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Summary. Repeated small dynamic networks are integral to studies in evolutionary
game theory, where networked public goods games offer novel insights into human
behaviours. Building on these findings, it is necessary to develop a statistical model
that effectively captures dependencies across multiple small dynamic networks. While
Separable Temporal Exponential-family Random Graph Models (STERGMs) have
demonstrated success in modelling a large single dynamic network, their application to
multiple small dynamic networks with less than 10 actors, remains unexplored. In this
study, we extend the STERGM framework to accommodate multiple small dynamic
networks, offering an approach to analysing such systems. Taking advantage of the
small network sizes, our proposed approach improves accuracy in statistical inference
through direct computation, unlike conventional approaches that rely on Markov
Chain Monte Carlo methods. We demonstrate the validity of this framework through
the analysis of a networked public goods experiment into individual decision-making
about cooperation and defection. The resulting statistical inference uncovers insights
into the dynamics of social dilemmas, showcasing the effectiveness and robustness of
this modelling and approach.

Keywords: Evolutionary Game Theory; Experimental Game Theory; Longitudinal Networks;
Public Goods Game; Social Networks; Separable Temporal Exponential-family Random
Graph Models.

1. Introduction

Networks are widely used to represent relational information, enabling a deeper understand-
ing of structures and dependencies within social relationships. Recently, there has been
increasing interest in using dynamic networks to capture the evolution of these relationships
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over time in various fields. In particular, evolutionary game theory has leveraged dynamic
networks to explore the evolution of human behaviours (Feng et al., 2024; Li et al., 2023;
Pi et al., 2024).

A key experimental approach in this domain is a public goods game, which sheds light on
cooperative behaviours. In traditional public goods games, individuals repeatedly choose
between cooperation (benefiting the group) and defection (benefiting themselves), typically
among 4 to 6 participants (Fehr and Gächter, 2000; Milinski et al., 2002; Rand et al.,
2012). More recent adaptations incorporate network structures to better mimic real-world
social interactions (Nishi et al., 2015; Shirado and Christakis, 2017; Dewey et al., 2024).
In these networked settings, public goods games generate multiple small dynamic networks
that reflect repeated interactions and evolving relational structures.

Despite advances in this field, many studies have continued to focus on nodal-level analyses,
potentially overlooking the critical dependencies that shape broader network dynamics.
Building on these findings, there is a clear need to develop a modelling framework that can
capture dependencies across multiple small dynamic networks. Such an approach would
provide deeper insights into the complexities of networked human behaviours and enhance
our understanding of relational dynamics over time.

To address this gap, we extend Separable Temporal Exponential-family Random Graph
Models (STERGMs), a temporal extension of Exponential-family Random Graph Models
(ERGMs; see Amati et al. (2018)). While STERGMs are widely used for modelling single
large dynamic networks, typically with 20 nodes or more (Krivitsky and Handcock, 2014;
Leifeld et al., 2018; Lebacher et al., 2021), our proposed framework adapts STERGMs to
capture dependencies in repeated small dynamic networks. Such networks are integral to
studies in evolutionary game theory, where networked public goods games offer insights
into networked human behaviours in social dilemmas.

This paper is organized as follows. In Section 2, we provide an overview of the public goods
game employed in our study. Section 3 introduces and extends the STERGM framework
to accommodate the context of multiple small dynamic networks. In Section 4, we apply
this modelling approach to the empirical data from networked public goods games and
perform statistical inference to uncover key insights into the networked human behaviours.

2. Networked Public Goods Games

In this section, we describe the structure of the networked public goods game used in our
experiment. This description highlights the canonical characteristics of such games and
experiments.

2.1. Overview of the Game
Each game included six participants. At the start of the game, each participant received
an initial wealth of 500 units and was placed within a network structure. This structure
was constructed based on an Erdős-Rényi design (Erdős and Rényi, 1959), where five direct
connections were randomly generated among the six nodes.
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The game consisted of seven repeated time steps. However, participants were not informed
of the total number of time steps in advance, which limited the potential for endgame-
oriented strategies. At the end of the game, cumulative wealth was converted into cash at
a rate of $1 per 1, 000 units.

Before the actual game, participants completed two practice time steps with randomly
behaving computer agents. These agents were programmed to make decisions in a com-
pletely random manner, without any pattern. Consequently, participants were not exposed
to any specific behaviours that might influence their strategies in the actual game.

2.2. Time Step Structure
Each time step consisted of two phases: a decision-making phase and a network update
phase.

(a) Decision-making phase:

At the beginning of each time step, participants chose whether to cooperate or defect
with all of their directly connected neighbours. If they chose to cooperate, they paid
50 units per directly connected neighbour, and each of these neighbours received 100
units in return. If they chose to defect, their wealth remained unchanged, and no
benefits were given to their directly connected neighbours. Participants made this
decision only once per time step, and it was uniformly applied to all of their directly
connected neighbours.

Fig. 1. Decision-making phase in the networked public goods games
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During this phase, participants could view their directly connected neighbours’
information: their wealth, decisions in the most recent time step (cooperation or
defection), identification numbers (1-6), and how these neighbours were directly
connected to each other (alter–alter connections).

Fig. 1 illustrates the decision-making phase as observed by the participant with the
identification number 5 (“ego”), who was directly connected to the participants with
the identification numbers 1 and 4 (“alters”). Notably, the participant 5 could also
observe that the participants 1 and 4 were directly connected to each other (direct
connections from ego to their alters are represented by thick lines; alter to alter
connections are in thin lines). The participant 5 could not observe participants 2, 3
and 6 as they were not directly connected to the participant 5 (and so they did not
appear in this network). The colour of each node represents the choice made in the
most recent time step: red for cooperation and blue for defection. For example, the
participant 1 cooperated in the most recent time step as indicated by the red colour
of its node. The numeric label within each node indicates the current wealth of the
corresponding participant. In this instance, the participant 5 had a wealth of 600
units.

Given this information, participants faced a dilemma: whether to defect and max-
imise their individual wealth (free-riding), or to cooperate and contribute to the
maximization of social wealth. Additionally, by demonstrating cooperative behaviour,
participants might elicit future cooperation from others or gain an advantage in the
future network updates.

Once all participants had made their decisions (cooperation or defection), they were
able to see their directly connected neighbours’ decisions and how their own wealth
was updated.

(b) Network update phase:

In this phase, five pairs of participants who were directly connected and five pairs of
participants who were not directly connected were randomly selected. For directly
connected pairs, connections could be dissolved if either participant chose to do so.
Otherwise they persist. For pairs not directly connected, new connections could be
formed if both participants agreed to it. For each participant, the sequence of these
dissolution and formation opportunities was presented in a randomized order during
the network update phase.

It is important to note that participants could not observe how other participants
were forming or dissolving connections until all decisions had been made.

When making these decisions, participants had access to information on their directly
connected neighbours prior to this phase: their wealth, decisions in the most recent
time step (cooperation or defection), identification numbers (1–6), and how these
neighbours were directly connected to each other. Forming new connections with
others, participants could see their wealth, decisions in the most recent time step,
identification numbers, and how they were connected to the participants’ directly
connected neighbours prior to this phase.
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Figs. 2 and 3 illustrate the network update phase from the perspective of the
participant with the identification number 3. Before the network update phase, the
ego participant 3 was directly connected to the participants 1 and 5. Additionally,
the participants 1 and 2 were also directly connected at that time. At the start of
the network update phase, the ego participant 3 had two forming opportunities with
the participants 4 and 2 (green dashed lines) and two dissolution opportunities with
the participants 5 and 1 (red dashed lines) were forthcoming. These four decisions
were then presented in a randomized order during the network update phase as Figs.
2 and 3.

In Fig. 2, the ego participant 3 decided whether to dissolve the connection with
the participant with the identification number 1 (indicated by the dark red dotted
line). The participant 1 had cooperated in the most recent decision-making phase,
possessed a wealth of 550 units, and was directly connected to the participant 2 prior
to this phase. The light red dotted line showed that the participant 3 had not yet
decided whether to dissolve the existing connection with participant 5.

Fig. 2. Dissolving ties in the networked public goods games

In Fig. 3, the ego participant 3 decided whether to form a new connection with
the participant 2 (indicated by the dark green dotted line). Notably, there was
an alter–non-alter connection (grey line) between the participant 1 (alter) and the
participant 2 (non-alter), which the ego participant 3 was able to observe when
considering forming a new connection with the participant 2. The light green dotted
line with an arrow showed that the participant 3 had already decided to form a new
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Fig. 3. Forming ties in the networked public goods games

connection with participant 4. Note that new connections could be formed only if
both participants agreed to it.
Participants were expected to make these decisions aimed at maximizing their future
wealth by forming connections with cooperative individuals or minimizing risks by
dissolving connections with uncooperative individuals.
Once all the participants made these decisions (dissolving or forming), the network
structure was updated.

2.3. Experimental Environment and Participant Recruitment
This experiment was conducted on Breadboard (McKnight and Christakis, 2016), a software
platform designed for online social experiments. Participants were recruited via the online
survey platform, Prolific (2024), in November 2024 from various countries around the
world. The experiments were approved by and performed according to guidelines and
regulations set by the UCLA Office of Research Administration (#16 − 001920). Informed
consent was obtained online from all participants.

2.4. Experiments
We conducted 20 games, involving a total of 120 participants (6 participants in each
experiment). Among them, 68 identified as female, 50 as male, 1 as transgender, and 1
preferred not to answer. The average age of participants was 29.5 years (SD = 10.1).
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Fig. 4. Network dynamics in the networked public goods game

Fig. 4 illustrates the dynamic network that emerged during one of the 20 public goods
games. Note that this is a bird’s-eye view of the network, which was not available to the
participants themselves.

Each node represents a participant, and the ties indicate direct connections between
them. The size of each node corresponds to the participant’s current wealth: larger nodes
indicate higher wealth, while smaller nodes represent lower wealth. The numbers 1–6
denote the identification numbers of each participant. The colour of each node indicates
the most recent decision made in the decision-making phase: red represents cooperation,
blue indicates defection, and grey denotes no prior history. For instance, at time step 0,
the initial network structure was generated, where the participant with the identification
number 1 was directly connected to the participants 3 and 4. Subsequently, at time step 1,
the participant 1 chose to cooperate in the decision-making phase and then formed new
connections with the participants 2 and 5 in the network update phase.

3. Separable Temporal Exponential-family Random Graph Models

In this section, we describe a statistical model to represent the relationships within the
game. We start with a model for a single network and then expand it to the larger set of
G networks.

Consider a longitudinal network of relations between n nodes, labeled {1, . . . , n} at time
points t = 1, . . . , T . Let Y t

ij be a random variable representing a measure of the relation
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between nodes i and j at time t, so that the matrix Yt = [Yij ]n×n can be thought of as a
random graph over the set of nodes. Let yt ∈ Y be a realization of Yt.
Separable Temporal Exponential-family Random Graph Models (STERGM) were intro-
duced by Krivitsky and Handcock (2014) as a subset of Temporal Exponential-family
Random Graph Models (TERGM) for better interpretability and model specification. The
main concept is to “separate” the dynamic network into distinct formation and persistence
processes.
Consider the network transition from time t − 1 to time t. Let Yt−1 denote the network
at time t − 1, and Yt the network at time t. We define the formation network Yt

+ as the
network formed by augmenting Yt−1 with the ties formed between times t − 1 and t. The
persistence network Yt

− is the network formed by removing from Yt−1 the ties dissolved
between times t − 1 and t. Via a set operation, the realized formation and persistence
networks are derived as:

yt
+ = yt−1 ∪ yt

yt
− = yt−1 ∩ yt.

(1)

In this operation, yt
+ = yt−1 ∪yt represents the set of ties that appear in either the network

at time t − 1 or the network at time t. Conversely, yt
− = yt−1 ∩ yt represents the set of

ties that exist in both the network at time t − 1 and the network at time t. A key goal of
STERGMs is to reconstruct yt from yt−1, yt

+, and yt
−, or to separate yt into yt

+ and yt
−,

given yt−1. This reconstruction is achieved with the following set operation:

yt = yt
+\(yt−1\yt

−) = yt
− ∪ (yt

+\yt−1), (2)

where, yt
+\yt−1 contains ties {i, j} that are present in yt

+ but not in yt−1. Thus, yt can be
expressed as the union of yt

− and yt
+\yt−1. This approach allows us to separate the network

dynamics into formation and persistence processes as the network evolves over time. As
a result, if Yt

+ is independent of Yt
− conditional on Yt−1, the transition probability from

time t − 1 to time t is separable as follows (Krivitsky and Handcock, 2014):

P (Yt = yt|Yt−1 = yt−1; θ) = P (Yt
+ = yt

+, Yt
− = yt

−|Yt−1 = yt−1; θ+, θ−)
= P (Yt

+ = yt
+|Yt−1 = yt−1; θ+) × P (Yt

− = yt
−|Yt−1 = yt−1; θ−). (3)

where θ = (θ−, θ+). This specification allows us to model the formation and persistence
processes separately. Given yt−1 ∈ Y, the realizations of Y t

+ can be expressed as yt
+ ∈

Y+(yt−1) ⊆ {∀y : y ⊇ yt−1} and the realizations of Y t
− is expressed as yt

− ∈ Y−(yt−1) ⊆
{∀y : y ⊆ yt−1}. With a d-vector g+(yt

+, yt−1) of sufficient statistics for the formation
network yt

+ from yt−1 and parameter θ+ ∈ Rd and a d-vector g−(yt
−, yt−1) of sufficient

statistics for the persistence network yt
− from yt−1 and parameter θ− ∈ Rd, the formation

and persistence models are elaborated as:

P (Y t
+ = yt

+|Y t−1 = yt−1; θ+) = exp(θ+·g+(yt
+, yt−1))

c+(θ+, yt−1) yt
+ ∈ Y+(yt−1), (4)

P (Y t
− = yt

−|Y t−1 = yt−1; θ−) = exp(θ−·g−(yt
−, yt−1))

c−(θ−, yt−1) yt
− ∈ Y−(yt−1), (5)
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where

c+(θ+, yt−1) =
∑

x+∈Y+(yt−1)
exp{θ+·g+(x+, yt−1)}, (6)

c−(θ−, yt−1) =
∑

x−∈Y−(yt−1)
exp{θ−·g−(x−, yt−1)}, (7)

are the normalizing constants. In this framework, the sufficient statistics for the formation
and persistence networks can vary, allowing for a more flexible model specification (Krivitsky
and Handcock, 2014). In practice, this property is considered to be useful (Krivitsky, 2009;
Krivitsky and Handcock, 2014). For instance, it is typical for the formation network model
to be quite complex while that of the persistence process is quite simple, reflecting the
social reality that forming social ties may depend on many factors while dissolving ties
depends on a few. Although STERGMs sacrifice the ability to model interactions between
the formation and persistence networks intra-time step, it offers significant improvements
in model specification and interpretability.
We extend STERGMs to model the multiple small dynamic networks that are the result
of the evolutionary games. Suppose we have G independent small dynamic networks from
the same experimental setting, each with T time points and n nodes of interest, here the
nodes in each of the G dynamic networks are distinct. Let Y t,g be an undirected random
graph at time t in the g-th dynamic network, whose realization is yt,g ∈ Y, the set of
possible networks of interest on n. With a d-vector g(yt,g, yt−1,g) of sufficient statistics for
the network transition from yt−1,g to yt,g and parameter θ ∈ Rd, the transition probability
from time t − 1 to time t in the g-th network is defined as:

P (Y t,g = yt,g|Y t−1,g = yt−1,g; θ) = exp{θ·g(yt,g, yt−1,g)}
c(θ, yt−1,g) yt,g, yt−1,g ∈ Y , (8)

where
c(θ, yt−1,g) =

∑
xt,g∈Y

exp{θ·g(xt,g, yt−1,g)} (9)

is the normalizing constant. As a result, assuming homogeneity of parameters over time
and networks, the likelihood of a STERGM with G independent networks and T time
points can be represented as:

G∏
g=1

T∏
t=2

P (Y t,g = yt,g|Y t−1,g = yt−1,g; θ). (10)

This framework is a natural extension of STERGMs, retaining the same interpretability.
Statistical inferences can be conducted using Markov Chain Monte Carlo (MCMC) methods.
However, leveraging the small network size, especially n ≤ 7, inherent to multiple small
networks, it becomes feasible to numerically calculate the likelihood function directly and
estimate parameters with the direct numerical optimization. This approach has significant
advantages, including producing more reliable parameter estimates, standard errors, and
the likelihood ratios, allowing for robust model comparisons through the deviance test. In
contrast, the MCMC approaches often encounter challenges such as poorly mixed chains,
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the presence of MCMC errors, and uncertainties in approximating likelihood ratios (Hunter
and Handcock, 2006).

4. Statistical Inference

In this section, we conduct statistical inference based on our experiment and the proposed
model.

4.1. Main Analysis
We aimed to investigate the dynamic structural patterns stemming from the networked
public goods games. To achieve this, we focused on modelling the formation and persistence
of networks by employing the proposed model with the STERGM parameterization.
This approach assumes the independence of dynamic networks across games as well as
homogeneity of parameters across time steps and games.

Regarding the independence of the dynamic networks across games, we conducted 20
games, each generating a dynamic network created by a distinct group of participants.
Since there were no opportunities for interaction across these groups, the networks were
considered independent by design. Given that each game was conducted under the same
game setup, we also assumed parameter homogeneity across games.

Concerning parameter homogeneity across time steps, participants were not informed
about the total number of time steps, which limited the potential for endgame-oriented
strategies. Additionally, two practice time steps were conducted before the actual games
to ensure that participants were familiar with the experimental setup, suggesting that
strategic behaviour likely stabilized at the beginning of the actual games. Therefore, we
assumed parameter homogeneity over time steps.

Following Krivitsky and Handcock (2014), we incorporated both exogenous and endogenous
structural statistics. Note that identical statistics were used for both the formation and
persistence models, as the network dynamics were presumed to be governed by the
same structural patterns (albeit with different parameters). The dynamic networks were
undirected due to the symmetric interactions inherent in the public goods game.

First, we included terms for the number of cooperation and defection homophily connections.
At each time step, the homophily connection was defined after the network update phase if
both participants were directly connected and had chosen the same decisions (cooperation
or defection) in the most recent time step. For example, at time 2 in Fig. 4, there were 3
cooperation homophily connections and 1 defection homophily connection.

Second, we incorporated terms for the sum of absolute wealth differences. At each time step,
after the network update phase, we calculated the sum of the absolute wealth differences
between directly connected participants.

Finally, we included terms for the number of triangles to account for broader structural
patterns within the dynamic networks. After the network update phase, we counted the
number of triangles created by the direct connections. Unlike studies on directed networks
(Krivitsky and Handcock, 2014; Snijders et al., 2010), we omitted terms for aggregate
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transitive and cyclical ties, as our data involved undirected networks without hierarchical
interactions.

We computed the maximum likelihood estimate (MLE) by direct optimization using the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Broyden, 1970; Fletcher, 1970;
Goldfarb, 1970; Shanno, 1970). We could estimate the MLE without Markov Chain
Monte Carlo (MCMC) (Hunter and Handcock, 2006) or other approximations, such as
pseudo-likelihood (Strauss and Ikeda, 1990), as we were leveraging the small network
size of our multiple small dynamic networks. Model comparisons were conducted using
likelihood ratio tests, enabling evaluation of model fit and selection of the most suitable
model for the networked public goods game.

The validity of the MLE for this setting is based on two arguments. The first is studies
for the MLE for ERGM in small network size settings (Vega Yon et al., 2021). They find
that the MLE is a good estimator even for small network sizes. The second evidence
comes from asymptotics: as the number of experiments, G, increases the MLE satisfies
a central limit theorem. Specifically, under mild regularity conditions, the MLE with
probability approaching one, is unique when it exists and is asymptotically Gaussian
with mean the true value of the parameter and covariance equal to the inverse Fisher
information matrix (corresponding to the likelihood in equation (10) (Barndorff-Nielsen,
1978; Geyer, 2013)). In our situation, we computed the information matrix numerically
from the Hessian returned as a by-product of the optimization. Results by Bogdan et al.
(2022) suggest that the asymptotics is relevant if G is of the same size as the number of
nodes, n. In our situation, G = 20 and n = 6.

Table 1 presents the model estimates, and we provide brief interpretations for significant
parameters below. For the formation model, the triangle parameter was estimated at
−0.260 (SE = 0.096), suggesting that the connections completing triangles were less likely
to form compared to connections that did not form such structures, controlling for the
covariates. The cooperation homophily parameter was estimated at 1.069 (SE = 0.183),
showing that the connections between the cooperative participants were more likely to
form than heterophilous connections, controlling for other covariates and the structural
dependency. The wealth difference parameter was estimated at −1.084 (SE = 0.542), this
implied that the connections were less likely to form between participants with the larger
wealth differences compared to those with the smaller differences, controlling for other
covariates and the structural dependency.

For the persistence model, the cooperation homophily parameter was estimated at 1.677
(SE = 0.276), showing that the connections between cooperative participants were more
likely to persist than the heterophilous connections, controlling for other covariates and the
structural dependency. The wealth difference parameter was estimated at −1.099 (SE =
0.469), this implied that the connections were less likely to persist between participants
with the larger wealth differences compared to those with the smaller differences, controlling
for other covariates and the structural dependency.

Our analysis revealed key insights into the dynamics of the public goods games we
employed. We observed a negative transitive effect in the formation networks, suggesting
that participants might avoid forming the connections that would complete triangles.
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Table 1. MLE parameter estimates for the public goods game networks

Parameter Formation Persistence
Est. (SE) Est. (SE)

Edge -1.358 (0.195)*** 1.682 (0.210)***
Triangle -0.260 (0.096)** -0.023 (0.133)
Homophily (cooperation) 1.069 (0.183)*** 1.677 (0.276)***
Homophily (defection) 0.438 (0.255) 0.106 (0.225)
Absolute wealth difference -1.084 (0.542)* -1.099 (0.469)*

Significance levels: 0.05*, 0.01**, 0.001***

Table 2. Deviances for the public goods game networks

Model Residual deviance Deviance p−value
dev. (d.f.)

Null 2911.22 — —
Only-Covariates 1742.47 1168.74 (8) 0.000
Full 1734.79 7.68 (2) 0.021

Consistent with expectations, there was a strong tendency for cooperative participants to
form and persist the connections with each other. This might reflect the importance of
cooperative behaviour in fostering stable and cohesive networks within the social dilemma.
Participants also demonstrated a preference for forming and persisting the connections
with others of the similar wealth levels, underscoring the role of economic disparities in
both network formation and persistence.

4.2. Assessing goodness of fit
We consider two ways of assessing the goodness of fit (GoF) of the model to the data.
The first is an analysis of deviance, comparing nested models. The second compares
substantively important network statistics of the data to the distribution of the same
statistics simulated from the model. The first is a relative measure of goodness of fit while
the second is an absolute measure.

Table 2 provides the deviance test results for the null model, only–covariates model, and
main (full) model. The main model significantly improved the fit, compared to the null
and only-covariates models. These results revealed that the structural term, the number
of triangles, played an important role in explaining the network dynamics.

One way to assess the absolute closeness of the fitted model to data generating mechanism
is to compare the distribution of dynamic networks drawn from the model to the observed
dynamic networks. The idea here is that, if the model provides a good fit, the observed
networks should be similar to those generated from the fitted model. Hunter et al. (2008)
proposed that the distribution of structurally important network statistics drawn from
the fitted model be compared to the observed network statistics. If the observed network
statistics deviated substantially from the distribution from the model, then the nature of
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the deviations would tell us how the model fit the data poorly. One fundamental set of
network statistics is the number of triangles, a measure of transitivity and central to the
model.

Fig. 5 presents the goodness-of-fit plots for the number of triangles per participant in the
formation networks. The red dots indicate the observed ones after the network update
phase at each time step. The dark green box plots represent simulations from the main
model, while the light green box plots correspond to simulations from the only-covariates
model. The results show that the main model captures the observed values within the
interquartile range (IQR) at 5 out of 7 time steps, compared to 3 out of 7 for the only-
covariates model. Taken together with the deviance test results (Table 2), these findings
support including the triangle term.

Note that our GoF plots employed a different approach from the standard application, that
to a single network (Hunter et al., 2008). Unlike the standard approach for a single network,
our study involved 20 independent dynamic networks over 7 time steps. Generating separate
GoF plots for each network at each time step would yield 140 plots, making it challenging
to interpret and summarize the results. Additionally, each network included only 6 nodes,
leading to substantial variability in local structures. As an alternative, we implemented a
summary GoF approach: for each time step, we aggregated the total number of triangles
across all 20 networks and compared them to simulations from the estimated models.

Another fundamental characteristic of the networks is their degree distribution. This is
not specifically included as a term in the model. We again employed a summary GoF
approach, focusing on the total number of k-stars across the 20 dynamic networks after
the network update phase at each time step. In Fig. 6, the red dots indicate the observed
total k-star counts per participant, while the grey box plots show the distribution of
simulated ones under the main model (Table 1). The dotted lines denote the 95% quantiles
of the simulated distributions. We see that the model successfully reproduces the k-star
distributions in the GoF diagnostics (Fig. 6), indicating that it captures key structural
features—including centralization—without explicitly modelling such terms.

4.3. Sensitivity Analysis
Based on the main analysis, we conducted several sensitivity analyses. First, we evaluated
the assumption of parameter homogeneity across time steps by estimating the MLE
parameters separately for each time step using the main model (Table 1).

Figs. 7 and 8 present the MLE parameter estimates for the formation and persistence
models at each time step. The colours indicate the significance of each estimate (black:
p−value < 0.05; grey: not significant). Consistent with the homogeneity model results in
Table 1, the parameter estimates display similar tendencies over time. It should be noted
that, because no defection homophily formations occurred at time step 6, the MLE for
that parameter is negative infinity and is not plotted.

Next, we considered the potential role of centralization. In our networked public goods
game, during the network update phase, participants could not directly observe the number
of connections of others, however, they could view alter-non-alter connections (see Section
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2.2, Time Step Structure). This suggests that degree-based centralization might emerge
indirectly through transitive closures, with the triangle term potentially capturing both
intentional transitive clustering and degree-based centralization dynamics.

To test for other potential sources of centralization, we estimated a model that included a
2−star term. However, the model fit did not improve significantly (Likelihood Ratio Test:
p = 0.190, df = 2), suggesting that such mechanisms did not meaningfully enhance the
model’s validity.

Finally, we assessed the potential influence of demographic characteristics in our networked
public goods game. In the main model (Table 1), demographic covariates were not included
because participants could not observe the demographic information of others. As an
additional test, we examined gender effects by including the number of male–male and
male–female direct connections as covariates. This model did not provide a better fit
(Likelihood Ratio Test: p = 0.117, df = 4), and the added terms were not significant nor
did they affect the significance of other covariates.

5. Discussion

In this paper, we proposed a statistical framework for analysing networked public goods
games using STERGMs. We demonstrated the application of this model by analysing
the experiment of 20 games, highlighting the model’s ability to capture the dependencies
in the temporal relational information. The model provided insights into the formation
and persistence of connections. These insights, which could not have been achieved
through nodal-level analysis alone, underscored the importance of examining dyad-level
dependencies in understanding networked human behaviours.

The significantly negative estimate of the triangle parameter in the formation model
was a striking result. Given that transitive closures were the only higher-order network
structures visible to participants, this result suggested that they might have preferred
to build connections with new groups or those who seemed less connected, rather than
forming tightly knit clusters. This could reflect their interests in establishing exclusive
or privileged relationships that perhaps position themselves as unique or special in the
eyes of others. By doing so, participants might seek to elicit more favorable cooperative
responses from others.

Such behavioural tendencies were consistent with a relevant theory (Burt, 1992). Burt
argued that actors who strategically exploit structural holes (brokerage) can secure not
only informational advantages but also control benefits, which enabled them to influence
the behaviours of others (pp. 30–31). However, it was important to emphasize that this
interpretation is specific to the experimental context of this study data and should be
generalised with caution. The future research should aim to collect and analyze more
detailed data to examine whether similar behavioural patterns emerge under varying game
parameter settings and participant demographics. For example, design elements such as
capped resources, tie constraints, and payoff structures may substantially influence both
model estimates and the interpretation of behavioural dynamics.

In our proposed model, we employed direct numerical optimization of the likelihood
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Fig. 7. MLE parameter estimates for the formation model over time
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Fig. 8. MLE parameter estimates for the persistence model over time
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function to achieve more reliable parameter estimates and likelihood ratios. This approach
is particularly advantageous for multiple small dynamic networks, as maximum likelihood
estimation enables robust statistical inference and model comparison. By incorporating a
number of independent networks, the model also maintains high statistical power. However,
the computational constraints of this method limits its applicability, making it suitable
primarily for small-scale networks, particularly those with fewer than or equal to 7 nodes.

Our proposed statistical framework supports several extensions. For example, in evolu-
tionary game theory, incorporating multiple treatment conditions can shed light on how
experimental variables influence network dynamics. As demonstrated by Nishi et al. (2015),
wealth visibility can affect cooperation rates in public goods games. By including treatment
conditions as covariates, the model can analyze the impact of different experimental setups
on the network formation and persistence, enabling a deeper understanding of structural
dependencies in social human behaviours.

In these experiments, the network size was controlled by the experimenter. However,
it is a fundamental determinant of the social structure of the network, and hence the
model terms and parameters. The models we had were conditional on the network size
and direct comparison of the parameters for different network sizes was not possible (See
Krivitsky et al., 2011). A current limitation of the model is its inability directly compare
experiments of different network sizes. In social human behaviour research, network sizes
often fluctuate across networks, partly due to challenges in recruiting the constant number
of participants for repeated experiments. Addressing this limitation, future research could
focus on adapting the model to handle networks of varying sizes by utilizing methods such
as those developed by Krivitsky et al. (2011). Incorporating these approaches would allow
for more flexible model specifications and broaden the model’s applicability across diverse
experimental settings.

Finally, our proposed model holds potential for broad application across various domains,
including networked human behaviours within families, workplaces, schools, and hospitals.
In these settings, small groups of 6–10 individuals repeatedly interact over dynamic social
networks. This model’s versatility suggests its utility beyond the scope of networked public
goods games, providing a pathway for advancements in understanding social interactions
and behavioural dynamics across a variety of disciplines.
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