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Abstract

The primary objective of this paper is to describe some recent advances in the modeling of
random graphs that have an impact on the representation of sexual and drug use networks.
We also investigate issues related to the estimation of random graph models. The main focus
is cross-sectional social network models, although dynamic or longitudinal models are briefly
discussed.

Statistical exponential family models (Wasserman and Pattison, 1996) are a generaliza-
tion of the Markov random graph models introduced by Frank and Strauss (1986), which in
turn derived from developments in spatial statistics (Besag, 1974). These models recognize
the complex dependencies within relational data structures.

To date, the use of stochastic graph models for networks has been limited by three
interrelated factors: the complexity of realistic models, lack of use of simulation studies, and
a poor understanding of the properties of inferential methods.

In this paper we discuss these factors and related issues of the degeneracy of commonly
promoted models. As a cornerstone of this development we present a Markov Chain Monte
Carlo (MCMC) algorithm for general random graph models. We also review the role of
these MCMC algorithms for simulation, addressing model degeneracy, and likelihood-based
inference.

KEY WORDS: Random graph models; log-linear network model; Markov fields; Markov
Chain Monte Carlo.



1. INTRODUCTION

Networks are a form of “relational data”. Relational data arise in many social science

fields and graph models are a natural approach to representing the structure of these rela-

tions. In these applications, the nodes usually represent people, and the edges represent a

specified relationship between the people. This framework has many applications including,

for example, the structure of social networks, the behavior of epidemics, the interconnected-

ness of the WWW, and long-distance telephone calling patterns.

We discuss stochastic models for such graphs, with particular focus on sexual and drug use

networks. The general class of models for such graphs form a statistical exponential family.

This class has been referred to as the “p∗” class of models in the psychology and sociology

literatures (Wasserman and Pattison, 1996). Given their general nature and applicability,

we shall refer to them simply as random graph models. A much studied sub-class of models

are the Markov random graph models introduced by Frank and Strauss (1986), which in

turn derived from developments in spatial statistics (Besag, 1974). These models recognize

the complex dependencies within relational data structures.

There is a large literature on this area which we do not review here. See Wasserman and

Faust (1994), and Pattison and Robins (2000) for detailed information. Throughput this

paper I make connections to this literature, but also emphasize the links to spatial statistics,

statistical exponential families, log-linear models and statistical physics.

To date, the use of stochastic graph models for networks has been limited by three

interrelated factors: the complexity of realistic models, lack of use of simulation studies, and

a poor understanding of the properties of inferential methods.

In this paper we discuss these factors and related issues of the degeneracy of commonly

promoted models. As a cornerstone of this development we present a Markov Chain Monte

Carlo (MCMC) algorithm for general random graph models. We also review the role of these

MCMC algorithms for simulation, maximum likelihood estimation, and Bayesian inference.

We also address one aspect of the problem that has been a persistent obstacle in the

work in this area: model degeneracy. Many previous attempts to develop MCMC based

estimation for Markov models have found that the algorithms nearly always converge to

degenerate graphs – graphs that are either empty or full. We show that this is a function of

two things: models that are inappropriate for the data, and the general principle of selectivity

bias. Most researchers select data for analysis that is non-degenerate, but the Markov model

does not condition on this. Taking this into account in the estimation stage can have a

dramatic impact on the estimates for models typically used in practice.

We also suggest alternative models that do not suffer from the degeneracy properties of
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present models.

As part of this research program, we have produced a program for the estimation of

random graphs. The program produces estimates of the random graph parameters using

maximum psuedolikelihood estimates (MPLE) and MCMC maximum likelihood estimates

(MLE) so that comparisons between the two can be made.

These ideas are applied to a sexual relations network from Colorado Springs with the

objective of understanding the social determinants of HIV spread. The Colorado Springs

Study (Klovdahl et. al.) is one of the first broad studies that attempts to understand

the transmission of hepatitis B and HIV through a population based on a social network

approach.

The study was developed by the Centers for Disease Control in Colorado Springs, CO

and later funded by NIDA. A group of 595 persons at high risk for HIV infection were

enrolled and interviewed for information concerning their medical and social background,

their personal drug-using and sexual activity, and their social network contacts. These

persons were sampled from street sites for prostitution, from the county methadone clinic,

and from the county STD clinic. Persons named by several others were also actively recruited

for the study, which qualifies this as a partial network sample design. As might be predicted

from the focal nature of associations in this subculture, over 3600 of the 5812 contacts named

by these persons were associated together in a single connected component (Woodhouse et

al. 1994). A majority of persons with HIV were not in this large component, but were

founded in smaller components. Those within the large components were demonstrated by a

variety of measures to occupy non-central positions (Rothenberg et al. 1995a, 1995b). The

authors concluded that in an area of low prevalence with lack of demonstrable endogenous

transmission (Potterat et al. 1993), those with HIV were marginalized.
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2. REVIEW OF THEORY

The exploration of the properties of graph models has been limited by three factors.

First the complexity of realistic models has limited the insight that has been gained by

analytical methods. Most analytical work has focused on simple one or two parameter

models with independence between the dyads (Wasserman and Faust 1994, Frank 1997).

Second statistical methods for the stochastic simulation from general random graph models

have not existed. Because of this the properties of general models (e.g., range of graphs

represented, dependence among the parameters) can not be explored though simulation

studies. Third the properties of statistical methods for estimating the parameters based on

observed networks are poorly understood (we address inference in detail below). Hence the

range of parameter values relevant to real networks is largely unknown. In this research we

make major advances in understand the nature and properties of graph models important to

risk networks by further improving methods we have developed for the stochastic simulation

of and inference for random graphs.

Let the random matrix X represent the incidence matrix of an undirected graph onn

individuals. Thus X is an n × n symmetric matrix, each of whose entries is a Bernoulli

random variable; we assume further that the diagonal elements of X are 0, which is to say

that self-partnerships are disallowed. Suppose that X denotes the set of all possible graphs

on the given n individuals. The multivariate distribution of Xcan be parameterized in the

form:

Pθ(X = x) =
exp

�
θT t(x)

�

c(θ)
x ∈ X (1)

where θ ∈ Θ ⊆ IRq is the model parameter and t(x) is a q-vector of statistics based on

the graph x. (Wasserman and Pattison, 1996). The denominator c(θ) is the constant that

ensures the distribution sums to one: c(θ) =
�
y∈

exp
�
θT t(y)

�
= 1. Note that X contains at

most N = n(n − 1)/2 graphs, and Θ = {θ : c(θ) < ∞}. The dimension of Θ is at most

2N − 1 (for the “saturated” model), although is typically much smaller than this. The

parameter and statistics that correspond to a given model for X can be identified using

the Hammersley-Clifford theorem (Frank and Strauss 1986). Conversely, each choice of

parameter and graph statistics t(x) specifies a model for X. For example, if the dyads Xij

are mutually independent the model can be written: log[Pθ(X = x)] =
�
i<j

θijxij−κ(θ),x ∈ X

where θij = logit[Pθ(Xij = xij)] and κ(θ) = log[c(θ)] =
�
i<j

log[1 + exp(θij)]. Thus q=N and

the elements of t(x) are just xij. This model is often called a Bernoulli graph. In the special

case where the dyads have a common probability, log[Pθ(X = x)] = θt(x)−κ(θ) where q = 1,

t(x) is the number of partnerships in the graph, and θ can be interpreted as the common
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log-odds of partnership formation within a dyad.

An alternative specification of the model (1) clarifies the interpretation of the parameters.

Let Xc
ij = {Xkl : kl �= ij, k < l}, xc

ij = {xkl : kl �= ij, k < l}, x+
ij = {xc

ij and xij = 1},
and x−ij = {xc

ij and xij = 0}. Thus, Xc
ij represents all elements in the graph excluding Xij,

while x+
ij and x−ij represent the graph with the xij equal to 1 and 0, respectively. The full

conditional distributions of Xij are

logit[pr(Xij = 1|Xc
ij = xc

ij)] = θT δ(xc
ij) x ∈ X (2)

where δ(xc
ij) = t(x+

ij) − t(x−ij) (Strauss and Ikeda 1991). The statistic δ(xc
ij) is the change

in the graph statistics when xij changes from 0 to 1. Hence θ can be interpreted as the

increase in the conditional log-odds of a partnership between individuals i and j induced by

the formation of the partnership. In the simple homogeneous Bernoulli graph, for example,θ

is the common log-odds of individual partnership formation.

Holland and Leinhardt (1981) appear to be the first to propose log-linear models for

social networks. Suppose that the dyads are independent with

Pr(Xij = x, Xji = y) =






mij if x = 1, y = l
aij if x = 0, y = l
nij if x = 0, y = 0

(3)

Thus each dyad can have its own probability distribution. Thus the model can represent

arbitrary attractiveness between individuals and degree of reciprocity within relationships.

However the dyad independence implies specific transitivity and higher-order interactions.

The model can be expressed in log linear form as:

log [Pr(X = x)] =
�

i<j

ρijxijxji +
�

i�=j

θijxij − κ(θ) x ∈ X

They called this the p1 model.

Based on development in spatial statistics (Besag 1974), Frank and Strauss (1986) ex-

tended this work and introduced forms of dependence with Markov structure. Further exten-

sion were made by Wasserman and Pattison (1996) to incorporate actor attributes (Pattison

and Wasserman 1999) and to allow explanatory and response variables (Robins, Pattison and

Wasserman 1999), resulting in social influence (Robins, Pattison and Elliott 2000) and social

selection models (Robins, Elliott and Pattison, 2000). These generalizations essentially allow

analysis of graphs with “colors” on the nodes, the coloring indicating the attribute. Recent

developments have included new forms of dependency structures, to take into account social

settings, and on the other hand a relaxation of Markovian dependence assumptions, allowing

investigation of longer range configurations, such as longer paths in the network or larger
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cycles (Pattison and Robins, 2000). Models for bipartite (Faust and Skvoretz, 1999) and

tripartite (Mische and Robins, 2000) graph structures have also been developed.

The success of this modeling framework to risk behavior networks depends on properly

specifying the relevant features, or configurations, of contact networks that can account for

the global network properties. We focus on features from three domains: actor attributes,

network patterns, and relationship timing.

Romantic relations tend to form within well defined attribute boundaries. Whether due

to meeting opportunity (Feld 1981; McPherson and Smith-Lovin 1987) or preference (Billy,

Rodgers, and Udry 1984; Davis 1963; Kandel 1978), similarity within relationship dyads is

the norm. From a modeling standpoint, this implies that the probability of a partnership is

much greater within same-attribute dyads than cross-attribute dyads. We focus on attributes

such as race, socioeconomic status, geographic residence, occupation (sex-worker being a key

distinction) and sex (capturing mainly sexual preference). Mixing preferences for type of

sexual contact and IV drug-use are thus clearly important for modeling, and thus simulating,

contact networks. Attribute mixing capture important nodal features of a sexual network’s

structure; nodes with certain attributes are likely to be connected. A model that stops there,

however, must still assume random mixing within each attribute combination. The actual

dynamics of disease transmission likely depend critically on the types of contact patterns

beyond attribute or behavior constraints. To capture these features, we must identify how

particular mixing patterns - beyond the type of partner – affect relationship formation.

Patterns of interest are network stars of various sizes, paths, and cycles.

The incorporation of attribute information into the random graph model is straightfor-

ward. Suppose we wish to incorporate p exogenous covariates represented by a n × n × p

array of attributes W where the ijkth element is the covariate for the pth attribute on the ijth

dyad. Note that this allows the covariates to be attributes of the pairs of individuals (e.g.,

age difference) a well as specific to the individual alone. The graph statistic t(x) in (1) is

then replaced by t(x, W ), indicating that the statistics depend on the attribute information

in addition to the relationship information the attribute information defines the statistics.

The pattern of connections defines the set of all potential paths connecting actors in

a sexual network. However, the timing of relations is important for determining which

paths could potentially carry a pathogen. We focus on two aspects of relationship timing:

concurrency and order. A pair of relations is concurrent when they share an actor in common

at the same time. Thus, if i is connected to j, at time t and j is also connected to k at time

t, then the ij and jk relations are concurrent. Past simulations have shown that networks

with similar contact structure but differing levels of concurrency exhibit markedly different

disease diffusion rates (Morris and Kretzschmar 1995; Morris and Kretzschmar 1997). Part
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of the reason that concurrent relations pose a large infection risk lies in the way that indirect

connectivity is channeled through concurrent relations. Two actors are indirectly connected if

a sequence of sexual relations connects them through which a pathogen could travel. Since a

pathogen can only travel forward in time, an indirect relation exists whenever a time-ordered

path links two actors in the network. Thus, if i has sex with j, then later j has sex with

k, k is at risk from i, but i is not at risk from k. When relations are concurrent, each actor

linked through the concurrent relations can potentially infect every other actor, providing

multiple, bi-directional indirect connectivity paths. While concurrency is the clearest feature

of time-order in networks, indirect connectivity is conditioned by the order of relations more

generally (Moody 2000). In networks where chains of relations unfold sequentially, indirect

connectivity will flow asymmetrically. On the other hand, in chains that emerge as a result

of multiple small chains merging at different times, indirect connectivity will be much lower.

By modeling the timing as well as the pattern of sexual relations, we can account for indirect

connectivity and thus disease diffusion risk.

We approach model development via a two step process. Initially, we focus on developing

structural models for a given snapshot of the partnership network. These models account

for the macro- and micro-level structure that we would expect to observe at a given point in

time. Then, we add the temporal component to the model. We describe here our approach

to modeling the sexual network in the Colorado Springs data, with similar approaches to be

adopted to the needle-sharing network. The “static” epidemiological network models will

account for nodal attribute mixing, concurrency, and degree mixing. The partnership net-

works that occur at a particular time point will be sparse, consisting of primarily isolates,

stars, and paths. The nodes in these structures can be “colored” to account for the attribute

mixing patterns that occur in the network. Using the modeling framework (1), Koehly and

Morris (2000) defined an attribute mixing model for contact networks. They demonstrated

that these attribute mixing models are directly related to the selective and proportional mix-

ing models commonly used in the epidemiological network literature. The attribute mixing

model will be extended to include multiple attributes (e.g. sex, ethnicity, and occupation),

k-stars (concurrency), k-paths and path-star interactions (degree mixing).

2.1 Cross-sectional models for random graphs

The most common form of random graph model exhibit Markov dependence in the sense

of Frank and Strauss (1986). For these models, dyads that do not share an individual

are conditional independent an idea analogous to the nearest neighbor concept in spatial

statistics. Typically a homogeneity condition is added: all isomorphic graphs have the same

probability under the model. Frank and Strauss (1986) show that homogeneous Markov
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graphs are exactly those having the triangle parameterization: q = n, θ ∈ Θ = IRn and

tk(x) =
1

k!

�

i0,...,ik

xi0i1 ...xi0ik k = 1, ..., n− 1 tn(x) =
1

6

�

i,j,k

xijxjkxkl,

where tk(x) is called a k − star and tn(x) is a count of the complete triads. An equivalent

form is the degree distribution parameterization:

dk(x) =
the number of individuals with

exactlyk relationships
k = 1, ..., n− 1 tn(x) =

1

6

�

i,j,k

xijxjkxkl,

in which dk(x) counts the number of individuals with degree k. The degree distribution

parameterization has the advantage of being based on statistics that are estimable from ego-

centric surveys. In addition they are interpretable in terms of concurrency of partnerships

(i.e. dm(x) for m > 1 counts the number of individuals with m concurrent partners. As an

example, consider a random graph model for a risk network based on heterosexual partner-

ships. An example of a cross-sectional model that incorporates captures both concurrency

and the assortative mixing based on race is:

log[Pθ(X = x)] =
4�

k=1

θkdk(x)+θ5race(x)−κ(θ) x ∈ X

where race(x) is the number of partnerships where both partners say they are of the same

race and θ ∈ Θ = IR5 . The parameter θ1 represents the propensity to form monogamous

relationships. The parameters θ2, ..., θ4 represent the propensity to form concurrent partner-

ships with 2, 3 and 4 partners, respectively. Hence positive values for the latter parameters

indicate the propensity of the graph toward higher degrees of concurrency. The parameter

θ5 represents the propensity for partnerships to be formed between individuals of the same

race. Note that the graph and model reflect the heterosexual nature of the graph (i.e.,

Xij = 0 unless i and j are of opposite sex). If θ1, ..., θ4 are zero the dyads are independent

and the model is simply assortative mixing by race. The model can then be re-written as a

contingency table form (Morris and Koehly 2000). If θ5 is zero then there are not preferences

for partnerships based on race. The goodness-of-fit of these interesting sub-models can be

tested on using the methods developed here.

2.2 Inference for random graph models

Statistical methods for estimating the parameters in a random graph model are underde-

veloped. Developing inference with a likelihood framework has the advantage of being able

to draw upon a statistical theory for closely related models in statistical physics and spatial

statistics (Besag 1975, Geyer 1999). This framework is also compatible with the Bayesian

paradigm.
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The likelihood framework makes available exploratory graphical tools useful for inference

about the underlying random field (Handcock, Meier and Nychka 1994). These tools can

identify when a maximum likelihood approach is lacking.

As likelihood-based inference is based on L(θ; X = x) ≡ log[Pθ(X = x)], it involves sim-

ilar computational issues to those of stochastic simulation described above. In particular,

direct calculation of L(θ; X = x) by enumerating X is infeasible for the graphs of more than

30 individuals. Because of these computational difficulties, alternative means of estimation

have been suggested. One is to use (linear) approximations to the cumulant generating func-

tion for X as a means to solve the likelihood equations (Frank 1971, Strauss 1986, Frank and

Strauss 1986). This approach is generally difficult to apply to general multiparameter models

unless supplemented by a means of simulation from the same network model (Coriander et

al 1997).

Major barrier to the application of random graph models to risk networks has been the

lack of a sound statistical theory to evaluate how closely the models capture the structure in

the observed graphs. This has two dimensions to it: the degree to which the graph structure

of the models matched that in the data, and second the degree to which disease propagation

through the model matches that of the data. Our likelihood-based approach allow us to

measure the first dimension of “goodness-of-fit” using likelihood-ratio statistics and Bayes

Factors under the Bayesian paradigm (Gelfand 1996).

2.3 Pseudo-likelihood inference for random graph models

Let y = V ec(x), that is, writing the unique elements of the n × n symmetric matrix

x in canonical form y = {x12, x13, . . . , x1n, x23, . . . , x2n, x34, . . . , x(n−1)n}. Thus y is a vector

of length N = n(n − 1)/2. Note that x can be reconstructed from y - it is just a way of

re-writing it. In particular

Pr(Y = V ec(x)) = Pr(X = x) x ∈ X

Let (ij) be the index of the element in V ec(x) corresponding to the ij element in x. Formally

(ij) = j+n(i−1)− 1
2 i(i+1), i < j and, given an index k of y, i = min{l : nl+ 1

2 l(l+1) > k+1},
j = k − n(i − 1) + 1

2 i(i + 1). Let Y = V ec(X), Xc
ij = {Xkl : kl �= ij, kl �= ji}, xc

ij = {xkl :

kl �= ij, kl �= ji}, Y c
(ij) = V ec(Xc

ij), and yc
(ij) = V ec(xc

ij). Denote by x+
ij the sociomatrix with

ijth element 1 and which agrees with x for all other dyads, that is, x+
ij = {xc

ij and xij = 1},
Similarly define the sociomatrix like x, except with ijth element 0: x−ij = {xc

ij and xij = 0}.
Then the full conditional distributions of the Xij are specified by:

logit
�
Pr(Xij = 1 | Xc

ij = xc
ij)

�
= logit

�
Pr(Y(ij) = 1 | Y c

(ij) = yc
(ij))

�
= θT δ(yc

(ij)) x ∈ X

where

δ(yc
(ij)) = δ(xc

ij) = t(x+
ij)− t(x−ij)
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Besag (1975) defined the pseudolikelihood for a parameter θ based on a finite set of random

variables Z1, . . . , ZM as the product of the M individual full conditional distributions of each

given the others. That is,

PL(θ; z) ≡
m�

i=1

Pθ(Zi = zi|Zj = zj, j �= i)

The pseudolikelihood estimator of θ is then

θ̃ = argmaxθ∈ΘPL(θ; z)

The rationale for the use of pseudolikelihood as a surrogate is that if there is weak dependence

among the variables Pθ(Zi = zi|Zj = zj, j �= i) ≈ Pθ(Zi = zi) and Pθ(Z1 = z1, . . . , ZM =

zM) ≈ �m
i=1 Pθ(Zi = zi). Hence the pseudolikelihood and likelihood should be similar func-

tions, and the pseudolikelihood estimator should have similar properties to the likelihood

estimator.

Applying this idea to the social network:

PL(θ; y) ≡
N�

i=1

Pr(Yi = 1 | Y c
i = yc

i )
yi [1− Pr(Yi = 1 | Y c

i = yc
i )]

1−yi

Note that if the dyads are independent, Pr(Yi = 1 | Y c
i = yc

i ) = Pr(Yi = 1) and the pseudo-

likelihood coincides with the likelihood. Thus when the graph is a (possibly inhomogeneous)

completely random graph the two approaches are identical. In general, the dyads will be

dependent and the two approaches will differ.

The value of the maximum pseudolikelihood estimator for social networks can be expe-

diently found by using logistic regression as a computational device. Note that the pseudo-

likelihood (2.3) is algebraically identical to the likelihood for a logistic regression of Y on the

design matrix with ith row δ(yc
i ). Thus the value of the maximum likelihood estimator for

the logistic regression will also be the maximum pseudolikelihood estimator. Note, however,

that the other characteristics of the maximum likelihood estimator do not necessarily carry

over. In particular the standard errors of the estimates of θ from the logistic regression will

not be appropriate for the maximum pseudolikelihood estimator.

The statistical properties of pseudolikelihood estimators for social networks are only

partially understood. There appear to be three approaches to describing its properties.

The first, and most common, is to appeal to the similarity with the likelihood function. If

the dyads have only weak dependence in the sense that Pθ(Zi = z|Zj = zj, j �= i) ≈ Pθ(Zi =

z), then the process is approximately inhomogeneously completely random network and the

pseudolikelihood is an approximation to the likelihood. Hence the pseudolikelihood should

have similar statistical properties to the likelihood. If the dyads are strongly dependent then
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the approximation will be poor and the maximum pseudolikelihood estimator may perform

poorly relative to the maximum likelihood estimator. This is a “hand-waving” argument

that, to my knowledge, has not been quantified, and seldomly further justified.

The second approach is based on simulation studies of maximum pseudolikelihood on

particular social networks. In these a test set of specific social network models are chosen by

design, and the statistical properties of maximum pseudolikelihood described by calculating

the estimates for many random draws from social networks. Example of such studies are

Frank and Strauss (1986), Strauss and Ikeda (1990). However these studies have been of

limited range both within model classes and in terms of the model classes considered. This

has been partially due to two restrictions. First general software has not been available

for the simulation of given social network models. An approach is given in Strauss (1986)

and Frank and Strauss (1986). However this appears to sample from graphs conditional on

the number of links, or where the number of links is additional chosen from a homogeneous

completely random graph. Second the lack of general software to calculate the MLE has

severely restricted comparisons of the MLE to the MPLE. As far as I know the small study

in Strauss and Ikeda (1990) is the only example. Both these restrictions are removed with

the availability of this software. Hence it is time for an extensive simulation study (see

Section ??).

The third approach is to describe various asymptotic statistical properties of the estima-

tors. It is worthwhile understanding the statistical context within which these properties are

studied. A primary role of asymptotic results is to provide approximations to the behavior of

estimators for the sample sizes observable in practice. This is typically done by considering

the behavior of the estimators as the number of observations increases. In statistical models

where the observed data are independent, the corresponding maximum likelihood estimator

can be shown to be consistent, efficient and asymptotically Gaussian. The efficiency is rela-

tive to the optimal estimator based on the observed data. These properties of the MLE have

been extended to a broad range of statistical settings where the data are dependent. However

in many statistical settings dependence exists between some or all of the observations. In

these settings it is essential to specify ways for the number of observations to increase that

are consistent with the nature of the datasets observed in practice. For example, consider a

social network that follows a random graph model dependent on only the number of edges

and 2-stars. One asymptotic framework is to consider the network as the number of actors

increases. We can do this by considering independent replicates of a network of a fixed size

precluding links between actors from different networks (e.g. friendship networks in schools

from difference States). We can also do this by increasing the number of actors in a given

network. However in this case the number of edges which each individual actor participates
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in increases proportionately, and the number of 2-stars that an actor is involved in increases

even faster. This can lead to unrealistic network realizations. An alternative is to limit

the number or range of actors that an individual can relate to. A similar situation occurs

in spatial statistics. Consider increasing the number of sites at which a random process

is observed. One ways to do this is to let the observation region increase in such a way

that the typical distance between neighboring sites remains constant (“increasing-domain

asymptotics”). An alternative way is to keep the observation region fixed and let the typical

distance between sites decrease (“fixed-domain” or “infill asymptotics”). Of course, here too

there is an broad range of alternative schemes that can be motivated by considering how that

site are chosen in practice. For a review of these issues see Ripley 1988, Baddeley and Gill

1997, Cressie 1993 and Stein 1999. In many settings where dependence exists, such as social

networks, there are a range of possible ways to increase the number of actors, and these dif-

ferent choices often lead to different behaviors for the estimators. Each of these asymptotic

frameworks leads to a different approximation to the properties of the estimator in practice.

The accuracy and parsimony of these different approximations needs to be considered along

with their motivation. For these reasons, little can be said in general about the behavior of

estimators.

One closely related area which has received a lot of attention is that of discrete spatial

Markov fields of regular lattices. In our context this is as if the actors are arranged in space on

a regular grid (e.g. chess board) and only allowed to form relationship with their immediate

spatial neighbors. See Guyon (1996), Baddeley (2000). Comets (1992) has proved strong

consistency of the MPLE. Comets and Janžura (1998) show that the MPLE is asymptotic

Gaussian. Additional description of the performance of the MPLE requires the model to

satisfy regularity conditions that ensure uniqueness and stationarity of the limiting random

field. Many of the concepts developed in this area are applicable to social networks. It is

quite possible that these results can be modified so that they apply to social network models.

2.4 Markov Pseudo-likelihood inference for social networks

Perhaps the most common method of estimation for general graph models is maximum

psuedo-likelihood. In the context of spatial Markov random fields, Besag (1986) has argued

that the maximum pseudolikelihood estimator reflect the “local” (spatial) neighborhood

information, as compared to the maximum likelihood estimator which reflects the “global”

neighborhood information. I believe that the existing social network models are more global

than local in structure, and that even the Markov forms of them are global. Hence my

intuition is that the current approach to pseudolikelihood estimation will fail. The approach

in this section is aimed at making the pseudolikelihood more global so as to partially overcome

these defects.
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Let V = Cov(Y ) be the covariance matrix of Y. Clearly the Y are independent only if X

is a (possible inhomogeneous) completely random graph. In general V will not be a diagonal

matrix, and the off-diagonal elements capture a component of the dyad dependence.

Let δ(ij) be the indices of the Markov neighbors of the dyad (i, j) :

δij = {(k, l) : k ∈ {i, j} or l ∈ {i, j} but not both}

If X is a (homogeneous) Markov graph then, by symmetry,

Vkl =






σ2 if k = l
σ2αM if k = δl

σ2α otherwise
(4)

Thus σ2 represents the variance of Xij, αM represents the correlation between dyads that

are Markov neighbors (i.e., share an actor), and α represents the correlation between dyads

that are not Markov neighbors. Note that σ2 is a function of the (marginal) mean of Xij as

Xij is Bernoulli.

It is important to note that these are the marginal covariances between the dyads rather

than the covariance conditional on the rest of the network. As the values conditioned on

are endogenous there will be a difference that should be adjusted for. The important of this

observation still needs to be clarified, but note that the approach is still appropriately when

the covariance structure is misspecified.

2.5 Likelihood inference for random graph models

In this section I describe the most fundamental ideas and why direct computation is

difficult.

2.6 Simulation of random graphh models using MCMC procedures

Direct methods for simulating from random graph models are hampered by the numerical

complexity of direct computation of the probabilities in (1). For example, a random graph

of n = 30 individuals admits 2
(30
2 ) ≈ 10131 possible graphs. Hence the calculation of c(θ)

by direct enumeration of these is infeasible for graphs of most risk networks investigated in

practice. It is now standard to simulate distributions of the form (1) by Markov Chain Monte

Carlo (MCMC) methods (Gilks, Richardson, and Spiegelhalter 1996). The basic idea is to

construct a discrete Markov chain on X with (1) as the equilibrium distribution. The chain is

then run forward from some starting point until convergence and then sampled from. These

samples are then are approximately random simulations from the random graph model. A

plethora of such chains are possible and there is a vast literature on versions for specific

multivariate distributions. These often have quite different computational and statistical

properties (see, e.g., Gilks, Richardson, and Spiegelhalter 1996).
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A Metropolis algorithm for random graphs is given in Strauss (1986) and Frank and

Strauss (1986). However this applies to graphs conditional on the number of partnerships, or

where the number of partnerships is additionally chosen from a homogeneous Bernoulli graph.

Handcock (2000) gives an algorithm and software for simulation for a general random graph

model based on sampling from the full conditional distributions (2). A similar algorithm

is reported by Crouch, Wasserman and Trachtenberg (1997). We use this algorithm for

simulation in the paper, and are developing more efficient and robust algorithms.

Recent advances by Propp and Wilson (1996) hold much promise. There approach, called

coupling from the past, is a coupling algorithm for drawing exact samples from the equilibrium

distribution of a discrete state Markov chain. By exact is meant that the samples have the

equilibrium distribution rather than an approximation to the equilibrium distribution as

is standard for the usual MCMC. These algorithms show great promise for social network

models. In addition to automatically providing the correct distribution, they have been

shown to be orders of magnitude faster than the usual MCMC algorithms for closely related

spatial models.

Preliminary analysis of the structure of the correlations among the parameters show that

they are highly correlated. Thus although the Gibbs sampler is very fast for each step it

can take a long while to converge. It does, however, seem easy to measure via the usual

diagnostics of Raftery and Lewis (1996) and Gelman (1996).

2.7 Likelihood inference for random graph models using MCMC

Geyer and Thompson (1992) show how MCMC methods can be used to compute the like-

lihood for a random graph model by estimating c(θ) rather than calculating it exactly. The

basic idea is that c(θ) can be thought of as the mean of exp
�
θT t(X)

�
. One way determine

to c(θ) is to enumerate all graphs. As alternative is to randomly sample from the space of

all graphs X and use the mean of the sample as an estimate of c(θ). Geyer and Thompson

(1992) do this with an importance weighted sampling scheme. The sampling can be achieved

using a MCMC to simulate from the random graph model and the estimate can be made

arbitrarily accurate by increasing the number of samples. It is then straightforward to calcu-

late the maximum likelihood estimate, standard errors, and the size of the additional error

incurred by the sampling scheme. We shall use the simulation method of Handcock (2000)

in combination with the approach of Geyer and Thompson (1992) to construct maximum

likelihood estimates of the models considered in this paper.

2.8 Identifiability, Degeneracy and Stability for social networks models

Recent work has allowed progress to be made in both the estimation and simulation of

random graphs models. This work, and that of Besag (2000), has allowed provided insight
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into the properties of random graphs models. Two properties of random graph models that

have a big impact on practice are degeneracy and stability. This builds on ideas of Ruelle

(1969), Strauss (1986), Geyer (1999) and Baddeley (1999), Section 4.

Degeneracy of a graph model occurs when the model places disproportionate probability

mass on only a few of the possible graphs. The most common case is where the distribution

places almost all its mass on the empty graph (i.e.,Xij = 0 ∀i, j), and/or the complete graph

(i.e.,Xij = 1 ∀i, j). Such models are not useful for modeling risk networks as almost all

realizations from these models will be empty or full. Handcock (2000) gives sufficient, and

close to necessary, mathematical conditions on the model (1) for it to be degenerate. The

degeneracy of a random graph is exacerbated as the number of individuals increase, but has

a large effect on graphs of 7 or more individuals. He shows that many of the models that

are proposed in literature suffer degeneracy and shows how to modify them to avoid the

difficulties. One implication of these results is that the parameter space of non-degenerate

models is bounded and a small subset of Θ. We are in the process of developing classes

of models for risk networks that are non-degenerate. A random graph model is stable if

small changes in the parameter values result in small changes in the probabilistic structure

of the model. If this is not the case, then very similar parameter values can describe very

different graph structures. Unstable models often have bad statistical properties are do not

represent realistic graphs. Conditions for the stability of a model are related to those for

degeneracy. We are developing classes of models for risk networks that are stable as well as

non-degenerate.

In the context of spatial Markov random fields, Besag (1986) has argued that the maxi-

mum pseudolikelihood estimator reflects the “local” (spatial) neighborhood information, as

compared to the maximum likelihood estimator which reflects the “global” neighborhood

information. Results in Handcock (2000) suggests that commonly suggested random graph

models are more global than local in structure, and that even those with Markov dependence

are global. Hence the current approach to pseudolikelihood estimation will have poor sta-

tistical properties. This is supported by simulation results in Handcock (2000). This same

global nature of the existing models contributes to their degeneracy and instability problems.

These issues are not resolved by alternative forms of estimation but represent defects in the

models themselves at least, to the extent that they are useful for modeling realistic graphs.

2.9 Local Models for social networks

Many of the problem with existing models is that they are too narrow and unrealistic

to usefully describe social networks in practice. In addition they are globally defined which

reduces their robustness and makes inference difficult. Pattison and Robins (2000) descibe a

class of local random graph models that extend the theory presented here. However inference
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and analysis can be done using the approaches presented here.

2.10 Longitudinal and Dynamic models for social networks

There is a growing need for graph models to represent changes in the graph over time

(Doreian and Stokman 1997, Frank 1991, Suitor, Wellman and Morgan 1997). To capture

the temporal dimension of the graph process, consider the stochastic process {X (t): 0≤
t≤ T} of n x n symmetric matrices where for given t,X (t) represents the graph of the risk

network at time t. We shall refer to {X(t) : t ≥ 0} as the dynamic graph. While general

models for the dynamic graph can be fruitful explored we shall focus on continuous-time

Markov models (Norris 1997, Snijders 2000). Consider the following model for the discrete

dynamics of the graph from time t1 to time t2 = t1 + 1:

P (X(t2) = x(t2) | X(t1) = x(t1)) =
exp[φT s(x(t2))+γT q(x(t1),x(t2))]

c(γ,φ,x(t1))

x(t1), x(t2) ∈ X

This model has the same form as (1) and captures both the social and temporal aspects

of the process. As in (1), the parameter φ and graph statistics s() represent the underlying

social structure. The parameter γ and statistics q(x(t1), x(t2)) represent the sociotemporal

structure, that is, they identify how the structure of the graph at time t1 influences it at

time t2. For example, consider the simple model with q(x, y) equal to the number of dyads

at time t2 that are the same as at time t1. Here γ expresses a tendency for partnerships (or

non-partnerships) to persist from t1 to t2 . For most realistic dynamic processes, we would

expect γ to be positive indicating the duration of ties overtime. Note that the temporal

dependence under this model is determined by value of the same dyad at the two time

points. In general, other aspects of the graph at time t1 , such as the number of partners of

the corresponding actors, may effect the value at time t2 and correspond to alternative forms

for q(x, y). Although simple, this model of independence of separate dyads across time is the

most commonly used in practice (Leenders 1997). Indeed with some notable exceptions (see,

e.g., Doreian and Stokman 1997, Van de Bunt, Van Duijn and Snijders 1999, Robins and

Pattison 2000), the issues of complicated dependence structures has receive little attention

for models of dynamic random graphs. The issue here are the identification of realistic models

for the change in a network over time. This is also often referred to as network evolution,

dynamic network models, temporal network processes, or longitudinal network processes. A

very good review of the state of the field in the middle 90’s is the edited volume Doreian and

Stokman (1997). It is required reading about the issues involved on longitudinal modeling.

Unlike many of the other issues described in these notes, the modeling of the evolution of

social networks is difficult and subtle.
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There are many forms of network evolution over time. Doreian and Stokman (1997)

describe four main classifications. Here we focus on model for the discrete transition of a

network between two time points. This is akin to event history analysis of social networks.

Among the many forms of evolving social networks, this is of particular interest as is fits

in closely with the way that much social network data is collected through successive lon-

gitudinal surveys. However many of the other forms of evolution are also relevant to this

case. For example, when the data is collected retrospectively at each point in the survey, a

continuous time approach akin to survival analysis is possible. See Snijders (1996, 2001).

Here I summarize the approach of Robins and Pattison (2000). Random graph models

can be used in this area by considering a chain graph. If we consider the transition of a

network from point t = 1 to time t = 2, then we can consider a graph with the parent graph

at time t = 1 and the child graph at time t = 2. Actors within each graph are connected with

undirected links, while only directed links between parent and child are allowed. The models

within each graph can take the usual random graph form (1). The issue is the specification

of how the child graph links depend on the parent graph links. In principle these can be

arbitrarily involved leading to complex dependencies. Robins and Pattison (2000) discuss

this and propose various simplifications, including complete perfect Markov models.

This model can be used to simulate a longitudinal social network. The process is:

1. Generate a random graph model for the social network X1 at time t = 1 using the

MCMC described in the previous sections.

2. Use one of the random graph models in Robins and Pattison (2000) to generate a social

network from X2 | X1, that is the social network at time t = 2 given that the network

was X1 at time t = 1. This can be achieved using a modified version of the MCMC

algorithm that has already been developed. However, as the model is still of the form

(1) it will require additional programming, but is straightforward otherwise.

3. Generate a social network from X3 | X2 using the same transition model as in the

previous step. Repeat these steps for as many time points as are required.

Together the sequence of social networks X1, X2, X3, . . . form a sample from a longitudi-

nal social network. I believe the time evolution process should be kept very simple to start

with. This will probably mean Markov dependence, where the specific dependence of (ij)2

is only on (ij)1, and its Markov neighbors ((kl)1, where one of k or l is i or j), as well as its

Markov neighbors at time t = 2, and global characteristics of X1

It is worthwhile to keep separate the two forms of iteration involved in this process.

The first is the intrinsic time step updating from t = 1, 2, . . . This refers to the actual
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real-world temporal process. The second iteration is that of the MCMC updates. This is a

computational step and will not correspond to the intrinsic time step, except as a coincidence.

Fundamentally, it represents a computational device to obtain a sample from he correct

distribution. Typically many (hundreds) of MCMC steps are required to produce a single

sample from the intrinsic time update. Usually it is not even possible to interpret each

MCMC step as a partial step in intrinsic time. In rare circumstances a MCMC algorithm

could be constructed that has a direct correspondence with intrinsic time. However this is

quite difficult to achieve for realistic models.

In practice this procedure can be used to simulate a continuous-time process by making

the time step small and the number of time steps large. For example, we may record events

to the closest week (i.e., which week in the year did you first have a relationship with ...).

Then the stepping process be t = 1, 2, . . . weeks. The parameters of the model would need

to be defined to reflect this - in particular, the probabilities of transition should be reduced

accordingly if the time step is reduced.

2.11 Shortcomings of the random graph model

Although the random graph model (1) is conceptually simple, intuitively it seems prob-

lematic when we consider using it for social network data. The probability that a relationship

exists between two individuals certainly depends on characteristics of the individuals, yet

model (1) does not account for covariates and relies solely on summary statistics derived

from the adjacency matrix Xij.

Of course, models always fail to capture reality completely, so it is wise to ask whether

model (1) is at least useful to some degree. Preliminary research suggests that they are

not very useful, in the sense that quite often, most graphs simulated from distribution (1)

are either complete or empty, which clearly does not reflect the reality we are interested in

modeling.

Thus, these models need to be improved. One avenue of research is to investigate the

properties of truncated versions of the random graph distribution—that is, distributions

arising from constrained models. For example, we might consider exploring the properties of

random graphs conditional on the total number of partnerships (or at least with the number

of partnerships having a specified distribution). An additional computational challenge en-

countered in models of this type arises during the simulation phase, since a rejection sampling

method that throws out all sampled graphs that don’t satisfy the constraints is likely to be

very inefficient due to the small proportion of graphs with distribution 1) that satisfy those

constraints. We are developing efficient algorithms for simulating random graphs subject to

constraints.
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3. DISCUSSION AND FUTURE WORK

While estimation techniques are often of little interest to non-statisticians, this case is an

exception. The complete enumeration of all graphs required by the denominator in (1) makes

simple maximum likelihood estimation impossible for graphs larger than about 30 nodes. In

early applications a form of pseudo-likelihood was used to solve this problem (Besag 1974,

Wasserman and Pattison 1996). More recent approaches, however, employ Markov Chain

Monte Carlo (MCMC) methods (Geyer and Thompson 1992). This is particularly interesting

for our purposes because MCMC methods effectively simulate the network over the space of

possible graphs in order to maximize the likelihood. One can, however, just as easily use the

MCMC algorithm to simulate the network given the parameter estimates, and this provides

the solution to the problem of linking network data to the network simulation. One can

estimate the network model from data, and then use the same model, with the empirically

based parameter estimates, to drive a simulation of the network with an infection spreading

through it. The MCMC algorithm provides the engine for both tasks. This will make it

possible for the first time to directly control the network structures in a simulation so that

they “look like” the networks we observe in different data sets. The simulation link provided

by the MCMC algorithm will also make it possible to test how well the estimated models

capture the network structure that matter for transmission. Both mixing and concurrency

are examples of local organizing processes that affect reachability and distance in networks.

One of the interesting questions from an applied perspective is whether the mixing and

concurrency patterns largely determine the levels of reachability and distance. If so, then

they provide a quick summary of the key network structures, and data collection can be

organized accordingly. The MCMC simulation thus provides an opportunity to develop

context sensitive “goodness-of-fit” tests for these random graph models. In sum, the data

and models now exist to systematically address the key remaining questions in network

epidemiology: how do networks matter for individual risk, and what impact do they have

on the population dynamics of transmission.
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