
structures involved. The model for transitivity uses a new graph config­
uration that we term a k-triangle. We model k-triangles in similar ways 
to the stars, in that all k-triangle parameters are modeled as a function 
of a single parameter. But these new parameters are not encompassed 
by Markov dependence, and we need to relax the dependence assump­
tion to partial conditional dependence. The discussion is principally for 
nondirected graphs; the case of directed graphs is presented more briefly 
in a later section. 

3.1. Geometrically Weighted Degrees and Related Functions 

Expression (1}-(2) shows that the exponent of a Markov graph model 
can contain an arbitrary linear function of the k-star counts 5/c, k = 
1, ... , n - 1. These counts Sk are given by binomial coefficients, which 
are independent polynomials of the node degrees Yi+• 5k being a poly­
nomial of degree k. But it is known that every function of the numbers 1 
through n - 1 can be expressed as a linear combination of polynomials 
of degrees 1, ... , n - 1. Therefore, any function of the degree distribu­
tion (i.e., any function of the degrees that does not depend on the node 
labels) can be represented as a linear combination of the k-star counts 
S1, ••• , Sn-I· In other words, we have complete liberty to include any 
function ofthe degree distribution in the exponent of ( 4) and still remain 
within the family of Markov graphs. 

Saturated models for the degree sequence were discussed by 
Snijders (1991) and by Snijders and van Duijn (2002). These models 
have the virtue of giving a perfect fit to the degree distribution and 
controlling perfectly for the degrees when estimating and testing other 
parameters, but at the expense of an exceedingly high number of pa­
rameters and the impossibility to do more with the degree distribution 
than describe it. Therefore we do not discuss these models here. 
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3.1.1. Geometrically Weighted Degree Counts 
A specification that has been traditional since the original paper by 
Frank and Strauss (1986) is to use the k-star counts themselves. Such 
subgraph counts, however, if they have positive weights (h in the ex­
ponent in (4), are precisely among the villains responsible for the de­
generacy that has been plaguing ERGMs, as noted above. One primary 
difficulty is that the model places high probability on graphs with large 
degrees. A natural solution is to use a statistic that places decreasing 
weights on the higher degrees. 

An elegant way is to use degree counts with geometrically de­
creasing weights, as in the definition 

n-J n 
u~>(y) = :~:::e-akdk(Y) = :L>-ayi+' (11) 

k=O i=l 

where dk(y) is the number of nodes with degree k and a > 0 is a parameter 
controlling the geometric rate of decrease in the weights. We refer to a as 
the degree weighting parameter. For large values of a, the contribution 
of the higher degree nodes is greatly decreased. As a -+ 0 the statistic 
places increasing weight on the high degree graphs. This model is clearly 
a subclass of the model ( 4) where the vector of statistics is u(y) = d(y) = 
(do(y), ... , dn-J(y)) but with a parametric constraint on the natural 
parameters, 

(12) 

which may be called the geometrically decreasing degree distribution 
assumption. This model is hence a curved exponential family (Efron 
197 5). The statistic (11) will be called the geometrically weighted degrees 
with parameter a. 

As the degree distribution is a one-to-one function of the number 
of k-stars, some additional insight can be gained by considering the 
equivalent model in terms of k-stars. Define 

u(s)( ) = C!. _ 53 + ~ _ ... + (-1)n-2 ~-1 
I. Y IJl. ).. )..2 )..n-3 

n-J k 5/c (13) 
= L:(-1) k-2' 

k=2 ).. 
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Here the weights have alternating signs, so that positive weights of some 
k-star counts are balanced by negative weights of other k-star counts. 
This implies that, when considering graphs with increasingly high de­
grees, the contribution from extra k-stars is kept in check by the contri­
bution from extra (k +I)-stars. Using expression (2) for the number of 
k-stars and the binomial theorem, we obtain that 

(14) 

for A = ea j ( ea - 1) ::: 1; the parameters a and A are decreasing func­
tions of one another. This shows that the two statistics form the same 
model in the presence of an edges or 1-star term. This model is also a 
curved exponential family based on (1), and the constraints on the star 
parameters can be expressed in terms of the parameter A as 

(15) 

This equation is equivalent to the geometrically decreasing degree dis­
tribution assumption and can, alternatively, be called the geometric al­
ternating k-star assumption. Statistic (13) will be called an alternating 
k-star with parameter A. 

As a--+ oo, it follows that A--+ 1, and (11) approaches 

u~(y) = do(y). (16) 

Thus the boundary case a = oo(A = 1) implies that the number of 
isolated nodes is modeled distinctly from other terms in the model. This 
can be meaningful for two reasons. First, social processes leading to the 
isolation of some actors in a group may be quite different from the social 
processes that determine which ties the nonisolated actors have. Second, 
it is not uncommon that isolated actors are perceived as not being part of 
the network and are therefore left out of the data analysis. This is usually 
unfortunate practice. From a dynamic perspective, isolated actors may 
become connected and other actors may become isolated. To exclude 
isolated actors in a single network study is to niake the implausible 
presupposition that such effects are not present. 

The change statistic associated to statistic (11) is 

(17) 
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where ji = y<0>(i, j) is the reduced graph as defined above. This change 
statistic is an elementwise nondecreasing function of the adjacency ma­
trix, but the change becomes smaller as the degrees Yi+ become larger, 
and for a > 0 the change statistic is negative and bounded below by 
2(e-a- 1). Thus, according to the criterion in Handcock (2003), a full­
conditional MCMC for this model will mix close to uniformly. This 
should help protect such models from the inferential degeneracy that 
has hindered unconstrained models. 

As discussed above, the change statistic aids interpretation. If the 
parameter value is positive, then we see that the conditional log-odds of 
a tie on (i,j) is greater among high-degree actors. In a loose sense, this ex­
presses a version of preferential attachment (Albert and Barabasi 2002) 
with ties from low degree to high degree actors being more probable 
than ties among low degree actors. However, preference for high degree 
actors is not linear in degree: the marginal gain in log-odds for connec­
tions to increasingly higher degree partners is geometrically decreasing 
with degree. 

For instance, if a= ln(2) (i.e., A.= 2) in equation (17), for a fixed 
degree of i, a connection to a partner j I who has two other partners is 
more probable than a connection to h with only one other partner, the 
difference in the change statistics being 0.25. But if }I and}2 have degrees 
5 and 6 respectively (from their ties to others than i), the difference in the 
change statistics is less than 0.02. So, nodes with degree 5 and higher are 
treated almost equivalently. Given these two effects- a preference for 
connection to high degree nodes, and little differentiation among high 
degree nodes beyond a certain point, we expect to see two differences 
in outcomes from models with this specification compared to Bernoulli 
graphs with the same value for ()I: a tendency for somewhat higher 
degree nodes, and a tendency for a core-periphery structure. 

3.1.2. Other Functions of Degrees 
Other functions of the node degrees could also be considered. It has 
been argued recently (for an overview, see Albert and Barabasi 2002) 
that for many phenomena degree frequencies tend to 0 more slowly than 
exponential functions-for example, as a negative power of the degrees. 
This suggests sums of reciprocals of degrees, or higher negative powers 
of degrees, instead of exponential functions such as (14). An alternative 
specification of a slowly decreasing function that exploits the fact that 
factorials are recurrent in the combinatorial properties of graphs and 
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that is in line with recent applications of the Yule distribution to degree 
distributions (see Handcock and Jones 2004), is a sum of ascending 
factorials of degrees, 

n 1 
u(y) = L -:---~ 

i=l (Yi+ + c)r 
(18) 

where (d)r for integers dis Pochhammer's symbol denoting the rising 
factorial, 

(d)r = d(d + 1) ... (d + r - 1), 

and the parameters c and rare natural numbers (1, 2, ... ). The associated 
change statistic is 

-r -r 
Zij(y) = ~ + ~ . 

(Yi+ + c)r+I (Y+j + c)r+l 
(19) 

The choice between this statistic and (13), and the choice of the 
parameters a or ).., c, and r, will depend on considerations of fit to 
the observed network. Since these statistics are linearly independent 
for different parameter values, several of them could in principle be 
included in the model simultaneously (although this will sometimes 
lead to collinearity-type problems and change the interpretation of the 
parameters). 

3.2. Modeling Transitivity by Alternating k-Triangles 

The issues of degeneracy discussed above suggest that in many empirical 
circumstances the Markov random graph model of Frank and Strauss 
(1986) is too restrictive. Our experience in fitting data suggests that prob­
lems particularly occur with Markov models when the observed network 
includes not just triangles but larger "clique-like" structures that are not 
complete but do contain many triangles. Each of the three processes 
discussed in the introduction are likely to result in networks with such 
denser "clumps." These are indeed the subject of much attention in 
network analysis (cohesive subset techniques), and the transitivity pa­
rameter in Markov models (and perhaps the transitivity concept more 
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generally) can be regarded as the simplest way to examine such clique­
like sections of the network because the triangle is the simplest clique 
that is not just a tie. But the linearity of the triangle count within the 
exponential is a source of the near-degeneracy problem in Markov mod­
els, when observed incomplete cliques are somewhat large and hence 
contain many triangles. What is needed to capture these "clique-ish" 
structures is a transitivity-like concept that expresses triangulation also 
within subsets of nodes larger than three, and with a statistic that is 
not linear in the triangle count but gives smaller probabilities to large 
cliquelike structures. Such a concept is proposed in this section. 

From the problems associated with degeneracy, given the equiv­
alence between the Markov conditional independence assumption and 
model (1), we draw two conclusions: (1) edges that do not share a tie 
may still be conditionally dependent (i.e., the Markov dependence as­
sumption may be too restrictive); (2) the representation of the social 
phenomenon of transitivity by the total number of triangles is often too 
simplistic, because the conditional log-odds of a tie between two social 
actors often will not be simply a linear function of the total number of 
transitive triangles to which this tie would contribute. 

A more general type of dependence is the partial conditional in­
dependence introduced by Pattison and Robins (2002), a defmition that 
takes into account not only which nodes are being potentially tied, but 
also the other ties that exist in the graph-i.e., the dependence model 
is realization-dependent. We propose a model that satisfies the more 
general independence concept denoted here as [CD] for "Conditional 
Dependence." 

Assumption [CD]: Two edge indicators Yiv and Yu1 are conditionally 
dependent, given the rest of the graph, only if one of the two following 
conditions is satisfied: 

1. They share a vertex-i.e., {i, v} n {u, j} =f:. 0 (the usual Markov 
condition). 

2. Yiu = YvJ = 1, i.e., if the edges existed they would be part of a four­
cycle (see Figure 2). 

This assumption can be phrased equivalently in terms of independence: 
If neither of the two conditions is satisfied, then Yiv and YuJ are condi­
tionally independent, given the rest of the graph. 
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'U ·-----· j 

i ·-----· v 
FIGURE 2. Partial conditional dependence when four-cycle is created. 

One substantive interpretation of the partial conditional depen­
dence assumption (2) is that the possibility of a four-cycle establishes 
the structural basis for a "social setting" among four individuals (Patti­
son and Robins 2002), and that the probability of a dyadic tie between 
two nodes (here, i and v) is affected not just by the other ties of these 
nodes but also by other ties within such a social setting, even if they do 
not directly involve i and v. A four-cycle assumption is a natural exten­
sion of modeling based on triangles (three-cycles) and was first used by 
Lazega and Pattison (1999) in an examination of whether such larger 
cycles could be observed in an empirical setting to a greater extent than 
could be accounted for by parameters for configurations involving at 
most three nodes. 

We now seek subgraph counts that can be included among the 
sufficient statistics u(y) in (4), expressing types of transitivity-therefore 
including triangles-and leading to graph distributions conforming to 
assumption [CD]. Under the Markov assumption (1), Yiv is condition­
ally dependent on each of Yiu. Yii, and Yjv, because these edge indica­
tors share a node. If Yiu = Jl.jv = 1, the precondition in the four-cycle 
partial conditional dependence (2), then Yiv is conditionally dependent 
also on Yuj, and hence (cf. Pattison and Robins 2002) the Hammersley­
Clifford theorem implies that the exponential model (4) could contain 
the statistic defined as the count of such configurations. We term this 
configuration, given by 

Yiv = Yiu = Yij = Yuj = Yjv = 1, 

a two-triangle (see Figure 3). It represents the edge Yii = 1 as part ofthe 
triadic setting Yii = Yiv = Jl.jv = 1 as well as the setting Yii = Yiu = Yju = 1. 

Elaborating this approach, we propose a model that satisfies as­
sumption [CD] and is based on a generalization of triadic structures in 
the form of graph configurations that we term k-triangles. It should be 
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FIGURE 3. Two examples of a two-triangle. 

noted that this model implies, but it is not implied by, assumption [CD]: 
It is a further specification. 

For a nondirected graph, a k-triangle with base (i,j) is defmed by 
the presence of a base edge i - j together with the presence of at least k 
other nodes adjacent to both i andj. We denote a "side" of a k-triangle 
as any edge that is not the base. The integer k is called the order of the 
k-triangle. Thus a k-triangle is a combination of k individual triangles, 
each sharing the same edge i - j, as shown in Figure 4. The concept of 
a k-triangle can be seen as a triadic analogue of a k-star. If kmax denotes 
the highest value of k for which there is a k-triangle on a given base 
edge (i, j), then the larger kmax. the greater the extent to which i and j 
are adjacent to the same nodes, or alternatively to which i and j share 
network partners. Because the notion of k-triangles incorporates that 
of an ordinary triangle (k = 1 ), k-triangle statistics have the potential 
for a more granulated description of transitivity in social networks. It 
should be noted that there are inclusion relations between the k-triangles 
for different k. A three-triangle configuration, for instance, necessarily 
comprises three two-triangles, so the number of three-triangles cannot 
be less than thrice the number of two-triangles. 

A summary of how dependence structures relate to conditional 
independence models is given by Robins and Pattison (2005). Here 
we use the characterization, obtained by Pattison and Robins (2002), 

hs 

FIGURE 4. A k-triangle for k = 5, which is also called a five-triangle. 
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of the sufficient statistics u(y) in (4) of partial conditionally indepen­
dent graph models. In the model proposed below, the statistics u(y) 
contain, in addition to those of the Markov model, parameters for 
all k-triangles. Such a model satisfies assumption [CD], which can be 
seen as follows. It was shown already above that this holds for two­
triangles. Assuming appropriate graph realizations, [CD] implies that 
every possible edge in a three-triangle configuration can be condition­
ally dependent on every other possible edge through one or the other 
of the two-triangles, and hence as all possible edges are conditionally 
dependent, it follows from the characterization by Pattison and Robins 
(2002) that there is a parameter pertaining to the three-triangle in the 
model. Induction on k shows that the Markovian conditional depen­
dence (I) with the four-cycle partial conditional dependence (2) implies 
that there can be a parameter in the model for each possible k-triangle 
configuration. 

Our proposed model contains the k-triangle counts, but includ­
ing these all as separate statistics in the exponent of (4) would lead to a 
large number of of statistical parameters. Therefore we propose a more 
parsimonious model specifying relations between their coefficients in 
this exponent, in much the same way as for alternating k-stars. The 
model expresses transitivity as the tendency toward a comparatively 
high number of triangles, without too many high-order k-triangles be­
cause this would lead to a (nearly) complete graph. Analogous to the 
alternating k-stars model, the k-triangle model described below implies 
a possibly substantial increase in probability for an edge to appear in 
the graph if it is involved in only one triangle, with further but smaller 
increases in probability as the number of triangles that would be created 
increases (i.e., as the edge would form k-triangles of higher and higher 
order). Thus, the increase in probability for creation of a k-triangle is a 
decreasing function of k. There is a substantively appealing interpreta­
tion: If a social tie is not present despite many shared social partners, 
then there is likely to be a serious impediment to that tie being formed at 
all (e.g., impediments such as limitations to degrees and to the number 
of nodes connected together in a very dense cluster, mutual antipathy, or 
geographic distance, depending on the empirical context). In that case, 
the addition of even more shared partners is not likely to increase the 
probability of the tie greatly. 

This is expressed mathematically as follows. The number of k­
triangles is given by the formula 
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1k = U{({i, j}, {hJ, h2 •... , hk}) I {i, j} c V, £h1, h2, ... , hk} c V, 

Yij = 1 and Yiht = Yhtj = 1 for l = 1, ... , k} 

= Li<j Yij et) (fork ::: 2), (20a) 

where L 2ij, defined in (10), is the number of two-paths connecting i and 
j. (Note that for nondirected graphs, two-paths and two-stars refer to 
the same configuration Yih = Yhj = 1; the name "star" points attention to 
the middle vertex h, the name "path" to the end vertices i andj.) If there 
exists a tie i - j, the value k = L 2ij is the maximal order k for which a k­
triangle exists on the base (i,j). The formula for the number of triangles, 
which can be called 1-triangles, is different, due to the symmetry of these 
configurations: 

(20b) 

We propose a model where these k-triangle counts occur as suf­
ficient statistics in ( 4), but with weights for the k-triangle counts Tk that 
have alternating signs and are geometrically decreasing, like those in the 
alternating k-stars. We start with the !-triangles-in contrast to (13)­
these being the standard type of triangles on which the others are based, 
with a weight of 3 aimed at obtaining a simple expression in terms of 
the numbers of shared partners L 2ij. This leads to the following statistic. 
Analogous to the geometrically weighted degree count, an equivalent 
expression is given using (20) and the binomial formula, 

= A.SI -). LYije-aL2ij' 
i<j 

where again A.= ea j(ea - 1). 

(2la) 

(2lb) 
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Expression (21a) shows that this is a linear function of the k­
triangle counts, which is basic to the proof that this statistic satisfies 
assumption [CD]. As in the case of k-stars, the statistic imposes the 
constraint T:k =- T:k-I/A (k::::: 3), where T:k is the parameter pertain­
ing to Tk. The alternating negative weights counteract the tendency to 
forming big cliquelike clusters that would be inherent in a model with 
only positive weights fork-triangle counts. Expression (21b) is (for a > 
0) an increasing function of the numbers L 2iJ for which there is an edge 
i- j, but it increases very slowly as L2iJ gets large. This expresses that 
the tie i - j has a higher probability accordingly as i and j have more 
shared partners, but this increase in probability is very small for higher 
numbers of shared partners. 

We propose to use this statistic as a component in the exponen­
tial model (4) to express transitivity, with the purpose of providing a 
model that will be better able than the Markov graph model to rep­
resent empirically observed networks. In some cases, this statistic can 
be used alongside T = T 1 in the vector of sufficient statistics, in other 
cases only (2la) (or, perhaps, only T 1) will be used-depending on how 
the best fit to the empirical data is achieved and on the possibility of 
obtaining a nondegenerate model and satisfactory convergence of the 
estimation algorithm. 

The associated change statistic is 

Zij = A 1 - 1 - i IJ l ( 1)l2''l 

l ( 1 ) iuh ( 1 ) l2h 'l + ~ YihYih 1 - );: + YhiYhi 1 - ];: ' , (22) 

where kuv is the number of two-paths connecting nodes u and v in the 
reduced graph y (where Yij is forced to be 0) for the various nodes u 
andv. 

The change statistic gives a more specific insight into the alter­
nating k-triangle model. Suppose A = 2 and the edge i - j is at the base 
of a k-triangle and consider the first term in the expression above. Then, 
similarly to the alternating k-stars, the conditional log-odds of the edge 
being observed does not increase strongly as a function of k for val­
ues of k above 4 or 5 (unless perhaps the parameter value is rather large 
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compared to other effects in the model). The model expresses the notion 
that it is the first one to three shared partners that principally influence 
transitive closure, with additional partners not substantially increasing 
the chances of the tie being formed. The -second and third terms of the 
change statistic relate to situations where the tie completes a k-triangle 
as a side rather than as the base. For example, for the second term, the 
edge i - h is the base and h is a partner shared withj; the change statis­
tic decreases as a function of the number of two-paths from ito h. This 
might be interpreted as actor i, already sharing many partners with h, 
feeling little impetus to establish a new shared partnership with j who 
is also a partner to h. 

As was the case for the alternating k-stars, this statistic is con­
sidered for A.:::: 1, and the downweighting of higher-order k-triangles is 
greater accordingly as A. is larger. Again, the boundary case A. = 1 has a 
special interpretation. For A. = 1 the statistic is equal to 

u~1)(y) = LYijl{~ij :::: 1}, (23) 
i<j 

the number of pairs (i, j) that are directly linked (yij = 1) but also 
indirectly linked (y;h = Yhi = 1 for at least one other node h). In this case 
the change statistic is 

Zij = I{L.ij :::: 1} + L{YihYjhi{L.ih = 0} + YhiYhjl{L_hj = 0}}. (24) 
h 

3.3. Alternating Independent Two-Paths 

It is tempting to interpret the effect of the alternating k-triangles as an 
effect for a tie to form on a base, emergent from the various two-paths 
that constitute the sides. But the change statistic makes clear that for­
mation of alternating k-triangles involves not only the formation of new 
bases of k-triangles but also new sides of k-triangles, which should be 
interpreted as contributing to prerequisites for transitive closure rather 
than as establishing transitive closure. In order to differentiate between 
these two interpretations, it is necessary to control for the prerequisites 
for transitive closure-i.e., the number of configurations that would be 
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(a) 

FIGURE 5. Two-independent two-paths (a) and five-independent two-paths (b). 

the sides of k-triangles if there would exist a base edge. This means that 
we consider in addition the effect of connections by two-paths, irrespec­
tive of whether the base is present or not. This is precisely analogous 
in a Markov model to considering both preconditions for triangles­
i.e., two-stars or two-paths-and actual triangles. For Markov models, 
the presence of the two-path effect permits the triangle parameter to 
be interpreted simply as transitivity rather than a combination of both 
transitivity and a chance agglomeration of many two-paths. Including 
the following configuration implies that the same interpretation is valid 
in our new model. 

We introduced k-triangles as an outcome of a four-cycle depen­
dence structure. A four-cycle is a combination of two two-paths. The 
sides of a k-triangle can be viewed as combinations of four-cycles. More 
simply, we construe them as independent (the graph-theoretical term 
for nonintersecting) two-paths connecting two nodes. 

Thus, we define k-independent two-paths, illustrated in Figure 5, 
as configurations (i, j, h 1, ••• , hk) where all nodes h 1 to hk are adjacent 
to both i and j, irrespective of whether i and j are tied. Their number is 
expressed by the formula 

Uk = U{({i, j}, {h1, h2, ... , hkl) I {i, j} c V, {h1, h2, ... , hk} c V, 

i =I= j, Yiht = Yhtj = 1 for .e = 1, ... , k} 

= L:(~ij) 
. . k 
l<J 

(fork=!= 2) (25a) 

1 "(~ij) U2=-~ 2. . 2 
l<J 

(number of four-cycles); (25b) 
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the specific expression for k = 2 is required because of the symmetries 
involved. The corresponding statistic, given as two equivalent expres­
sions, of which the first one has alternating weights for the counts of 
independent two-paths while the second has geometrically decreasing 
weights for the counts of pairs with given numbers of shared partners, 
is 

2 n-2 (_1)k-l 
u~(y) = ul - - u2 + L - uk 

).. k=3 ).. 
(26a) 

{ ( 1)£2 .. 1 = ).. t; 1 - 1 - I IJ ' 

=).. (n)- L:e-aLui 
2 .. 

(26b) 
I<] 

where, in analogy to the statistic for the k-triangles, the extra factor 2 
is used for U 2 in (26a) in order for the binomial formula to yield the 
expression (26b). As before,)..= ea j(ea - 1). 

This is called the alternating independent two-paths statistic. The 
change statistic is 

{ ( 1 ) Luh ( 1 ) khi l 
Zij = h~j Yih 1 - I + Yhi 1 - I . (27) 

As for the alternating k-star and k-triangle statistics, the alternat­
ing independent two-paths statistic can be generated by imposing the 
constraint vk =- vk_tfJ..., where Vk is the parameter corresponding to 
uk. 

For ).. = 1 the statistic reduces to 

u}(y) = L l{Lzij ~ 1}, (28) 
i<j 

the number of pairs (i, j) that are indirectly connected by at least one 
two-path. This statistic is counterpart to statistic (23), the number of 
pairs both directly and indirectly linked. Taken together they assess 
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effects for transitivity in precise analogy with triangles and two-stars 
for Markov graphs. Since two nodes i andj are at a geodesic distance of 
two if they are indirectly but not directly linked, the number of nodes at 
a geodesic distance two is equal to (28) minus (23). The change statistic 
for A.= 1 is 

Zij = L {Yjh /{ L2ih = 0} + Yhi /{ L2hj = 0}}. (29) 
h#i,j 

3.4. Summarizing the Proposed Statistics 

Summarizing the preceding discussion, we propose to model transitivity 
in networks by exponential random graph models that could contain in 
the exponent u(y) the following statistics: 

1. The total number of edges S 1 (y ), to reflect the density of the graph; 
this is superfluous if the analysis is conditional on the total number 
of edges-and this indeed is our advice. 

2. The geometrically weighted degree distributions defined by (11 ), or 
equivalently the alternating k-stars (13), for a given suitable value 
of a or A., to reflect the distribution of the degrees. 

3. Next to, orinsteadofthealternatingk-stars: thenumberoftwo-stars 
S2(y) or sums of reciprocals or ascending factorials (18); the choice 
between these degree-dependent statistics will be determined by the 
resulting fit to the data and the possibility of obtaining satisfactory 
parameter estimates. 

4. The alternating k-triangles (2la) and the alternating independent 
two-paths (26a), again for a suitable value of A. (which should be the 
same for the k-triangles and the alternating independent two-paths 
but may differ from the value used for the alternating k-stars), to 
reflect transitivity and the preconditions for transitivity. 

5. Next to, or instead of, the alternating k-triangles: the triad count 
T(y) = T 1(y), if a satisfactory estimate can be obtained for the 
corresponding parameter, and if this yields a better fit as shown 
from the t-statistic for this parameter. 

Of course, actor and dyadic covariate effects can also be added. 
The choice of suitable values of a and A. depends on the data set. Fitting 
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this model to a few data sets, we had good experience with 'A = 2 or 3 and 
the corresponding a= ln (2) or ln (1.5). In some cases it may be useful 
to include the statistics for more than one value of 'A-for example, 'A = 
1 (with the specific interpretations as discussed above) together with 
'A= 3. Instead of being determined by trial and error, the parameters 'A 
(or a) can also be estimated from the data, as discussed in Hunter and 
Handcock (2005). 

This specification of the ERGM satisfies the conditional depen­
dence condition [CD]. This dependence extends the classical Markovian 
dependence in a meaningful way to a dependence within social settings. 
It should be noted, however, that this type of partial conditional de­
pendence is satisfied by a much wider class of stochastic graph models 
than the transitivity-based models proposed here. Parsimony of mod­
eling leads to restricting attention primarily to the statistics proposed 
here. Further modeling experience and theoretical elaboration will have 
to show to what extent it is desirable to continue modeling by including 
counts of other higher-order subgraphs, representing more complicated 
group structures. 

4. NEW MODELING POSSIBILITIES WITH THESE 
SPECIFICATIONS 

In this section, we present some results from simulation studies of these 
new model specifications. This section is far from a complete explo­
ration of the parameter space. It only provides examples of the types of 
network structures that may emerge from the new specifications. More 
particularly, it illustrates how the new alternating k-triangle parameter­
ization avoids certain problems with degeneracy that were noted above 
in regard to Markov random graph models. 

We present results for distributions of nondirected graphs of 
30 nodes. The simulation procedure is similar to that used in Robins 
et al. (2005). In summary, we simulate graph distributions using the 
Metropolis-Hastings algorithm from an arbitrary starting graph, choos­
ing parameter values judiciously to illustrate certain points. Typically we 
have simulation runs of 50,000, with a burn-in of 10,000, although when 
MCMC diagnostics indicate that burn-in may not have been achieved 
we carry out a longer run, sometimes up to half a million iterations. 
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FIGURE 6. A graph from an alternating k-star distribution. 

We sample every lOOth graph from the simulation, examining graph 
statistics and geodesic and degree distributions. 

4.1. Geometrically Weighted Degree Distribution 

The graph in Figure 6 is from a distribution obtained by simulating with 
an edge parameter of -1.7 and a degree weighting parameter (for a = 
In (2) = 0.693, corresponding to A. = 2) of 2.6. This is a low-density 
graph with 25 edges and a density of0.06, and in terms of graph statis­
tics is quite typical of graphs in the distribution. Even despite the low 
density, the graph shows elements of a core-periphery structure, with 
some relatively high degree nodes (one with degree 7), several isolated 
nodes, and some low degree nodes with connections into the higher 
degree "core." What particularly differentiates the graph from a com­
parable Bernoulli graph distribution with a mean of 25 edges is the 
number of stars, especially higher order stars. For instance, the number 
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of four-stars in the graph is 3.5 standard deviations above that from the 
Bernoulli distribution. This is the result of a longer tail on the degree 
distribution, compensated by larger numbers of low degree nodes. (For 
instance, less than 2 percent of corresponding Bernoulli graphs have the 
combination expressed in this graph of 18 or more nodes isolated or of 
degree 1, and of at least one node with degree 6 or above.) Because of the 
core-periphery elements, the triangle count in the graph, albeit low, is 
still3. 7 standard deviations above the mean from the Bernoulli distribu­
tion. Monte Carlo maximum likelihood estimates using the procedure 
ofSnijders (2002) as implemented in the SIENA program (Snijders et al. 
2005) reassuringly reproduced the original parameter values, with an es­
timated edge parameter of -1.59 (standard error 0.35) and a significant 
estimated geometrically weighted degree parameter of 2.87 (S.E. 0.86). 

It is useful to compare the geometrically weighted degree distri­
bution, or alternatively alternating k-star graph distribution, of which 
the graph in Figure 6 is an example, against the Bernoulli distribution 
with the same expected number of edges. Figure 7 is a scatterplot com­
paring the number of edges against the alternating k-stars statistic for 
both distributions. The figure demonstrates a small but discernible dif­
ference between the two distributions in terms of the number of k-stars 
for a given number of edges. There is also a tendency here for greater 
dispersion of edges and alternating k-stars in the k-star distribution. As 
with our example graph, in the alternating k-star distributions there are 
more graphs with high degree nodes, as well as graphs with more low 
degree nodes. 

Finally, in Figure 8, we illustrate the behavior of the model as 
the alternating k-star parameter increases. The figure plots the mean 
number of edges for models with an edge parameter of -4.3 and varying 
alternating k-star parameters, keeping A. = 2. Equation (13) implies that, 
as a graph becomes denser, the change statistic for alternating k-stars 
becomes closer to its constant maximum, so that high-density distri­
butions are very similar to Bernoulli graphs. For an alternating k-star 
parameter of 1.0 or above, the properties of individual graphs gener­
ated within these distributions are difficult to differentiate from realiza­
tions of Bernoulli graphs. Even so, the distributions themselves (except 
those that are extremely dense) tend to exhibit much greater disper­
sion in graph statistics, including in the number of edges. An important 
point to note in Figure 8 is that there is a relatively smooth transition 
from low-density to high-density graphs as the parameter increases, 
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FIGURE 7. Scatterplot of edges against alternating k-sta rs for Bernoulli and alternating k­
star graph distributions. 

without the almost discontinuous jumps that betoken degeneracy and 
are often exhibited in Markov random graph models with positive star 
parameters. 

4.2. Alternating k-Triangles 

The degeneracy issue for transitivity models and the advance presented 
by the alternating k-triangle specification are illustrated in Figure 9. 
This figure depicts the mean number of edges for three transitivity mod­
els for various values of a transitivity-related parameter. Each of these 
models contains a fixed edge parameter, set at - 3.0, plus certain other 
parameters. 

The first model (labeled "triangle without star parameters" in 
the figure) is a Markov model with simply the edge parameter and a 
triangle parameter. For low values of the triangle parameter, only very 
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FIGURE 8. Mean number of edges in alternating k-star distributions with different values of 
the alternating k-star parameter. 

low-density graphs are observed; for high values only complete graphs 
are observed. There is a small region, with a triangle parameter between 
0.8 and 0.9, where either a low-density or a complete graph may be the 
outcome of a particular simulation. This bimodal graph distribution 
for certain triangle parameter values corresponds to the findings of 
Jonasson (1999) and Snijders (2002). Clearly, this simple two-parameter 
model is quite inadequate to model realistic social networks that exhibit 
transitivity effects. 

The second model (labeled "triangle with negative star param­
eters" in Figure 9) is a Markov model with the inclusion of two- and 
three-star parameters as recommended by Robins et al. (2005), in partic­
ular a positive two-star parameter value (0.5) and a negative three-star 
parameter value (-0.2), and a triangle parameter with various values. 
The negative three-star parameter widens the nondegenerate region of 
the parameter space, by preventing the explosion of edges that leads 
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FIGURE 9. Mean number of edges in various graph distributions with different values of a 
triangle parameter. 

to complete graphs. In this example, this works well until the trian­
gle parameter reaches about 1.1. Below this value, the graph distri­
butions are stochastic and of relatively low density, and they tend to 
have high clustering relative to the number of edges (in comparison to 
Bernoulli graph distributions). With a triangle parameter above 1.1, 
however, the graph distribution tends to be "frozen," not on the empty 
or full graph but on disconnected cliques akin to the caveman graphs of 
Watts ( 1999). This area of near degeneracy was observed by Robins et al. 
(2005). 

The third model (labeled "ktriangle" in Figure 9), on the other 
hand, does not seem to suffer the discontinuous jump, nor the caveman 
area of near degeneracy, of the first and second models. It is a two­
parameter model with an edge parameter and an alternating k-triangles 
parameter, and the expected density increases smoothly as a function 
of the latter parameter. 
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FIGURE 10. A low-density and a higher-density k-triangle graph. 
Note: Edge parameter= - 3.7 for both; alternating k-triangles parameter= 1.0 for (a) and 1.1 
for (b) . 

Figure I 0 contains two examples of graphs from alternating k­
triangles distributions. The higher alternating k-triangles parameter 
shown in panel (b) of the figure results understandably in a denser graph, 
but the transitive effects are quite apparent from the diagrams. Both dis­
tributions have significantly more triangles than Bernoulli graphs with 
the same density. This is illustrated in Figure II, which represents fea­
tures of three graph distributions: the alternating k-triangles distribu­
tion of which Figure 10 (b) is a representative (edge parameter= - 3.7; 
alternating k-triangle parameter = 1.1 ); the Bernoulli graph distribu­
tion with mean number of edges identical to this alternating k-triangle 
distribution (edge parameter= - 1.35, resulting in a mean 89.5 edges); 
and a Markov random graph model with positive two-star, negative 
three-star, and positive triangle parameters, with parameter values cho­
sen to produce the same mean number of edges (edge parameter = 
- 2. 7; two-star parameter = 0.5; three-star parameter = - 0.2; triangle 
parameter = 1.0; mean number of edges = 88.8). We can see from the 
figure that for the same number of edges the alternating k-triangle dis­
tribution is clearly differentiated both from its comparable Bernoulli 
model as well as the Markov model in having higher numbers of tri­
angles. The Markov model also tends to have more triangles than the 
Bernoulli model, reflecting its positive triangle parameter. 

For an edge-plus-alternating-k-triangle model applied to the 
graph Figure 10 (a), SIENA produced Monte Carlo maximum likeli­
hood estimates that converged satisfactorily and were consistent with the 
original parameter values: edge - 3.74 (S.E. 0.30), alternatingk-triangles 
1.06 (S.E. 0.20). 
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FIGURE 1 L Number of triangles against number of edges for three different graph 
distributions. 

Estimates for a Markov model with two-star, three-star, and tri­
angle parameters do exist for this graph (as can be shown using results 
in Handcock 2003). However it is very difficult to obtain them using 
SIENA or statnet as the dense core of triangulation produced in graphs 
from this distribution take us into nearly degenerate regions of the pa­
rameter space of Markov models. 

4.3. Independent Two-Paths 

Some of the distinctive features of independent two-path distributions 
are as follows. A simple way to achieve many independent two-paths 
is to have cycles through two high-degree nodes. This is what we see 
in Figure 12, which is a graph from a distribution with edge param­
eter - 3.7 and independent two-paths parameter 0.5. Compared to a 
Bernoulli graph distribution with the same mean number of edges, this 
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FIGURE 12. A graph from an independent two-path distribution. 

graph distribution has substantially more stars, triangles, k-stars, k­
triangles, and of course independent two-paths. The graph in Figure 
12 is dramatically different from graphs generated under a Bernoulli 
distribution. 

With increasing independent two-paths parameters, the resulting 
graphs tend to have two centralized nodes, but with more edges among 
the noncentral nodes. For lower (but positive) independent two-paths 
parameters, however, only one centralized node appears, resulting in 
a single starlike structure, with several isolates. We know of no set of 
Markov graph parameters that can produce such large starlike struc­
tures, without conditioning on degrees. 

5. EXAMPLE: COLLABORATION BETWEEN 
LAZEGA'S LAWYERS 

Several examples will be presented based on a data collection by Lazega, 
described extensively in Lazega (2001), on relations between lawyers in 
a New England law firm (also see Lazega and Pattison 1999). As a 
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first example, the symmetrized collaboration relation was used between 
the 36 partners in the firm, where a tie is defined to be present if both 
partners indicate that they collaborate with the other. The average degree 
is 6.4, the density is 0.18, and degrees range from 0 to 13. Several actor 
covariates were considered: seniority (rank number of entry in the firm), 
gender, office (there were three offices in different cities), years in the 
firm, age, practice (litigation or corporate law), and law school attended 
(Yale, other Ivy League, or non-Ivy League). 

The analysis was meant to determine how this collaboration re­
lation could be explained on the basis of the three structural statistics 
introduced above (alternating combinations of two-stars, alternating 
k-stars, and alternating independent two-paths), the more traditional 
other structural statistics (counts of k-stars and triangles), and the co­
variates. For the covariates X with values Xi, two types of effect were 
considered as components of the statistic u(y) in the exponent of the 
probability function. The first is the main effect, represented by the 
statistic 

A positive parameter for this model component indicates that actors i 
high on X have a higher tendency to make ties to others, which will con­
tribute to a positive correlation between X and the degrees. This main 
effect was considered for the numerical and dichotomous covariates. 
The second is the similarity effect. For numerical covariates such as age 
and seniority, this was represented by the statistic 

L:simiJYiJ 
i,j 

where the dyadic similarity variable sim!i is defined as 

0 1 I Xi- Xj I 
Slmij = - dmax ' 

X 

(30) 

with cr:ax =max iJ lxi- x1 1 being the maximal difference on variable 
X. The similarity effect for the categorical covariates, office and law 
school, was represented similarly using for sim !i the indicator function 
I {Xi = x;} defined as 1 if Xi = x; and 0 otherwise. A positive parameter 
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for the similarity effect reflects that actors who are similar on X have a 
higher tendency to be collaborating, which will contribute to a positive 
network autocorrelation of X. 

The estimations were carried out using the SIENA program 
(Snijders et al. 2005), version 2.1, implementing the Metropolis­
Hastings algorithm for generating draws from the exponential ran­
dom graph distribution, and the stochastic approximation algorithm 
described in Snijders (2002). Since this is a stochastic algorithm, as is 
any MCMC algorithm, the results will be slightly different, depending 
on the starting values of the estimates and the random number streams 
of the algorithm. Checks were made for the stability of the algorithm 
by making independent restarts, and these yielded practically the same 
outcomes. The program contains a convergence check (indicated in the 
program as "Phase 3"): after the estimates have been obtained, a large 
number of Metropolis-Hastings steps is made with these parameter val­
ues, and it is checked if the average of the statistics u( Y) calculated 
for the generated graphs (with much thinning to obtain approximately 
independent draws) is indeed very close to the observed values of the 
statistics. Only results are reported for which this stochastic algorithm 
converged well, as reflected by t-statistics less than 0.1 in absolute value 
for the deviations between all components of the observed u(y) and 
the average of the simulations, which are the estimated expected values 
E0u(Y) (cf. (5) and also equation (34) in Snijders 2002). 

The estimation kept the total number of ties fixed at the ob­
served value, which implies that there is a not a separate parameter 
for this statistic. This conditioning on the observed number of ties is 
helpful for the convergence of the algorithm (for the example reported 
here, however, good convergence was obtained also without this con­
ditioning). Effects were tested using the t-ratios defined as parameter 
estimate divided by standard error, and referring these to an approxi­
mating standard normal distribution as the null distribution. The effects 
are considered to be significant at approximately the level of a = 0.05 
when the absolute value of the t-ratio exceeds 2. 

Some explorative model fits were carried out, and it turned out 
that of the covariates, the important effects are the main effects of senior­
ity and practice, and the similarity effects of gender, office, and practice. 
In Modell ofTable 1, estimation results are presented for a model that 
contains the three structural effects: (1) geometrically weighted degrees 
for a= ln(1.5) = 0.405 (corresponding to alternating combinations of 
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TABLE 1 
MCMC Parameter Estimates for the Symmetrized Collaboration Relation Among 

Lazega's Lawyers 

Modell Model2 

Parameter Est. S.E. Est. S.E. 

Geometrically weighted degrees, a= ln(l.5) -0.711 2.986 
Alternating k-triangles, A = 3 0.588 0.184 0.610 0.094 
Alternating independent two-paths, A = 3 -0.030 0.155 
Number of pairs directly and indirectly connected 0.430 0.512 
Number of pairs indirectly connected -0.014 0.184 
Seniority main effect 0.023 0.006 0.024 0.006 
Practice (corporate law) main effect 0.383 0.111 0.373 0.109 
Same practice 0.377 0.103 0.382 0.095 
Same gender 0.336 0.124 0.354 0.116 
Same office 0.569 0.105 0.567 0.103 

two-stars for A = 3), (2) alternating k-stars and (3) alternating indepen­
dent two-paths, both for parameter A = 3 and in addition, the last two 
of these effects for parameter A = 1; as indicated above, the latter effects 
are equal to the number of pairs of nodes both directly and indirectly 
connected, and the number of pairs indirectly connected. 

The results show that none of the structural effects except the 
alternating k-triangles has at-ratio greater than 2. There is quite some 
collinearity between these effects. For example, the estimated correlation 
between the estimate for the alternating independent two-paths and that 
for the number of pairs indirectly connected is -0.94. All of the retained 
covariate effects have t-ratios larger than 2. With a backward selection 
procedure, nonsignificant effects were stepwise deleted from the model. 
The result is presented as Model2 in Table 1. The only remaining struc­
turaleffectisthealternatingk-triangleseffect(Oj = 0.610, t = 6.5). This 
indicates that there is strong evidence for transitivity, as represented by 
the k-triangles effect, and not for any other structural effects except what 
is already represented by the covariates. 

It appears that this model is successful in also representing other 
structural characteristics of this network, such as the numbers of two-, 
three-, and four-stars and the number of triangles. The observed number 
of triangles is 120, while simulations of the ERGM (carried out also 
using the SIENA program) show that the expected number of triangles 
under Model 2 is 128.5 with standard deviation 13.2. So the difference 
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is less than 1 standard deviation. Fitting the model extended with the 
number of triangles did indeed lead to a nonsignificant effect for the 
number of triangles. The observed number of four-stars is 6091, and 
under Model2 the expected number of four-stars is equal to 6635 and the 
standard deviation is 1 042; so here also the difference between observed 
and expected value is less than 1 standard deviation. Thus, even though 
these statistics are not directly fitted, the representation of the network 
structure by the alternating k-triangles together with the covariate effects 
also gives an adequate representation of these graph statistics. 

The estimates for the covariates are hardly different from those in 
Modell. Note that these can be interpreted as estimates of the covariate 
effects on a log-odds scale, similar to effects in logistic regression models, 
except that they are controlled for the structural effects. This implies 
that exp (Ojd) is the multiplicative effect that a differenced on variable 
j has on the estimated odds of a tie. Seniority ranges from 1 to 36, 
so the more senior partners collaborate more with others, the odds 
ratio for the greatest difference of 35 being exp (0.024 x 35) = 2.32. 
Corporate lawyers have an odds of collaboration that is exp (0.373) = 
1.45 higher than those doing litigation, and having the same specialty 
makes collaboration exp (0.382) = 1.47 more likely. The odds ratio 
related to having the same gender is exp (0.354) = 1.42, and that related 
to working in the same office is exp (0.567) = 1. 76. All these odds ratios 
are controlled for the structural transitivity effect. Summarizing, there 
are especially large effects of seniority and of working in the same office, 
and slightly smaller but still large effects of doing corporate law, having 
the same specialty, and having the same gender; in addition, there is a 
strong transitivity effect. 

The latter effect, represented by the alternating k-triangles, can 
be interpreted as evidence that there are organizing principles in this 
network that go beyond homophilous selection in creating triangles. 
The nonsignificance of the weighted degrees effect suggests that there 
are no other important effects distinguishing the partners in their level 
of collaborative activity beside the effects of seniority and specialty; and 
the significance of the k-triangle effect while controlling for the weighted 
degrees effect indicates that the transitivity is not the result of popular­
ity selection effects alone. In this law firm, it seems that collaborative 
structures arise not just because of lawyers' personal backgrounds; nor 
do they arise because of popular collaborators attracting less popular 
followers; rather, next to the covariate effects, there is a distinct balance 
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effect of self-organizing team formation, resulting in close-knit transi­
tive structures. This conclusion is in line with the conclusions obtained 
in earlier analyses of this data set (see Lazega 2001), but the results are 
not directly comparable because analyses including effects of covariates 
as well as structural transitivity effects were not published before. 

The good fit in the sense of good reproduction of a variety of 
other network statistics is not strongly dependent on the value of the 
parameter A.. Values A. = 2, 4, and 5 also yielded good results. The values 
A. = 1 and 6 were not satisfactory in this sense. 

Model specifications containing the number of two-stars and of 
transitive triangles also yielded convergence of the estimation algorithm, 
but it did not succeed well in reproducing the observed number of pairs 
of nodes tied directly and indirectly; this implies that the number of 
pairs at a geodesic distance equal to two was not reproduced adequately. 
Thus, we can conclude that this example is a case where the traditional 
Markov random graph model for transitivity can be practically applied 
but that our new model specification yields a better fit to the data. 

5.1. Parameter Sensitivity in Various Models 

To illustrate the differences between the various model specifications 
and the difficulties of some specifications, we present some simulation 
results where a parameter is varied in fitted models. We contrast the 
specification based on the number of triangles to the one using the al­
ternating k-triangles. In addition, we compare models with and without 
conditioning on the total number of edges. 

A model similar to Model 2 in Table 1 was fitted to this data 
set, and then a long sequence of graphs was simulated by the MCMC 
procedure, starting with the empty graph, where all parameters except 
one kept their fixed value, and one designated parameter slowly in­
creased from a low to a high value, and then decreased again to the low 
value, with 40,000 MCMC iteration steps for each value of this param­
eter. The designated parameter was the one representing transitivity, 
being the number of triangles, or the alternating k-triangles. The figures 
present the generated values of the associated statistic after the 40,000 
iterations for each single parameter value. 

Figure 13 gives the generated values for the model without con­
ditioning on the number of edges (which for the number of triangles 
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FIGURE 13. Generated statistics Uj(Y) for unconditional models, as a function of triangle 
parameter (a) and alternating k-triangles parameter (b). 

(Symbol o indicates simulated values generated for increasing parameter values, * those gen­
erated for decreasing values.) 

did not lead to satisfactory convergence in the algorithm for parame­
ter estimation but was used anyhow). A vertical line is plotted at the 
estimated parameter value, and a horizontal line at the observed value 
of the statistic. This implies that the curve of expected values should 
exactly go through the intersection of these two lines. 

For the number of triangles, an almost discontinuous jump is 
observed, exactly at the intersection point that was the target for the 
estimation procedure. In Figure 13 (a), for the increasing parameter 
values, the jump up is made at a somewhat higher parameter value 
than the jump down for the decreasing parameter values. This path­
dependence, or hysteresis, was also observed in Snijders (2002, p. 9), and 
it is well-known for Ising models (Newman and Barkema 1999), which 
show a similar kind of degeneracy. In a small interval of parameter 
values where this jump occurs, the distribution of the statistic (and of 
the graph density) has a bimodal shape. The suddenness of the jump, 
and the fact that the observed statistic is in the region of the jump, is 
associated with the large practical difficulties in fitting this model to 
realistic data. 

For the alternating k-triangles in Figure 13 (b), a smoother se­
quence of values is obtained, but the slope is still quite large, especially 
near the parameter value of about 0.6 where the simulated values "take 
otr' from their starting values close to 0. This is similar to what is shown 
for the expected values of the density in Figures 8 and 9. 
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FIGURE 14. Generated statistics Uj( y) for conditional models, as a function of triangle pa­
rameter (a) and alternating k-triangles parameter (b). 

(Symbol o indicates values generated for increasing parameter values, * those generated for 
decreasing values.) 

Analogous simulated values, but for models conditioning on the 
observed number of edges, are given in Figure 14. Here we see in both 
cases a much smoother process. The hysteresis effect for the number 
of triangles is not observed any more, suggesting good mixing of the 
MCMC procedure, but this model still has quite a strong slope near the 
observed value of the statistic. In Figure 14 (b), which combines condi­
tional estimation with the alternating k-triangles statistic, the generated 
values form a smooth pattern that confirms that estimation can proceed 
smoothly for this model. The figures together illustrate that both work­
ing with the newly proposed statistics rather than with the number of 
triangles and conditioning on the number of edges contribute to better 
possibilities for parameter estimation. Combining both elements yields 
especially good results. 

6. DIRECTED RELATIONS 

Directed relations are perhaps more frequent in social network research 
than non directed relations. For directed relations, the requirement Y !i = 
1}; for the adjacency matrix is dropped, and the oriented nature of ties 
is reflected by using the term "arcs" rather than "edges." Except for the 
number of ties, all statistics discussed above have multiple analogues for 
the directed case, depending on the orientation of the ties. Rather than 



142 SNIJDERS, PATIISON, ROBINS, AND HANDCOCK 

listing and discussing all the different analogues that can occur depend­
ing on the possible tie orientations for the statistics proposed above, we 
give in this section a brief list of what we think are the most impor­
tant versions of these statistics for directed graphs. Since an elaborate 
discussion would mainly repeat much of what has been said above, we 
refrain from giving an extensive motivation. (It may be noted that in 
the formulas given above for the nondirected case, we have chosen the 
order of the subscripts indicating the nodes in such a way that many of 
the formulas are also valid for the directed case.) 

For directed relations, we propose to use exponential random 
graph models with the following statistics for the structural part of the 
model. 

1. The total number of arcs 

this is a superfluous element of the sufficient statistics if the analysis 
is done (as advised) conditional on the number of arcs. 

2. The number of mutual dyads 

L: Y;jlfi· 
i<j 

3. Geometrically weighted out-degrees 

n-1 n 
(od)( ) _ '"' -ak ,(out)( ) _ '"' -ay;+ ua y - ~ e ak y - ~ e , (31) 

k=O i=1 

and geometrically weighted in-degrees 

n-1 n 

u~d>(y) = L e-akdfn>(y) = L e-ay+;' (32) 
k=O i=l 

where d;_out) (y) and d2n) (y), respectively, are the numbers of nodes 
with out-degrees or in-degrees equal to k. Similar to (14), these 
statistics can also be expressed as alternating out-k-star combina­
tions and alternating in-k-star combinations. 
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4. Next to, or instead of, the alternating k-star combinations: the num­
ber of in-two-stars and the number of out-two-stars, reflecting the 
in-degree and out-degree variances. 

5. The alternating transitive k-triangles defined by 

A ~Yii {1- (1- ~)~ij~ 
1,] 

(33) 

and the alternating independent two-paths defined by 

{ ( l)L2··1 A f1 1 - 1 - i ,, , (34) 

where L 2ij is still the number of two-paths defined by (10); the ori­
entations implied by these formulas are illustrated in Figure 15. 

6. Next to, or instead of the alternating transitive k-triangles: the count 
of transitive triads 

is 

I: lijl}h lih 
i,j,h 

and the number of two-paths, the latter reflecting the covariance 
between in-degrees and out-degrees. 

The change statistic for the geometrically weighted out-degrees 

(35) 

The change statistic is still given for the alternating transitive k-triangles 
by (22), and for the alternating independent two-paths by (27). 

FIGURE 15. Transitive three-triangle (a) and three-independent two-paths (b). 



144 SNIJDERS, PATTISON, ROBINS, AND HANDCOCK 

6.1. Example: Friendship Between Lazega's Lawyers 

As an example of modeling a directed relation, we use the friendship re­
lation between the 36 partners in the law firm studied by Lazega (2001). 
This is a network with density 0.21 and average degree 7.4. In-degrees 
vary from 2 to 16, out-degrees from 0 to 21. The larger variability of 
the degrees and skewness of the distribution of the out-degrees indicates 
that here it may be more difficult to obtain a well-fitting model than in 
the preceding example. The same covariates are used as in the earlier 
example. For effects of actor-level covariates X on directed relations, 
instead of the main effect we distinguish between (1) the activity effect, 
represented in u(y) by the statistic 

for which a positive parameter will tend to increase the correlation be­
tween the covariate and the out-degrees; and (2) the popularity effect, 
represented by 

which contributes to the correlation between the covariate and the in­
degrees. The similarity effect connected to an actor-level covariate is 
defined as for the undirected case. 

Preliminary analyses showed that the most important effects of 
covariates are the similarity effect of working in the same office, and 
the effects associated with seniority (rank number of entry in the firm) 
and practice (litigation versus corporate law). The same procedure for 
estimation was used as in the preceding example. A forward selection 
procedure using the effects listed above, with estimation conditional on 
the total number of ties, led to the results presented in Table 2. Modell 
contains, next to various covariate effects, the four structural effects 
proposed above. This appeared not to give a good fit with respect to the 
number of out-k-stars fork= 2, 3, 4. Therefore the model was extended 
with the the numbers of in-two-stars, out-two-stars, and two-paths. This 
means that the observed covariance matrix of the in- and out-degrees is 
fitted exactly. The results are presented in Table 2 as Model2. 
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TABLE2 
MCMC Parameter Estimates for the Friendship Relation Between Lazega's 

Lawyers 

Modell Model2 

Parameter Est. S.E. Est. S.E. 

Mutual dyads 1.659 0.241 2.217 0.303 
Out-two-stars 0.129 0.016 
In-two-stars 0.147 0.026 
Two-paths -0.089 0.020 
Geometrically weighted out-degrees, a = ln(2) 0.956 1.185 -1.364 1.361 
Geometrically weighted in-degrees, a = ln(2) -4.550 2.249 -8.367 3.893 
Alternating transitive k-triangles, A = 2 0.665 0.136 0.709 0.146 
Alternating independent two-paths, A = 2 -0.139 0.031 -0.068 0.036 
Same office 0.570 0.121 0.839 0.180 
Seniority popularity -0.003 0.008 0.001 0.007 
Seniority activity 0.013 0.007 0.010 0.006 
Seniority similarity 0.038 0.008 0.041 0.008 
Practice (corporate law) popularity -0.049 0.159 0.066 0.122 
Practice (corporate law) activity 0.320 0.134 0.205 0.104 
Same practice 0.283 0.130 0.291 0.125 

The estimation procedure for both models presented in this ta­
ble converged well, but these results were obtained only after repeated 
runs of the estimation algorithm, always using the previously obtained 
results as the initial values for the new estimation. In this case, without 
conditioning on the total number of ties it was not possible to obtain 
convergence of the estimation algorithm. Model specifications includ­
ing the total number of transitive triplets as a separate statistic did 
not lead to converging estimates. The strong correlations between the 
structural statistics lead to very strongly correlated parameter estimates, 
so that for a good reproduction of the model actually more decimal 
places for the parameter estimates are required than given in Table 2 
( cf. Snijders 2002, p. 32 ). The parameter estimates for the geometrically 
weighted out-degrees and in-degrees, and the alternating independent 
two-paths effects differ strongly in Models 1 and 2, due to the inclusion 
in Model 2 of the out-two-stars, in-two-stars, and two-paths effects. 
There is a strong transitivity effect, represented by alternating transitive 
k-triangles with A.= 2 (t = 0.709/0.146 = 4.8 in Model2). Further, there 
is evidence that-controlling for these structural effects-friendship is 
more likely between partners working in the same office, between those 
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similar in seniority (this can be interpreted in part as a cohort effect), 
and those with the same practice. Those doing corporate law mention 
more friends than those doing litigation. The other covariate effects are 
not significant. Other effects, such as the number of transitive triplets 
and the numbers of three-stars and four-stars, also are represented ade­
quately, each with a difference between observed and estimated expected 
value of less than 1.5 standard deviation. 

A positive effect of alternating k-triangles in the presence of a 
negative independent two-paths effect suggests that the friendship net­
work tends to be cliquelike, with possibly several different denser clusters 
of friends. Because the geometrically weighted in-degree parameters are 
negative, high in-degrees and high order in-stars are less likely in this 
network, unless of course they are implied by the transitive structure 
and therefore are involved in cliques of friends. So popular friends tend 
to be popular within clusters of dense friendships rather than between 
clusters. 

Compared with the collaboration relation, modeling the friend­
ship relation requires a much more complicated structural model. This 
network is an example where modeling transitivity by the number of 
transitive triplets by itself is not successful, whereas modeling transitiv­
ity by the alternating transitive k-triangles is successful and also does 
provide a good fit for the number of transitive triplets. 

6.2. Parameter Sensitivity in Two Models 

For this model also, the sensitivity of generated statistics to the pa­
rameter representing transitivity can yield insights in the possibility of 
modeling by using a particular model specification. Two models were 
considered, both with conditioning on the observed number of ties: the 
model in Table 2 and the corresponding model with the four new statis­
tics replaced by the number of transitive triplets. For the latter model the 
parameter estimation did not converge satisfactorily, but the obtained 
parameter values were used anyway. Figure 16 gives simulated statistics 
for a continuous MCMC chain of graphs, where all parameter values 
were fixed at these estimated values, except for the number of transitive 
triplets (Figure 16 a) and the alternatingk-triangles (Figure 16 b), which 
started at a very low value, increased in little steps to a very high value, 
and then decreased again to the low value. Again, 40,000 iteration steps 
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FIGURE 16. Generated statistics Uj ( y) for two models, as a function of a transitive triplets 
parameter (a) and an alternating k-triangles para-meter (b). 

(Symbol o indicates values generated for increasing parameter values, * those generated for 
decreasing values.) 

of the MCMC algorithm were made for each parameter value and the 
resulting value of the statistic corresponding to the changing parameter 
is represented in the figure. 

For the transitive triplets model, there is a very strong jump 
that occurs right at the observed value of the statistic, indicating the 
impossibility to adequately model this data set using this particular 
model-even when conditioning on the observed number of ties. A hys­
teresis effect can again be discerned (for iteration runs of more than 
40,000, this would decrease and eventually disappear). For the alter­
nating k-triangles model Figure 16 (b), there is a jump but it occurs 
in a region representing antitransitivity (at a negative parameter value 
of about --0.5), and does not invalidate the application of this model 
for this data set. The generated statistics for this model vary stochas­
tically about a smooth function of this parameter in a wide region 
comprising the observed value of the statistic, which corresponds to 
the possibility to indeed obtain adequate parameter estimates for this 
specification. 

7. DISCUSSION 

The methodology based on exponential random graph models, also 
called p* models, of which the principles were introduced and elaborated 
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by (among others) Frank and Strauss (1986), Frank (1991), Wasserman 
and Pattison (1996), Pattison and Wasserman (1999), Robins, Pattison, 
and Wasserman (1999), Snijders (2002), and Handcock (2002b ), and 
reviewed in Wasserman and Robins (2005), currently is the only sta­
tistical methodology for representing transitivity and other structural 
features in nonlongitudinal network data. Its use has been hampered by 
problems that now can be diagnosed-at least in part-as deficiencies 
in the specification of the sufficient statistics defining the exponential 
model. The traditional specification, where transitivity is represented by 
the number of transitive triangles or triplets as implied by the Markov 
assumption of Frank and Strauss (1986), does not allow a good repre­
sentation of the quite strong but far from complete tendency to tran­
sitivity that is commonly observed in social networks. A symptom of 
these problems is the difficulty to find maximum likelihood estimates, 
but the near degeneracy and poor fit of the implied model is the more 
fundamental issue. 

In this paper we have proposed a new specification of network 
statistics defining the exponential random graph model. The new statis­
tics are geometrically weighted degrees to represent degree hetero­
geneity; alternating k-triangles to represent transitivity; and alternat­
ing independent two-paths to represent the preconditions for transitive 
configurations. Section 3.4 summarizes for nondirected graphs there­
sulting approach to model specification, and Section 6 gives the similar 
approach for directed graphs. The new statistics are defined in such a 
way that the model specification based on them does not imply, for 
moderately positive values of the parameter representing transitivity, 
the drive toward complete graphs that is inherent in the traditional 
specification. Therefore the new specification may be expected to avoid 
the large degeneracy problems associated with the traditional specifi­
cation. This is related to the fact that the new specification does not 
satisfy the Markov conditional independence assumption of Frank and 
Strauss (1986), which often is too stringent. The new specification sat­
isfies only a weaker type of partial conditional independence defined 
here as assumption [CD], a specification of dependence concepts dis­
cussed in Pattison and Robins (2002). However, the new statistics are 
not a panacea: in the new models phase changes occur less often but 
they are not completely excluded, as shown in the near discontinuity in 
Figure 16 (b). In this figure, however, the near discontinuity occurs at a 
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negative value of the transitivity parameter, which in sociological appli­
cations is a relatively unimportant part of the parameter space. Our expe­
rience up to now, illustrated by examples presented above, suggests that 
the models defined by these statistics can be used to give a good repre­
sentation of the transitivity and degree heterogeneity in many observed 
social networks, also for data sets in which modeling on the basis of the 
traditional specification, using only stars and the number of transitive 
triplets or triangles, was not feasible. Further work is in progress that 
confirms the wider modeling possibilities opened up by the new spec­
ifications. Obtaining maximum likelihood estimates under these spec­
ifications by MCMC algorithms is relatively uncomplicated for many 
data sets. The readily available computer programs SIENA (Snijders 
et al. 2005) and statnet (Handcock et al. 2005) can be used for this 
purpose. 

The statistics proposed here may look rather contrived at first 
reading, but they are nevertheless a means to express that regions of 
incomplete cliquelike structures will occur in social networks, but that 
these cannot be expressed merely by noting that the network contains 
many triangles. The k-triangle parameters should therefore be inter­
preted somewhat differently from the traditional transitivity parame­
ters based on only the triangle count; in our first example we argued 
that the estimates give evidence for the emergence of close-knit transi­
tive structures that might be interpretable as self-organizing team for­
mation. Such a "higher order" interpretation is not really available in 
models containing only Markov transitivity based completely on the 
prevalence of single triangles in the network. The greater difficulty in 
interpretation of the new statistics, as compared to the traditional spec­
ification, seems unavoidable to us, given the complexity of empirically 
observed social networks. Further experience with this model will be 
conducive to enhancing the interpretability of the parameters. 

Other network statistics might also be possible to achieve these 
modeling possibilities. We do think that any statistics that achieve this 
will have some arbitrary elements, or seem contrived to some degree. 
This may have to do with the fact that network structure, as observed at 
one given moment, in most cases is the result of many different forces 
and mechanisms that operated in a period-often of long duration­
before the observation of the network, precluding a simple represen­
tation of the dependencies within the network. One of the arguments 
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supporting the statistics proposed here is that they lead to a model 
satisfying the comparatively simple conditional dependence assumption 
[CD]. 

The statistics contain parameters (a or A) that are supposed to be 
fixed in the treatment given here, and they can be estimated in practice by 
trying out some reasonable values. In the examples discussed earlier, the 
sensitivity of the conclusions for the precise value of this parameter was 
small. However, it is preferable to estimate this parameter statistically. 
The methods to do this are presented in Hunter and Handcock (2005). 

Depending on the observed data set, it is still possible that degen­
eracy problems occur even with these new specifications. More experi­
ence with these models, and the further development of new models, is 
required before a satisfactory and well-balanced methodology for the 
statistical modeling of networks will be attained. We think that the repre­
sentation of social settings in particulars (Pattison and Robins 2002) will 
need more attention and will be possible by incorporating extra model 
elements. In some cases such extra model elements will be individual 
and dyadic covariates, or interactions of covariates with the structures 
proposed above, which is easy to carry out as it remains within the 
framework of the exponential random graph model. In other cases the 
model would have to be compounded with additional elements, such as 
latent structure models like the Euclidean models of Hoff, Raftery, and 
Handcock (2002), the ultrametric models ofSchweinberger and Snijders 
(2003), or the model-based clustering version of Tantrum, Handcock, 
and Raftery (2005); in still other cases, in the exponential model one 
could include other complicated statistics in addition to those proposed 
here, along the lines of Pattison and Robins (2002). 
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