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Summary. Repeated small dynamic networks are integral to studies in evolutionary1

game theory, where networked public goods games offer novel insights into human2

behaviours. Building on these findings, it is necessary to develop a statistical model3

that effectively captures dependencies across multiple small dynamic networks. While4

Separable Temporal Exponential-family Random Graph Models (STERGMs) have5

demonstrated success in modelling a large single dynamic network, their application to6

multiple small dynamic networks with less than 10 actors, remains unexplored. In this7

study, we extend the STERGM framework to accommodate multiple small dynamic8

networks, offering an approach to analysing such systems. Taking advantage of the9

small network sizes, our proposed approach improves accuracy in statistical inference10

through direct computation, unlike conventional approaches that rely on Markov11

Chain Monte Carlo methods. We demonstrate the validity of this framework through12

the analysis of a networked public goods experiment into individual decision-making13

about cooperation and defection. The resulting statistical inference uncovers insights14

into the dynamics of social dilemmas, showcasing the effectiveness and robustness of15

this modelling and approach.16

Keywords: Evolutionary Game Theory; Experimental Game Theory; Longitudinal Networks;17

Public Goods Game; Social Networks; Separable Temporal Exponential-family Random18

Graph Models.19

1. Introduction20

Networks are widely used to represent relational information, enabling a deeper understand-21

ing of structures and dependencies within social relationships. Recently, there has been22

increasing interest in using dynamic networks to capture the evolution of these relationships23
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over time in various fields. In particular, evolutionary game theory has leveraged dynamic24

networks to explore the evolution of human behaviours (Feng et al., 2024; Li et al., 2023;25

Pi et al., 2024).26

A key experimental approach in this domain is a public goods game, which sheds light on27

cooperative behaviours. In traditional public goods games, individuals repeatedly choose28

between cooperation (benefiting the group) and defection (benefiting themselves), typically29

among 4 to 6 participants (Fehr and Gächter, 2000; Milinski et al., 2002; Rand et al.,30

2012). More recent adaptations incorporate network structures to better mimic real-world31

social interactions (Nishi et al., 2015; Shirado and Christakis, 2017; Dewey et al., 2024).32

In these networked settings, public goods games generate multiple small dynamic networks33

that reflect repeated interactions and evolving relational structures.34

Despite advances in this field, many studies have continued to focus on nodal-level analyses,35

potentially overlooking the critical dependencies that shape broader network dynamics.36

Building on these findings, there is a clear need to develop a modelling framework that can37

capture dependencies across multiple small dynamic networks. Such an approach would38

provide deeper insights into the complexities of networked human behaviours and enhance39

our understanding of relational dynamics over time.40

To address this gap, we extend Separable Temporal Exponential-family Random Graph41

Models (STERGMs), a temporal extension of Exponential-family Random Graph Models42

(ERGMs; see Amati et al. (2018)). While STERGMs are widely used for modelling single43

large dynamic networks, typically with 20 nodes or more (Krivitsky and Handcock, 2014;44

Leifeld et al., 2018; Lebacher et al., 2021), our proposed framework adapts STERGMs to45

capture dependencies in repeated small dynamic networks. Such networks are integral to46

studies in evolutionary game theory, where networked public goods games offer insights47

into networked human behaviours in social dilemmas.48

This paper is organized as follows. In Section 2, we provide an overview of the public goods49

game employed in our study. Section 3 introduces and extends the STERGM framework50

to accommodate the context of multiple small dynamic networks. In Section 4, we apply51

this modelling approach to the empirical data from networked public goods games and52

perform statistical inference to uncover key insights into the networked human behaviours.53

2. Networked Public Goods Games54

In this section, we describe the structure of the networked public goods game used in our55

experiment. This description highlights the canonical characteristics of such games and56

experiments.57

2.1. Overview of the Game58

Each game included six participants. At the start of the game, each participant received59

an initial wealth of 500 units and was placed within a network structure. This structure60

was constructed based on an Erdős-Rényi design (Erdős and Rényi, 1959), where five direct61

connections were randomly generated among the six nodes.62
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The game consisted of seven repeated time steps. However, participants were not informed63

of the total number of time steps in advance, which limited the potential for endgame-64

oriented strategies. At the end of the game, cumulative wealth was converted into cash at65

a rate of $1 per 1, 000 units.66

Before the actual game, participants completed two practice time steps with randomly67

behaving computer agents. These agents were programmed to make decisions in a com-68

pletely random manner, without any pattern. Consequently, participants were not exposed69

to any specific behaviours that might influence their strategies in the actual game.70

2.2. Time Step Structure71

Each time step consisted of two phases: a decision-making phase and a network update72

phase.73

(a) Decision-making phase:74

At the beginning of each time step, participants chose whether to cooperate or defect75

with all of their directly connected neighbours. If they chose to cooperate, they paid76

50 units per directly connected neighbour, and each of these neighbours received 10077

units in return. If they chose to defect, their wealth remained unchanged, and no78

benefits were given to their directly connected neighbours. Participants made this79

decision only once per time step, and it was uniformly applied to all of their directly80

connected neighbours.81

Fig. 1. Decision-making phase in the networked public goods games
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During this phase, participants could view their directly connected neighbours’82

information: their wealth, decisions in the most recent time step (cooperation or83

defection), identification numbers (1-6), and how these neighbours were directly84

connected to each other (alter–alter connections).85

Fig. 1 illustrates the decision-making phase as observed by the participant with the86

identification number 5 (“ego”), who was directly connected to the participants with87

the identification numbers 1 and 4 (“alters”). Notably, the participant 5 could also88

observe that the participants 1 and 4 were directly connected to each other (direct89

connections from ego to their alters are represented by thick lines; alter to alter90

connections are in thin lines). The participant 5 could not observe participants 2, 391

and 6 as they were not directly connected to the participant 5 (and so they did not92

appear in this network). The colour of each node represents the choice made in the93

most recent time step: red for cooperation and blue for defection. For example, the94

participant 1 cooperated in the most recent time step as indicated by the red colour95

of its node. The numeric label within each node indicates the current wealth of the96

corresponding participant. In this instance, the participant 5 had a wealth of 60097

units.98

Given this information, participants faced a dilemma: whether to defect and max-99

imise their individual wealth (free-riding), or to cooperate and contribute to the100

maximization of social wealth. Additionally, by demonstrating cooperative behaviour,101

participants might elicit future cooperation from others or gain an advantage in the102

future network updates.103

Once all participants had made their decisions (cooperation or defection), they were104

able to see their directly connected neighbours’ decisions and how their own wealth105

was updated.106

(b) Network update phase:107

In this phase, five pairs of participants who were directly connected and five pairs of108

participants who were not directly connected were randomly selected. For directly109

connected pairs, connections could be dissolved if either participant chose to do so.110

Otherwise they persist. For pairs not directly connected, new connections could be111

formed if both participants agreed to it. For each participant, the sequence of these112

dissolution and formation opportunities was presented in a randomized order during113

the network update phase.114

It is important to note that participants could not observe how other participants115

were forming or dissolving connections until all decisions had been made.116

When making these decisions, participants had access to information on their directly117

connected neighbours prior to this phase: their wealth, decisions in the most recent118

time step (cooperation or defection), identification numbers (1–6), and how these119

neighbours were directly connected to each other. Forming new connections with120

others, participants could see their wealth, decisions in the most recent time step,121

identification numbers, and how they were connected to the participants’ directly122

connected neighbours prior to this phase.123
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Figs. 2 and 3 illustrate the network update phase from the perspective of the124

participant with the identification number 3. Before the network update phase, the125

ego participant 3 was directly connected to the participants 1 and 5. Additionally,126

the participants 1 and 2 were also directly connected at that time. At the start of127

the network update phase, the ego participant 3 had two forming opportunities with128

the participants 4 and 2 (green dashed lines) and two dissolution opportunities with129

the participants 5 and 1 (red dashed lines) were forthcoming. These four decisions130

were then presented in a randomized order during the network update phase as Figs.131

2 and 3.132

In Fig. 2, the ego participant 3 decided whether to dissolve the connection with133

the participant with the identification number 1 (indicated by the dark red dotted134

line). The participant 1 had cooperated in the most recent decision-making phase,135

possessed a wealth of 550 units, and was directly connected to the participant 2 prior136

to this phase. The light red dotted line showed that the participant 3 had not yet137

decided whether to dissolve the existing connection with participant 5.138

Fig. 2. Dissolving ties in the networked public goods games

In Fig. 3, the ego participant 3 decided whether to form a new connection with139

the participant 2 (indicated by the dark green dotted line). Notably, there was140

an alter–non-alter connection (grey line) between the participant 1 (alter) and the141

participant 2 (non-alter), which the ego participant 3 was able to observe when142

considering forming a new connection with the participant 2. The light green dotted143

line with an arrow showed that the participant 3 had already decided to form a new144
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Fig. 3. Forming ties in the networked public goods games

connection with participant 4. Note that new connections could be formed only if145

both participants agreed to it.146

Participants were expected to make these decisions aimed at maximizing their future147

wealth by forming connections with cooperative individuals or minimizing risks by148

dissolving connections with uncooperative individuals.149

Once all the participants made these decisions (dissolving or forming), the network150

structure was updated.151

2.3. Experimental Environment and Participant Recruitment152

This experiment was conducted on Breadboard (McKnight and Christakis, 2016), a software153

platform designed for online social experiments. Participants were recruited via the online154

survey platform, Prolific (2024), in November 2024 from various countries around the155

world. The experiments were approved by and performed according to guidelines and156

regulations set by the UCLA Office of Research Administration (#16 − 001920). Informed157

consent was obtained online from all participants.158

2.4. Experiments159

We conducted 20 games, involving a total of 120 participants (6 participants in each160

experiment). Among them, 68 identified as female, 50 as male, 1 as transgender, and 1161

preferred not to answer. The average age of participants was 29.5 years (SD = 10.1).162
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Fig. 4. Network dynamics in the networked public goods game

Fig. 4 illustrates the dynamic network that emerged during one of the 20 public goods163

games. Note that this is a bird’s-eye view of the network, which was not available to the164

participants themselves.165

Each node represents a participant, and the ties indicate direct connections between166

them. The size of each node corresponds to the participant’s current wealth: larger nodes167

indicate higher wealth, while smaller nodes represent lower wealth. The numbers 1–6168

denote the identification numbers of each participant. The colour of each node indicates169

the most recent decision made in the decision-making phase: red represents cooperation,170

blue indicates defection, and grey denotes no prior history. For instance, at time step 0,171

the initial network structure was generated, where the participant with the identification172

number 1 was directly connected to the participants 3 and 4. Subsequently, at time step 1,173

the participant 1 chose to cooperate in the decision-making phase and then formed new174

connections with the participants 2 and 5 in the network update phase.175

3. Separable Temporal Exponential-family Random Graph Models176

In this section, we describe a statistical model to represent the relationships within the177

game. We start with a model for a single network and then expand it to the larger set of178

G networks.179

Consider a longitudinal network of relations between n nodes, labeled {1, . . . , n} at time180

points t = 1, . . . , T . Let Y t
ij be a random variable representing a measure of the relation181
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between nodes i and j at time t, so that the matrix Yt = [Yij ]n×n can be thought of as a182

random graph over the set of nodes. Let yt ∈ Y be a realization of Yt.183

Separable Temporal Exponential-family Random Graph Models (STERGM) were intro-184

duced by Krivitsky and Handcock (2014) as a subset of Temporal Exponential-family185

Random Graph Models (TERGM) for better interpretability and model specification. The186

main concept is to “separate” the dynamic network into distinct formation and persistence187

processes.188

Consider the network transition from time t − 1 to time t. Let Yt−1 denote the network189

at time t − 1, and Yt the network at time t. We define the formation network Yt
+ as the190

network formed by augmenting Yt−1 with the ties formed between times t − 1 and t. The191

persistence network Yt
− is the network formed by removing from Yt−1 the ties dissolved192

between times t − 1 and t. Via a set operation, the realized formation and persistence193

networks are derived as:194

yt
+ = yt−1 ∪ yt

yt
− = yt−1 ∩ yt.

(1)

In this operation, yt
+ = yt−1 ∪yt represents the set of ties that appear in either the network195

at time t − 1 or the network at time t. Conversely, yt
− = yt−1 ∩ yt represents the set of196

ties that exist in both the network at time t − 1 and the network at time t. A key goal of197

STERGMs is to reconstruct yt from yt−1, yt
+, and yt

−, or to separate yt into yt
+ and yt

−,198

given yt−1. This reconstruction is achieved with the following set operation:199

yt = yt
+\(yt−1\yt

−) = yt
− ∪ (yt

+\yt−1), (2)

where, yt
+\yt−1 contains ties {i, j} that are present in yt

+ but not in yt−1. Thus, yt can be200

expressed as the union of yt
− and yt

+\yt−1. This approach allows us to separate the network201

dynamics into formation and persistence processes as the network evolves over time. As202

a result, if Yt
+ is independent of Yt

− conditional on Yt−1, the transition probability from203

time t − 1 to time t is separable as follows (Krivitsky and Handcock, 2014):204

P (Yt = yt|Yt−1 = yt−1; θ) = P (Yt
+ = yt

+, Yt
− = yt

−|Yt−1 = yt−1; θ+, θ−)
= P (Yt

+ = yt
+|Yt−1 = yt−1; θ+) × P (Yt

− = yt
−|Yt−1 = yt−1; θ−). (3)

where θ = (θ−, θ+). This specification allows us to model the formation and persistence205

processes separately. Given yt−1 ∈ Y, the realizations of Y t
+ can be expressed as yt

+ ∈206

Y+(yt−1) ⊆ {∀y : y ⊇ yt−1} and the realizations of Y t
− is expressed as yt

− ∈ Y−(yt−1) ⊆207

{∀y : y ⊆ yt−1}. With a d-vector g+(yt
+, yt−1) of sufficient statistics for the formation208

network yt
+ from yt−1 and parameter θ+ ∈ Rd and a d-vector g−(yt

−, yt−1) of sufficient209

statistics for the persistence network yt
− from yt−1 and parameter θ− ∈ Rd, the formation210

and persistence models are elaborated as:211

P (Y t
+ = yt

+|Y t−1 = yt−1; θ+) = exp(θ+·g+(yt
+, yt−1))

c+(θ+, yt−1) yt
+ ∈ Y+(yt−1), (4)

P (Y t
− = yt

−|Y t−1 = yt−1; θ−) = exp(θ−·g−(yt
−, yt−1))

c−(θ−, yt−1) yt
− ∈ Y−(yt−1), (5)
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where212

c+(θ+, yt−1) =
∑

x+∈Y+(yt−1)
exp{θ+·g+(x+, yt−1)}, (6)

c−(θ−, yt−1) =
∑

x−∈Y−(yt−1)
exp{θ−·g−(x−, yt−1)}, (7)

are the normalizing constants. In this framework, the sufficient statistics for the formation213

and persistence networks can vary, allowing for a more flexible model specification (Krivitsky214

and Handcock, 2014). In practice, this property is considered to be useful (Krivitsky, 2009;215

Krivitsky and Handcock, 2014). For instance, it is typical for the formation network model216

to be quite complex while that of the persistence process is quite simple, reflecting the217

social reality that forming social ties may depend on many factors while dissolving ties218

depends on a few. Although STERGMs sacrifice the ability to model interactions between219

the formation and persistence networks intra-time step, it offers significant improvements220

in model specification and interpretability. For a more detailed discussion of STERGMs,221

see the supplementary material.222

We extend STERGMs to model the multiple small dynamic networks that are the result223

of the evolutionary games. Suppose we have G independent small dynamic networks from224

the same experimental setting, each with T time points and n nodes of interest, here the225

nodes in each of the G dynamic networks are distinct. Let Y t,g be an undirected random226

graph at time t in the g-th dynamic network, whose realization is yt,g ∈ Y, the set of227

possible networks of interest on n. With a d-vector g(yt,g, yt−1,g) of sufficient statistics for228

the network transition from yt−1,g to yt,g and parameter θ ∈ Rd, the transition probability229

from time t − 1 to time t in the g-th network is defined as:230

P (Y t,g = yt,g|Y t−1,g = yt−1,g; θ) = exp{θ·g(yt,g, yt−1,g)}
c(θ, yt−1,g) yt,g, yt−1,g ∈ Y , (8)

where231

c(θ, yt−1,g) =
∑

xt,g∈Y
exp{θ·g(xt,g, yt−1,g)} (9)

is the normalizing constant. As a result, assuming homogeneity of parameters over time232

and networks, the likelihood of a STERGM with G independent networks and T time233

points can be represented as:234

G∏
g=1

T∏
t=2

P (Y t,g = yt,g|Y t−1,g = yt−1,g; θ). (10)

This framework is a natural extension of STERGMs, retaining the same interpretability.235

Statistical inferences can be conducted using Markov Chain Monte Carlo (MCMC) methods.236

However, leveraging the small network size, especially n ≤ 7, inherent to multiple small237

networks, it becomes feasible to numerically calculate the likelihood function directly and238

estimate parameters with the direct numerical optimization. This approach has significant239

advantages, including producing more reliable parameter estimates, standard errors, and240

the likelihood ratios, allowing for robust model comparisons through the deviance test. In241
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contrast, the MCMC approaches often encounter challenges such as poorly mixed chains,242

the presence of MCMC errors, and uncertainties in approximating likelihood ratios (Hunter243

and Handcock, 2006).244

4. Statistical Inference245

In this section, we conduct statistical inference based on our experiment and the proposed246

model.247

4.1. Main Analysis248

We aimed to investigate the dynamic structural patterns stemming from the networked249

public goods games. To achieve this, we focused on modelling the formation and persistence250

of networks by employing the proposed model with the STERGM parameterization.251

This approach assumes the independence of dynamic networks across games as well as252

homogeneity of parameters across time steps and games.253

Regarding the independence of the dynamic networks across games, we conducted 20254

games, each generating a dynamic network created by a distinct group of participants.255

Since there were no opportunities for interaction across these groups, the networks were256

considered independent by design. Given that each game was conducted under the same257

game setup, we also assumed parameter homogeneity across games.258

Concerning parameter homogeneity across time steps, participants were not informed259

about the total number of time steps, which limited the potential for endgame-oriented260

strategies. Additionally, two practice time steps were conducted before the actual games261

to ensure that participants were familiar with the experimental setup, suggesting that262

strategic behaviour likely stabilized at the beginning of the actual games. Therefore, we263

assumed parameter homogeneity over time steps.264

Following Krivitsky and Handcock (2014), we incorporated both exogenous and endogenous265

structural statistics. Note that identical statistics were used for both the formation and266

persistence models, as the network dynamics were presumed to be governed by the267

same structural patterns (albeit with different parameters). The dynamic networks were268

undirected due to the symmetric interactions inherent in the public goods game.269

First, we included terms for the number of cooperation and defection homophily connections.270

At each time step, the homophily connection was defined after the network update phase if271

both participants were directly connected and had chosen the same decisions (cooperation272

or defection) in the most recent time step. For example, at time 2 in Fig. 4, there were 3273

cooperation homophily connections and 1 defection homophily connection.274

Second, we incorporated terms for the sum of absolute wealth differences. At each time step,275

after the network update phase, we calculated the sum of the absolute wealth differences276

between directly connected participants.277

Finally, we included terms for the number of triangles to account for broader structural278

patterns within the dynamic networks. After the network update phase, we counted the279

number of triangles created by the direct connections. Unlike studies on directed networks280
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(Krivitsky and Handcock, 2014; Snijders et al., 2010), we omitted terms for aggregate281

transitive and cyclical ties, as our data involved undirected networks without hierarchical282

interactions.283

We computed the maximum likelihood estimate (MLE) by direct optimization using the284

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Broyden, 1970; Fletcher, 1970;285

Goldfarb, 1970; Shanno, 1970). We could estimate the MLE without Markov Chain286

Monte Carlo (MCMC) (Hunter and Handcock, 2006) or other approximations, such as287

pseudo-likelihood (Strauss and Ikeda, 1990), as we were leveraging the small network288

size of our multiple small dynamic networks. Model comparisons were conducted using289

likelihood ratio tests, enabling evaluation of model fit and selection of the most suitable290

model for the networked public goods game.291

The validity of the MLE for this setting is based on two arguments. The first is studies292

for the MLE for ERGM in small network size settings (Vega Yon et al., 2021). They find293

that the MLE is a good estimator even for small network sizes. The second evidence294

comes from asymptotics: as the number of experiments, G, increases the MLE satisfies295

a central limit theorem. Specifically, under mild regularity conditions, the MLE with296

probability approaching one, is unique when it exists and is asymptotically Gaussian297

with mean the true value of the parameter and covariance equal to the inverse Fisher298

information matrix (corresponding to the likelihood in equation (10) (Barndorff-Nielsen,299

1978; Geyer, 2013)). In our situation, we computed the information matrix numerically300

from the Hessian returned as a by-product of the optimization. Results by Bogdan et al.301

(2022) suggest that the asymptotics is relevant if G is of the same size as the number of302

nodes, n. In our situation, G = 20 and n = 6.303

Table 1 presents the model estimates, and we provide brief interpretations for significant304

parameters below. For the formation model, the triangle parameter was estimated at305

−0.260 (SE = 0.096), suggesting that the connections completing triangles were less likely306

to form compared to connections that did not form such structures, controlling for the307

covariates. The cooperation homophily parameter was estimated at 1.069 (SE = 0.183),308

showing that the connections between the cooperative participants were more likely to309

form than heterophilous connections, controlling for other covariates and the structural310

dependency. The wealth difference parameter was estimated at −1.084 (SE = 0.542), this311

implied that the connections were less likely to form between participants with the larger312

wealth differences compared to those with the smaller differences, controlling for other313

covariates and the structural dependency.314

For the persistence model, the cooperation homophily parameter was estimated at 1.677315

(SE = 0.276), showing that the connections between cooperative participants were more316

likely to persist than the heterophilous connections, controlling for other covariates and the317

structural dependency. The wealth difference parameter was estimated at −1.099 (SE =318

0.469), this implied that the connections were less likely to persist between participants319

with the larger wealth differences compared to those with the smaller differences, controlling320

for other covariates and the structural dependency.321

Our analysis revealed key insights into the dynamics of the public goods games we322

employed. We observed a negative transitive effect in the formation networks, suggesting323
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Table 1. MLE parameter estimates for the public goods game networks

Parameter Formation Persistence
Est. (SE) Est. (SE)

Edge -1.358 (0.195)*** 1.682 (0.210)***
Triangle -0.260 (0.096)** -0.023 (0.133)
Homophily (cooperation) 1.069 (0.183)*** 1.677 (0.276)***
Homophily (defection) 0.438 (0.255) 0.106 (0.225)
Absolute wealth difference -1.084 (0.542)* -1.099 (0.469)*

Significance levels: 0.05*, 0.01**, 0.001***

Table 2. Deviances for the public goods game networks

Model Residual deviance Deviance p−value
dev. (d.f.)

Null 2911.22 — —
Only-Covariates 1742.47 1168.74 (8) 0.000
Full 1734.79 7.68 (2) 0.021

that participants might avoid forming the connections that would complete triangles.324

Consistent with expectations, there was a strong tendency for cooperative participants to325

form and persist the connections with each other. This might reflect the importance of326

cooperative behaviour in fostering stable and cohesive networks within the social dilemma.327

Participants also demonstrated a preference for forming and persisting the connections328

with others of the similar wealth levels, underscoring the role of economic disparities in329

both network formation and persistence.330

4.2. Assessing goodness of fit331

We consider two ways of assessing the goodness of fit (GoF) of the model to the data.332

The first is an analysis of deviance, comparing nested models. The second compares333

substantively important network statistics of the data to the distribution of the same334

statistics simulated from the model. The first is a relative measure of goodness of fit while335

the second is an absolute measure.336

Table 2 provides the deviance test results for the null model, only–covariates model, and337

main (full) model. The main model significantly improved the fit, compared to the null338

and only-covariates models. These results revealed that the structural term, the number339

of triangles, played an important role in explaining the network dynamics.340

One way to assess the absolute closeness of the fitted model to data generating mechanism341

is to compare the distribution of dynamic networks drawn from the model to the observed342

dynamic networks. The idea here is that, if the model provides a good fit, the observed343

networks should be similar to those generated from the fitted model. Hunter et al. (2008)344

proposed that the distribution of structurally important network statistics drawn from345

the fitted model be compared to the observed network statistics. If the observed network346
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Fig. 6. k-stars GoF plots for the public goods game networks
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statistics deviated substantially from the distribution from the model, then the nature of347

the deviations would tell us how the model fit the data poorly. One fundamental set of348

network statistics is the number of triangles, a measure of transitivity and central to the349

model.350

Fig. 5 presents the goodness-of-fit plots for the number of triangles per participant in the351

formation networks. The red dots indicate the observed ones after the network update352

phase at each time step. The dark green box plots represent simulations from the main353

model, while the light green box plots correspond to simulations from the only-covariates354

model. The results show that the main model captures the observed values within the355

interquartile range (IQR) at 5 out of 7 time steps, compared to 3 out of 7 for the only-356

covariates model. Taken together with the deviance test results (Table 2), these findings357

support including the triangle term.358

Note that our GoF plots employed a different approach from the standard application, that359

to a single network (Hunter et al., 2008). Unlike the standard approach for a single network,360

our study involved 20 independent dynamic networks over 7 time steps. Generating separate361

GoF plots for each network at each time step would yield 140 plots, making it challenging362

to interpret and summarize the results. Additionally, each network included only 6 nodes,363

leading to substantial variability in local structures. As an alternative, we implemented a364

summary GoF approach: for each time step, we aggregated the total number of triangles365

across all 20 networks and compared them to simulations from the estimated models.366

Another fundamental characteristic of the networks is their degree distribution. This is367

not specifically included as a term in the model. We again employed a summary GoF368

approach, focusing on the total number of k-stars across the 20 dynamic networks after369

the network update phase at each time step. In Fig. 6, the red dots indicate the observed370

total k-star counts per participant, while the grey box plots show the distribution of371

simulated ones under the main model (Table 1). The dotted lines denote the 95% quantiles372

of the simulated distributions. We see that the model successfully reproduces the k-star373

distributions in the GoF diagnostics (Fig. 6), indicating that it captures key structural374

features—including centralization—without explicitly modelling such terms.375

4.3. Sensitivity Analysis376

Based on the main analysis, we conducted several sensitivity analyses. First, we evaluated377

the assumption of parameter homogeneity across time steps by estimating the MLE378

parameters separately for each time step using the main model (Table 1).379

Figs. 7 and 8 present the MLE parameter estimates for the formation and persistence380

models at each time step. The colours indicate the significance of each estimate (black:381

p−value < 0.05; grey: not significant). Consistent with the homogeneity model results in382

Table 1, the parameter estimates display similar tendencies over time. It should be noted383

that, because no defection homophily formations occurred at time step 6, the MLE for384

that parameter is negative infinity and is not plotted.385

Next, we considered the potential role of centralization. In our networked public goods386

game, during the network update phase, participants could not directly observe the number387
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of connections of others, however, they could view alter-non-alter connections (see Section388

2.2, Time Step Structure). This suggests that degree-based centralization might emerge389

indirectly through transitive closures, with the triangle term potentially capturing both390

intentional transitive clustering and degree-based centralization dynamics.391

To test for other potential sources of centralization, we estimated a model that included a392

2−star term. However, the model fit did not improve significantly (Likelihood Ratio Test:393

p = 0.190, df = 2), suggesting that such mechanisms did not meaningfully enhance the394

model’s validity.395

Finally, we assessed the potential influence of demographic characteristics in our networked396

public goods game. In the main model (Table 1), demographic covariates were not included397

because participants could not observe the demographic information of others. As an398

additional test, we examined gender effects by including the number of male–male and399

male–female direct connections as covariates. This model did not provide a better fit400

(Likelihood Ratio Test: p = 0.117, df = 4), and the added terms were not significant nor401

did they affect the significance of other covariates.402

5. Discussion403

In this paper, we proposed a statistical framework for analysing networked public goods404

games using STERGMs. We demonstrated the application of this model by analysing405

the experiment of 20 games, highlighting the model’s ability to capture the dependencies406

in the temporal relational information. The model provided insights into the formation407

and persistence of connections. These insights, which could not have been achieved408

through nodal-level analysis alone, underscored the importance of examining dyad-level409

dependencies in understanding networked human behaviours.410

The significantly negative estimate of the triangle parameter in the formation model411

was a striking result. Given that transitive closures were the only higher-order network412

structures visible to participants, this result suggested that they might have preferred413

to build connections with new groups or those who seemed less connected, rather than414

forming tightly knit clusters. This could reflect their interests in establishing exclusive415

or privileged relationships that perhaps position themselves as unique or special in the416

eyes of others. By doing so, participants might seek to elicit more favorable cooperative417

responses from others.418

Such behavioural tendencies were consistent with a relevant theory (Burt, 1992). Burt419

argued that actors who strategically exploit structural holes (brokerage) can secure not420

only informational advantages but also control benefits, which enabled them to influence421

the behaviours of others (pp. 30–31). However, it was important to emphasize that this422

interpretation is specific to the experimental context of this study data and should be423

generalised with caution. The future research should aim to collect and analyze more424

detailed data to examine whether similar behavioural patterns emerge under varying game425

parameter settings and participant demographics. For example, design elements such as426

capped resources, tie constraints, and payoff structures may substantially influence both427

model estimates and the interpretation of behavioural dynamics.428
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Fig. 7. MLE parameter estimates for the formation model over time
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Fig. 8. MLE parameter estimates for the persistence model over time
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In our proposed model, we employed direct numerical optimization of the likelihood429

function to achieve more reliable parameter estimates and likelihood ratios. This approach430

is particularly advantageous for multiple small dynamic networks, as maximum likelihood431

estimation enables robust statistical inference and model comparison. By incorporating a432

number of independent networks, the model also maintains high statistical power. However,433

the computational constraints of this method limits its applicability, making it suitable434

primarily for small-scale networks, particularly those with fewer than or equal to 7 nodes.435

Our proposed statistical framework supports several extensions. For example, in evolu-436

tionary game theory, incorporating multiple treatment conditions can shed light on how437

experimental variables influence network dynamics. As demonstrated by Nishi et al. (2015),438

wealth visibility can affect cooperation rates in public goods games. By including treatment439

conditions as covariates, the model can analyze the impact of different experimental setups440

on the network formation and persistence, enabling a deeper understanding of structural441

dependencies in social human behaviours.442

In these experiments, the network size was controlled by the experimenter. However,443

it is a fundamental determinant of the social structure of the network, and hence the444

model terms and parameters. The models we had were conditional on the network size445

and direct comparison of the parameters for different network sizes was not possible (See446

Krivitsky et al., 2011). A current limitation of the model is its inability directly compare447

experiments of different network sizes. In social human behaviour research, network sizes448

often fluctuate across networks, partly due to challenges in recruiting the constant number449

of participants for repeated experiments. Addressing this limitation, future research could450

focus on adapting the model to handle networks of varying sizes by utilizing methods such451

as those developed by Krivitsky et al. (2011). Incorporating these approaches would allow452

for more flexible model specifications and broaden the model’s applicability across diverse453

experimental settings.454

Finally, our proposed model holds potential for broad application across various domains,455

including networked human behaviours within families, workplaces, schools, and hospitals.456

In these settings, small groups of 6–10 individuals repeatedly interact over dynamic social457

networks. This model’s versatility suggests its utility beyond the scope of networked public458

goods games, providing a pathway for advancements in understanding social interactions459

and behavioural dynamics across a variety of disciplines.460
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1. Exponential-family Random Graph Models

This section gives a very brief introduction to Exponential-family Random Graph Models
(ERGMs), to help understand why they are appropriate for modelling the structure of a
complex social process that evolves over time.

ERGMs have a long history of successfully representing dependencies in relational infor-
mation (Handcock, 2003; Hunter and Handcock, 2006; Snijders et al., 2006; Schweinberger
and Handcock, 2015; Blackburn and Handcock, 2022). Suppose that n is the set of ac-
tors/"nodes", let Y be an undirected random graph whose realization is y ∈ Y, the set
of possible networks of interest on n. With a d-vector Z(y) of sufficient statistics and
parameter θ ∈ Rd, an ERGM is expressed as

P (Y = y) = exp{θ·Z(y) − ψ(θ)} y ∈ Y , (1)

where
exp{ψ(θ)} =

∑
x∈Y

exp{θ·Z(x)} (2)

is the normalising constant. It is well known that the sum of exp{θ·Z(x)} over the set
of possible networks, Y often causes computational challenges; the number of possible
networks on n is 2n(n−1)/2, which is an astronomically large number for even moderate
size n. Therefore, evaluating the log-likelihood, or even maximising the log-likelihood,
is computationally infeasible for large networks, resulting in the use of Markov Chain
Monte Carlo (MCMC) methods (Geyer and Thompson, 1992) to estimate the parameters
of interest and conduct statistical inference. Notable here is the difficulty in reliably
estimating the maximum likelihood estimators and its standard errors and implementing

†Address for correspondence: Hiroyasu Ando, Department of Biostatistics, University of Cali-
fornia, Los Angeles, California, 90095, USA. Email: hiro1999@ucla.edu
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the likelihood ratio test. There are various reasons for this, such as the failure to generate
well-mixed chains, the existence of MCMC errors, and uncertainty in approximation of the
likelihood ratios (Hunter and Handcock, 2006).

It is a natural extension to apply the ERGM framework to representing dependencies in
temporal relational information. Originating from Robins and Pattison (2001), Hanneke and
Xing (2006) and Hanneke et al. (2010) defined the Temporal Exponential-family Random
Graph Models (TERGMs) as ERGMs for the transition probability from time t to time t+1.
More importantly, the introduction on the concept of separability of dynamic networks
into formation and persistence networks has substantially improved interpretability and
model specification through Separable TERGMs (STERGMs) (Krivitsky and Handcock,
2014). In these TERGM frameworks, parameter estimation and statistical inference are
usually performed using MCMC methods as in cross-sectional ERGMs.

2. Temporal Exponential-family Random Graph Model

2.1. Model definition
TERGMs are the natural extension of ERGMs. They were first introduced to model the
network at time t conditional on the network at time t - 1 (Robins and Pattison, 2001;
Hanneke and Xing, 2006). Assuming that N is the set of nodes of interest, let Yt be
an undirected random graph at time t, whose realization is yt ∈ Y, the set of possible
networks of interest on N. With a d-vector g(yt,yt−1) of sufficient statistics for the network
transition from yt−1 to yt and parameter θ ∈ Rd, the transition probability from time t -
1 to time t is defined as:

P (Yt = yt|Yt−1 = yt−1; θ) = exp{θ·g(yt,yt−1)}
c(θ,yt−1) yt,yt−1 ∈ Y , (3)

where
c(θ,yt−1) =

∑
xt∈Y

exp{θ·g(xt,yt−1)} (4)

is the normalising constant. An essential ingredient for model specification is the choice
of g, which can be any valid network statistics evaluated at t that depends on t - 1. As
a result, assuming constant parameters over time, a TERGM with T time points can be
represented as:

T∏
t=2

P (Yt = yt|Yt−1 = yt−1; θ). (5)

2.2. Interpretation
Similar to ERGMs, the parameters of TERGMs can be interpreted as the conditional odds.
Given the property of conditional dyadic independence (Hanneke and Xing, 2006), the
transition probability from time t - 1 to time t is re-expressed as:

P (Yt = yt|Yt−1 = yt−1; θ) =
∏
i<j

P (Yt
ij = yt

ij |Yt−1 = yt−1; θ), (6)
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which means, in Yt, the realizations of tie states, yt
ij are independent conditional on Yt−1,

leading to the following model expression on the conditional odds:

P (Yt
ij = 1|Yt−1 = yt−1; θ)

P (Yt
ij = 0|Yt−1 = yt−1; θ) = exp[θ·{g(yt

+ij ,yt−1) − g(yt
−ij ,yt−1)}] (7)

here, g(yt
+ij ,yt−1) is defined as a d-vector g(yt,yt−1) of sufficient statistics for the network

transition from yt−1 to yt, where the edge yt
ij is present, and g(yt

−ij ,yt−1) is defined as a
d-vector g(yt,yt−1) of sufficient statistics for the network transition from yt−1 to yt, where
the edge yt

ij is absent. This interpretation is crucial for understanding the dependencies in
the network transition and the role of the parameters in the model.

However, it is important to note that in this model, both the interpretation of the
parameters and the model specification may present challenges (Krivitsky and Handcock,
2014). For example, when interpreting dyadic homophily statistics given certain nodal-level
groupings, the statistics can be defined as:

g(z,yt,yt−1) =
∑
i<j

zijyt
ij , (8)

where, the nodal-level groupings are defined as:

zij =
{

1 the node i and j are in the same group
0 otherwise

(9)

A higher value of the corresponding parameter indicates that more ties are likely to be
present between nodes within the same group in the realizations, yt ∈ Y. Conversely,
a lower value of the parameter suggests that fewer ties are likely to be present between
nodes within the same group in the realizations, yt ∈ Y . Still, it is important to recognise
that these dynamic processes occur through the simultaneous formation and dissolution of
ties: with a higher parameter value, the dyads might be toggled ’on’ more if they were
previously empty (indicating more formation) and be toggled ’off’ less if they were already
present (indicating less dissolution), and vice versa. In this respect, the model is limited
in that it cannot distinguish between the formation and dissolution of ties, which poses a
challenge in interpreting the parameters.

In addition, the primary challenge of this modelling framework becomes evident through
insights into the further inspection above, which directly influence the model specification.
Incorporating the dyadic homophily statistics and its parameter, θ0, the the transition
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probability of node i and j from time t - 1 to time t can be expressed as follows:

P (Yt
ij = 1|Yt−1 = yt−1,Yt−1

ij = 0, zij = 1; θ0)
P (Yt

ij = 0|Yt−1 = yt−1,Yt−1
ij = 0, zij = 1; θ0)

(10)

=
P (Yt

ij = 1|Yt−1 = yt−1,Yt−1
ij = 1, zij = 1; θ0)

P (Yt
ij = 0|Yt−1 = yt−1,Yt−1

ij = 1, zij = 1; θ0)
(11)

= exp(θ0)

⇒

P (Yt
ij = 1|Yt−1 = yt−1,Yt−1

i,j = 0, zij = 1; θ0) = exp(θ0)
1+exp(θ0)

P (Yt
ij = 0|Yt−1 = yt−1,Yt−1

i,j = 1, zij = 1; θ0) = 1 − exp(θ0)
1+exp(θ0) .

(12)

Thus, with a higher parameter value, the dyads are more likely to be toggled ’on’ if they
were previously empty (indicating more formation) and less likely to be toggled ’off’ if
they were already present (indicating less dissolution), and with a lower parameter value,
the dyads are less likely to be toggled ‘on’ if they were previously empty (indicating less
formation) and more likely to be toggled ‘off’ if they were already present (indicating more
dissolution). This is a significant limitation of the model, as it can only capture the overall
dynamics of the network transitions in specific ways, rather than distinguishing between
the formation and dissolution of dynamics.

3. Separable Temporal Exponential-family Random Graph Model

3.1. Model definition
Separable Temporal Exponential-family Random Graph Models (STERGMs) were intro-
duced by Krivitsky and Handcock (2014) as a subset of TERGMs for better interpretability
and model specification. The main concept is to "separate" the dynamic network into
distinct formation and persistence processes.
Consider the network transition from time t -1 to time t, defining the network Yt−1 at
time t -1, the network Yt at time t, the formation network Y+; the initial network Yt−1

with the addition of ties at time t, and the persistence network Y−; the initial network
Yt−1 with the removal of ties at time t. Via a set operation, the realized formation and
persistence networks are derived as:

y+ = yt−1 ∪ yt

y− = yt−1 ∩ yt.
(13)

In this operation, y+ = yt−1 ∪yt represents the set of ties that appear in either the network
at time t - 1 or the network at time t. Conversely, y− = yt−1 ∩ yt represents the set of
ties that exist in both the network at time t - 1 and the network at time t. A key goal of
STERGMs is to reconstruct yt from yt−1, y+, and y−, or to separate yt into y+ and y−,
given yt−1. This reconstruction is achieved with the following set operation:

yt = y+\(yt−1\y−) = y− ∪ (y+\yt−1), (14)

where, y+\yt−1 contains ties {i, j} that are present in y+ but not in yt−1. Thus, yt can
be expressed as the union of y− and y+\yt−1. This approach allows us to separate the
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processes of ties into the formation and the persistence as the network evolves over time.
As a result, if Y+ is independent of Y− conditional on Yt−1, the transition probability
from time t - 1 to time t is separable as follows:

P (Yt = yt|Yt−1 = yt−1; θ) = P (Y+ = y+,Y− = y−|Yt−1 = yt−1; θ+,θ−)
= P (Y+ = y+|Yt−1 = yt−1; θ+) × P (Y− = y−|Yt−1 = yt−1; θ−). (15)

Specifically, we respectively model the formation and the persistence models. Given
yt−1 ∈ Y, the realizations of Y + can be expressed as y+ ∈ Y+(yt−1) ⊆ {∀y : y ⊇ yt−1}
and the realizations of Y − is expressed as y− ∈ Y−(yt−1) ⊆ {∀y : y ⊆ yt−1}. With a
d-vector g+(y+,yt−1) of sufficient statistics for the formation network y+ from yt−1 and
parameter θ+ ∈ Rd and a d-vector g−(y−,yt−1) of sufficient statistics for the persistence
network y− from yt−1 and parameter θ− ∈ Rd, the formation and persistence models are
elaborated as:

P (Y + = y+|Y t−1 = yt−1; θ+) = exp(θ+·g+(y+,yt−1))
c+(θ+,yt−1)

y+ ∈ Y+(yt−1), (16)

P (Y − = y−|Y t−1 = yt−1; θ−) = exp(θ−·g−(y−,yt−1))
c−(θ−,yt−1)

y− ∈ Y−(yt−1), (17)

where

c+(θ+,yt−1) =
∑

x+∈Y+(yt−1)
exp{θ+·g+(x+,yt−1)}, (18)

c−(θ−,yt−1) =
∑

x−∈Y−(yt−1)
exp{θ−·g−(x−,yt−1)}, (19)

are the normalising constants. In this framework, the sufficient statistics for the formation
and persistence networks can vary, allowing for a more flexible model specification (Krivitsky
and Handcock, 2014). In practice, this property is considered to be useful (Krivitsky, 2009;
Krivitsky and Handcock, 2008). For instance, in an extreme case, the formation network
model might include statistics that capture homophily ties, while the persistence network
does not. Although STERGMs sacrifice the ability to model interactions between the
formation and persistence networks, it offers significant improvements in model specification
and interpretability. Finally, we demonstrate that STERGMs form a subclass of TERGMs



6 Ando et al.

as follows:

P (Y + = y+|Y t−1 = yt−1; θ+) × P (Y − = y−|Y t−1 = yt−1; θ−)

= exp(θ+·g+(y+,yt−1))
c+(θ+,yt−1)

· exp(θ−·g−(y−,yt−1))
c−(θ−,yt−1)

= exp(θ+·g+(y+,yt−1) + θ−·g−(y−,yt−1))
c+(θ+,yt−1) · c−(θ−,yt−1)

= exp{(θ+,θ−)·(g+(y+,yt−1), g−(y−,yt−1))}∑
x+∈Y+(yt−1),x−∈Y−(yt−1) exp{(θ+,θ−)·(g+(x+,yt−1), g−(x−,yt−1))}

= exp{(θ+,θ−)(g+(yt−1 ∪ yt,yt−1), g−(yt−1 ∩ yt,yt−1))}∑
wt∈Y exp{(θ+,θ−)·(g+(yt−1 ∪ wt,yt−1), g−(yt−1 ∩ wt,yt−1))}

= exp{θ∗·g∗(yt,yt−1)}∑
wt∈Y exp{θ∗·g∗(wt,yt−1)} , (20)

where {
θ∗ = (θ+,θ−),
g∗(yt,yt−1) = (g+(yt−1 ∪ yt,yt−1), g−(yt−1 ∩ yt,yt−1)).

(21)

The final form is identical to that of a TERGM, underscoring that STERGMs represent a
specialized case within the broader TERGM framework.

3.2. Interpretation
The parameters of STERGMs can be interpreted as conditional odds, as for TERGMs.
Given the property of conditional dyadic independence (Hanneke and Xing, 2006), the
formation and persistence models can be re-expressed as:

P (Y + = y+|Y t−1 = yt−1; θ+) =
∏
i<j

P (Y +
ij = y+

ij |Y t−1 = yt−1; θ+), (22)

P (Y − = y−|Y t−1 = yt−1; θ−) =
∏
i<j

P (Y −
ij = y−

ij |Y t−1 = yt−1; θ−), (23)

which means, in Y+, the realizations of tie states, y+
ij are independent conditional on Yt−1,

and in Y−, the realizations of tie states, y−
ij are independent conditional on Yt−1, leading

to the following model expression on the conditional odds:

P (Y +
ij = 1|Y t−1 = yt−1; θ+)

P (Y +
ij = 0|Y t−1 = yt−1; θ+)

= exp[θ+·{g+(y+
+ij ,y

t−1) − g+(y+
−ij ,y

t−1)}], (24)

P (Y −
ij = 1|Y t−1 = yt−1; θ−)

P (Y −
ij = 0|Y t−1 = yt−1; θ−)

= exp[θ−{g−(y−
+ij ,y

t−1) − g−(y−
−ij ,y

t−1)}], (25)

here, g(y+
+ij ,y

t−1) is defined as a d-vector g(y+,yt−1) of sufficient statistics for the network
transition from yt−1 to y+, where the edge y+

ij is present, and g(y+
−ij ,y

t−1) is defined as
a d-vector g(y+,yt−1) of sufficient statistics for the network transition from yt−1 to y+,
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where the edge y+
ij is absent. In the same manner, g(y−

+ij ,y
t−1) and g(y−

−ij ,y
t−1) can be

also interpreted.

For the formation model, a positive θ+ indicates that an increase in g+(y+
+ij ,y

t−1) −
g+(y+

−ij ,y
t−1) leads to a higher conditional log-odds of the edge y+

ij being present, given
yt−1. Conversely, a negative θ+ indicates that an increase in g+(y+

+ij ,y
t−1)−g+(y+

−ij ,y
t−1)

leads to a lower conditional log-odds of the edge y+
ij being present, given yt−1.

For the persistence model, a positive θ− indicates that an increase in g−(y−
+ij ,y

t−1) −
g−(y−

−ij ,y
t−1) leads to a higher conditional log-odds of the edge y−

ij being present, given
yt−1. Conversely, a negative θ− indicates that an increase in g−(y−

+ij ,y
t−1)−g−(y−

−ij ,y
t−1)

leads to a lower conditional log-odds of the edge y−
ij being present, given yt−1.
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