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Positional Estimation Within a
Latent Space Model for Networks
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Abstract. Recent advances in latent space and related random effects models hold much promise for representing network data. The inherent
dependency between ties in a network makes modeling data of this type difficult. In this article we consider a recently developed latent space
model that is particularly appropriate for the visualization of networks. We suggest a new estimator of the latent positions and perform two
network analyses, comparing four alternative estimators. We demonstrate a method of checking the validity of the positional estimates. These
estimators are implemented via a package in the freeware statistical language R. The package allows researchers to efficiently fit the latent space
model to data and to visualize the results.
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IntroductionAQ1

Social network data is used to study actors and the rela-
tionships between them. The concept of social position is
canonical in social network theory and has a long history
(Faust, 1988; McFarland & Brown, 1973). There are a
number of concepts of position in network theory. Lorrain
and White (1971) referred to two actors being structurally
equivalent if they have identical relations with all actors in
a network. Burt (1976) conceptualized a social space where
actors who are structurally equivalent occupy the same po-
sition in the space. In this context, Burt (1980) defined a
social status to be a network position occupied by three or
more actors. This conceptualization of position led to the
blockmodels of White, Boorman, and Breiger (1976) and
to the latent class models of Nowicki and Snijders (2001).
These related representations of social space have in com-
mon the treatment of distance in the space as a measure of
dissimilarity of the actors’ relational patterns. A distinct
conceptualization of social space treats distances as a mea-
sure of the degree the actors wish to have relations with
one another (Laumann, 1966; McFarland & Brown, 1973).
In a 2002 article, Hoff, Raftery, and Handcock (HRH) sug-
gested an approach to modeling networks based on this
latter notion of a social space. The HRH model posits the
existence of an unobserved latent space of characteristics
of the actors and that relationships form as a function of
distances between these characteristics. In particular, we
focus here on social distances in a Euclidean space.

This article provides an expansion of the practical use
of the latent space model by introducing a new estimate
for the locations of the actors in social space and comparing
it to standard estimates. After reviewing the relevant social
network framework and explaining the latent space model
and its estimation, we illustrate the model and the new
location estimator with two classic social network data sets,

Padgett’s Florentine Marriage data (Padgett & Ansell,
1993) and Sampson’s Monastery data (Sampson, 1968), in
order to investigate parameter estimates.

Stochastic Models for Social
Networks

Social network data typically consist of a set of g actors
and a relational tie yij, measured on each ordered pair of
actors i, j " 1, . . . , g. In the most simple cases, yij is a
dichotomous variable, indicating the presence or absence
of some relation of interest, such as friendship, collabora-
tion, or transmission of information or disease. Here we
focus on the case of a binary relationship and the g # g
sociomatrix Y " [yij]. We denote yij " 1 if there exists a
relation from actor i to actor j, while yij " 0 will denote
that no such directed relation exists. This can be thought
of as a graph in which the nodes are actors and the edge
set is {(i, j) : yij " 1}.

The network matrix Y can be viewed as a random vari-
able with a sample space of Y ! {0,1}n, where n is the
total number of possible ties in a network. Each Yij can be
treated as a Bernoulli random variable with marginal prob-
ability P(Yij " 1); it is this probability, as well as the joint
distribution, these methods try to model (Hoff et al., 2002).
The family of distributions most commonly used to model
social networks is referred to as exponentially parameter-
ized random graphs (Frank & Strauss, 1986). The proba-
bility mass function is

Texp[g u(y)]
P (Y " y) " y " Y (1)g c(g)

where g " !p is the model parameter and u:Y r !p are
network statistics (Strauss & Ikeda, 1990). Under this
model the u(y) are jointly sufficient for g and the model is
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the maximum entropy distribution based on the statistics.
The normalizing function is

Tc(g) " exp(g u(y)).!
y"Y

A basic example of this model is the Bernoulli random
graph. In this density u(yij) " yij and gij is the logit prob-
ability of the ijth edge occurring. When all of the edges
have a common probability, this density simplifies to

exp g y! ij" #
i!j

P(Y " y) " y " Y
c(g)

where g " gij " logit(P(Yij " 1)) and c(g) " (1 $
exp(g))n. This can be reduced to log(P(Y " y)) " gu(y)
% log(c(g)), where u(y) is the total number of ties in the
network.

In many situations g " Rp, the canonical parameter in
Equation 1, is a nonlinear function of a lower-dimensional
parameter h " Rq, q ! p. In this case we consider a curved
exponential family of graph models:

Texp[g (h)u(y)]
P (Y " y) " y " Y (2)h c(h)

where usually h is of substantially lower dimension than
g. The latent space models we considered in the next sec-
tion will be considered as curved exponential families, and
include the linear exponential models (Equation 1) as a
special case.

A complication that arises in social network data is the
inherent dependency among ties. For example, if Jon and
Peter are friends, and Kyle and Peter are friends, then it is
more likely that Kyle and Jon are friends (or that any re-
lationship exists) than if these previous relationships did
not exist. This dependency is ignored in the simplest of
models—such as the Bernoulli random graph model—and
dealt with in various ways in more complex models. Ex-
ponentially parameterized models (Equation 1) allow sta-
tistics u(y) to be chosen to represent complex dependencies
(Snijders, Pattison, Robins, & Handcock, in press; Strauss
&AQ2 Ikeda, 1990), and these models can be extended
through the use of curved exponential family forms
(Hunter & Handcock, in press). AQ3Latent space models
provide a way to handle dependency via postulating the
existence of a social space. Various characteristics (usually
unknown) dictate actors’ positions in the social space, and
it is this position that determines their social role and be-
havior. For example, the concept of a latent space can help
model the relationships between Jon, Peter, and Kyle. Sup-
pose that Jon and Peter are friends. This is most likely
induced by their closeness in the latent space of character-
istics and a higher propensity for friendship between those
with similar characteristics (homophily). If Peter and Kyle
are friends, then it is likely that they too are close to each
other in the space of characteristics. The triangle inequality
implies Jon and Kyle cannot be too far apart in the space
of characteristics. This is, of course, a statistical relation-
ship: closeness in the space does not necessitate friendship,
and friendship does not necessitate two individuals being
close. If we include distance in this latent space between

actors when modeling the structure of the network, the
probability that Jon and Kyle are friends will increase be-
cause their relative distance is small. In other words, by
modeling the relationships between people as a function of
their distance in social space, we are able to take into ac-
count potential dependency among relations. While this
dependency can also be modeled through a small numbers
of statistics and parameters via Equation 1, the latent space
model can flexibly capture a wide range of dependence. It
is this class of model we describe in the next section.

The Latent Space Model

The latent space model of HRH is based on two central
assumptions. The first states that the probability of a tie
between two actors depends on the distance between them
in an unobserved social space. The second states that ties
between actors occur independently, given their distance
apart. Specifically, we assume that each actor has an un-
observed position in a d-dimensional Euclidean latent so-
cial space. We then assume that the presence or absence of
a tie between two individuals is independent of all other
ties, given the positions in social space of thegZ " {z }i i"1

two individuals:

P (Y " y) " P(y |z , z , b), (3)h $ i, j i j
i!j

where the vector of parameters is h " (Z, b).
We model P(yi,j | zi, zj, b) using a logistic regression

model in which the probability of a tie depends on the
Euclidean distance between zi and zj in social space:

log odds(y " 1|z , z , b) " b % |z % z |, (4)i, j i j i j

where log odds(p) " log[p/(1 % p)]. The distance between
actors i and j is then dij " | zi % zj |. The motivation for
this method is similar to that for multiple dimensional scal-
ing (MDS) which is widely used as a means of representing
the spatial structure of a social network (Breiger, Boorman,
& Arabie, 1975). In this context, MDS is a class of methods
that can be used to produce a spatial representation of in-
dividuals based on similarity or dissimilarity measures be-
tween pairs of individuals. Such applications of MDS dif-
fer from the model presented here in that MDS is used
primarily as a data-analytic means of visualizing given dis-
similarities, while our method is a model-based represen-
tation of the measured relations and latent locations. The
latent space model has the advantage of directly modeling
the observed relationship, while the usual choices for dis-
similarities in MDS are ad hoc and do not reflect the sto-
chastic nature of the sociomatrix.

Expressed in terms of Equation 2, the model for the
graph is

exp g (h)y! ij ij" #
i!j

P (Y " y) " . (5)h

(1 $ exp(g (h)))$ ij
i!j

Hence the parameters are b, the log-odds of a tie for two
actors with the same position in social space, and the po-
sitions, Z.
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Note that the observations on each directed pair are in-
dependent given the positions. Thus we have n " g(g % 1)
independent observations to estimate the dg $ 1 parame-
ters (the positions Z and b). Note that unconditional on the
positions the dyads are dependent. A similar situation oc-
curs in hierarchical or multilevel models.

The true positions are in a dimensionless latent social
space with an unknown distance metric. In this article the
Euclidean distance metric is used and the actors are posi-
tioned in !d. Graphs with different positions for the actors,
but which yield the same relative distances, have the same
probability under the model. Because distances between
nodes are invariant to reflection, rotation, and translation
of the Z’s, there are infinitely many graphs that represent
the same relative distances. In order to deal with this, and
avoid overestimating the variability in the relative positions
of the actors, the Procrustean transformation of a graph is
used instead of the graph itself. The Procrustean transfor-
mation of a graph Z around a graph Z0 changes the graph
to have the same reflection, rotation, and translation prop-
erties as Z0. For more details see Sibson (1979) and Hoff
et al. (2002).

Algorithmic Development

Theory

In this model we would like to estimate both the positions
of the actors in latent space and, in more complex variants,
also covariate coefficients. Our proposed estimation tech-
nique consists of two approaches. In the first, the param-
eters are estimated with the maximum likelihood (ML)
method by finding the value of the parameters, which max-
imize the likelihood function (Equation 5). The ML esti-
mation procedure finds parameter values that give the high-
est likelihood to the data as observed.

The second approach is a Bayesian analysis with a dif-
fuse prior (p) for h. In many situations where the latent
space model is used, only vague information is known
about the parameters. Here the priors are independent nor-
mal distributions centered around zero, with a large vari-
ance. In this situation the data should drive the posterior
with the prior distribution having little effect. For more
information on Bayesian statistical methods, see Gelman,
Carlin, Stern, and Rubin (1995). To estimate the posterior
distribution of the parameters we implement a Markov
chain Monte Carlo (MCMC) algorithm. Given certain con-
ditions (all met here), the MCMC will converge to the pos-
terior distribution, which means that the chain will be tak-
ing samples from the joint posterior distribution of the
parameters. These samples can then be used to make in-
ferences about the parameter values and their marginal pos-
terior distributions. The general algorithm used is as fol-
lows (Hoff et al., 2002):

1. Find the maximum likelihood estimate (MLE) for h "
(b,Z).AQ4

2. Run an MCMC chain.

To start, set k " 0 and Z0 to be the MLE of the Z matrix.

Repeat steps (a)–(d) N # M times, storing
. Here N is the interval between samplesN N Mj j{Z , b }j"1

and the result is a sample of size M from the poste-
rior:
(a) Sample a proposal Ž from independent multivar-

iate Gaussians centered around Zk.AQ5
(b) With probability equal to the minimum of 1,

• accept Ž to be Zk$1.
• otherwise Zk$1 " Zk.

(c) Sample a proposal from a Gaussian distribution
centered at 0.

(d) With probability equal to the minimum of 1 and

,
k ˘ ˘P(Y |Z , b)p(b)

k k kP(Y |Z , b )p(b )
• accept to be bk$1.
• otherwise bk$1 " bk.

3. For each of the M samples of the posterior position
matrix , store its Procrustean transforma-N Mj({Z } )j"1

tion relative to the Zmle. Denote these by N M˜ j{Z }j"1

where the transformation Z̃ of Z relative to Zmle is
.T T T %1/2Z Z (Z Z Z ) Zmle mle mle

Note that steps 2(a) and (b) comprise a standard Me-
tropolis-Hastings step to update the positions, and steps
2(c) and (d) are a standard Metropolis-Hastings step to up-
date the b (Robert & Casella, 2005). This algorithm is simi-
lar to those used for other latent variable models (Skrondal
& Rabe-Hesketh, 2004) and is modified from the algorithm
implemented by HRH, where the Procrustean transforma-
tion of the position matrix was taken during the chain after
acceptance.

Four Alternatives for Point Estimation of
the Positions in Latent Space

In many situations point estimates for b and the positions
are desired in addition to their posterior distributions. There
are three natural candidates for point estimates for the pa-
rameters in the model: the MLE, the posterior mean, and
the posterior mode. However, as the model specifies the
distances between actors only and not their locations, these
estimates may be very poor representations of the posi-
tions. That is, even when we expect the distance between
actors to be accurately determined, the locations them-
selves are not. As we shall see in the next section, the above
three estimators can give poor estimates of the locations.
To resolve this, we propose a fourth estimator, the values
of (Z, b) that minimize the Kullback-Leibler divergence to
the mean posterior distance model. This will be referred to
as the MKL estimate.

The Kullback-Leibler divergence of a distribution with
probability mass function p from the distribution with
probability mass function q is

E [log(q) % log(p)].q

Let ! and g be alternative latent space parameters for
Equation 5. The Kullback-Leibler divergence, KL(!,g), of
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the latent space model with parameter g from the parameter
! is

P (Y " y)Y |!E logY |!% " #&P (Y " y)g

P (Y " y)Y |!" log P (Y " y)! Y |!" #P (Y " y)y"Y g

c(g)
T" (! % g) yP (Y " y) $ log! Y |! " #c(!)y"Y

c(g)
T" (! % g) E [Y] $ log .Y |! " #c(!)

The MKL estimates are the parameter values, g, minimiz-
ing the posterior mean of the Kullback-Leibler divergence:

E [KL(!, g)]! |Yobs

T T"! E [E [Y]] % g E [E [Y]]! |Y Y |! ! |Y Y |!obs obs

% E [log(c(!))] $ E [log(c(g))]! |Y ! |Yobs obs

T T" ! E [E [Y]] % g E [E [Y]]! |Y Y |! ! |Y Y |!obs obs

% log(c(!)) $ log(c(g)).

Since is the mean posteriorE [E [Y]] " E[Y |Y ]! |Y Y |! obsobs

probability of a tie under the model with parameter ! and
the first and third terms do not depend on g, the optimi-
zation problem is simplified to finding the parameter values
that maximize

Texp(g E[Y |Y ])obs

c(g)

This optimization is easily implemented using the likeli-
hood routines already used in the algorithm. The posterior
mean E[Y|Yobs] can be accurately estimated from the
MCMC samples and does not require the positions, but
only the distances.

For all four estimators of the positions and b the esti-
mates are free to move around the parameter space without
restriction. Thus, the positional estimates are similar but
are stretched or contracted in comparison to one another.
This lack of restrictions on the parameter space when max-
imizing the likelihood usually results in the nodal positions
being pushed far away from one another with b increasing
to compensate for the large distances. The prior distribu-
tions in the MKL method force more information to be
present from the data to drastically increase b; thus the
absolute distances are kept reasonably small. In ordered to
compare these estimates, each position was normalized by
setting the coordinates equal to norm k 2Z " Z / " Z'ij ij j"1 ij

Application of the Latent Space
Model to Two Networks

This section describes the analysis of two data sets using
the latent space model and the method described above. In
each of the analyses, several parameter values for the pro-
posal distributions were tried, and the values that appeared
to allow the parameters to move around the space without
compromising the acceptance rates too greatly were cho-
sen. Each data set is fitted with the latent space model, and
the parameter estimates are investigated.

Florentine Marriage Data

The first data set discussed is known as the Florentine Mar-
riage data. This data was compiled by Padgett and Ansell
(1993), and focuses on 16 prominent Florentine families
and their business and marriage relations. The data col-
lected by Padgett covers a large time span as well as types
of networks, but this analysis will concentrate on the mar-
riage data from the fifteenth century. Each actor in the data
set is a family, and a tie is present if there existed at least
one marriage between the families. For easier visualization
the isolates were removed from the data before analysis;
thus this analysis will be on 15 of the original 16 families.
The Markov chain takes a sample of size 700 from the
posterior distribution of the parameters, allowing 10,000
iterations for burn-in and 1,000 iterations between samples.
The standard deviation parameters for the proposal distri-
butions of the chain were db " 0.5 and dZ " 0.3. These
values only affect the efficiency of the sampler by altering
the deviation from proposal to proposal of the parameters
and were chosen by monitoring the trace plots of the
MCMC for mixing. The prior distribution on b is N(0,102)
and the prior distribution on each of the coordinates Zij is
also N(0,102). The plots of the log-likelihood values and b
at each sampled interval in the chain, seen in Figure 1,
indicate convergence. The bottom two plots of Figure 1 are
the marginal posterior distribution of b and the positions
of the actors.

Figure 2 displays the four different normalized estimates
for the !2 positions. The basic structure of the graph is
similar in all four estimates; the main difference is located
on the left-hand side of the graphs: actors 1, 10, and 13.
These actors do not have many ties to other actors, and so
the model expects that they are distant from the other ac-
tors. However, this does not tell us where they are exactly,
only that they are not likely to have positions close to the
positions of the other actors. Thus, we know their distances
are large, but there is limited information contained in the
network about their position in latent space. While the pos-
terior distances are stable, the positions are not; the pos-
terior samples sometimes place actor 1 on top and actor 13
on the bottom, sometimes vice versa. This results in a bi-
modal posterior distribution for the positions of these ac-
tors.AQ6 In Figure 1, it can be seen that the (green) points
corresponding to actor 1, the (pink) points corresponding
to actor 13, and the (blue) points corresponding to actor 10
form two distinct clusters each. (Color versions of Figure 1
and Figure 4 are available at http://www.csss.washington
.edu/published.) It is well known that the mean and mar-
ginal modes of joint distributions are poor point estimates
for central tendencies of multimodal distributions. This
multimodality implies the MLE and MKL estimates better
summarize the estimated positions of the actors in this ex-
ample. While the normalized graphs are comparable, the
raw graphs are quite different: The square root of the sum
of squared distances in the MLE graphs is 68.63 and the
MLE for b is 14.45. The same quantities for the MKL
method are 20.94 and 3.96. This dramatic difference be-
tween estimates demonstrates that the interpretation of b is
meaningless without the distances.
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Figure 1. Labeled clockwise starting from upper left: (a) Chain values for the log-likelihood. (b) Chain values for b.
(c) Marginal Posterior for b. (d) Marginal posterior for positions.

Figure 2. Positional estimates for the Florentine data. While the basic structure is similar, it appears that there is some
discrepancy in the location of actors 1, 10, and 12.
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Figure 3. Density estimates for the number of ties in a graph generated by the latent space model with the specified
estimates as parameters.

The number of ties in a graph is a basic network sum-
mary statistic, and a good parameter estimate should pro-
duce graphs in which the observed number of ties (20 un-
directed ties in the Florentine data) has a high probability.
Figure 3 shows the density estimates of the number of ties
produced from a probability distribution corresponding to
the latent space model with each of the four parameter
estimates. The MLE and MKL estimates appear to produce
reasonable distributions on the number of ties, while the
posterior mean and mode tend to generate graphs that have
“too many” ties.

The better performance of the MKL could be due to the
bimodality of the posterior distribution of some actors’ po-
sitions. In Figure 2, it is noted that actors 1, 10, and 13 are
closer in the posterior mean and mode representation then
in the MLE and MKL representation; thus they have a
smaller distance when these first two positional estimates
are used. Focusing attention on the troublesome actors (1,
10, 13) and the ties between them shows some differences
in the graphs generated by each of the estimates. The MLE
estimates produce graphs that have on average 1.25 ties
between the three actors, the posterior mean graphs have
on average 2.98 ties, the posterior mode graphs have on
average 2.98 ties, and finally, the MKL graphs have on
average 1.48 ties. In the observed graph there is one tie
between these three actors (1–13), so the MLE and MKL
estimates produce graphs with ties between this trio most
like the observed graph. For this analysis it appears that
the MLE and MKL estimates are the best point estimates
for the coefficients and positions of the actors.

Monk Data

The second analysis discussed is of another standard data
set in the social network literature. In 1968, Sampson col-
lected data on 18 monks and their interpersonal relations.
Each monk was asked about positive relations with the
other monks, and reciprocity was not required; thus the
graph is directed. The data contain 56 directed ties between
the 18 monks. Similar to the Florentine analysis, the chain
samples 700 points from the posterior, allowing 10,000
iterations for burn-in and 1,000 iterations between samples.
In the monk analysis the standard deviation parameters for
the proposal distributions in the chain were db " 0.3 and
dZ " 0.2. The prior distribution on b was N(0,52) and the
prior distribution on the positions coordinates, Zij, is
N(0,102). Figure 4 contains the summary plots of the Mar-
kov chain. The chain values for the log-likelihood and b
indicate convergence. The marginal density of b appears
not to be skewed and to be unimodal. The marginal pos-
terior for the positions appears to show clustering of the
position values, although some of the clusters appear to be
elongated, suggesting uncertainty in the locations.

The four types of positional estimates are given in Figure
5 with the same normalization technique used earlier for
easier comparison. The differences between these esti-
mates are more complex than in the Florentine analysis.
Some of the actors seem to have stable positions regardless
of the method used: actors 1, 2, 4, 5, 6, 9, 11, and 18.
Actors 8 and 12 seem to have some uncertainty that may
result in a bimodal distribution since they have collapsed
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Figure 4. Labeled clockwise starting from upper left: (a) Chain values for the log-likelihood. (b) Chain values for b,
(c) Marginal posterior for b, (d) Marginal posterior for positions.

Figure 5. Positional estimates for monk data. While there is some similarity in the general structure of the graphs, several
actors are given quite different positions under the different estimates.



S. Shortreed et al.: Positional Estimation Within a Latent Space Model for Networks 31

! 2006 Hogrefe & Huber Publishers Methodology 2006; Vol. 2(1):24–33

Figure 6. Density estimates for the number of ties in a graph generated by the latent space model with the specified
estimates as parameters.

1 The latentnet package is written in a combination of (the open-source statistical language) R and (ANSI standard) C, and runs on Linux,
UNIX, Windows, and Macintosh environments. AQ7It is called from the R package (see http://www.r-project.org). Details on installation
of the latentnet library (and the network library that it requires) can be found at http://www.csde.washington.edu/statnet.

onto one another in the posterior mean and mode estimates,
yet the MLE and MKL keep them close yet distinct. Actor
3 is closer to the center of the graph in the MLE positions,
but in the other three it has moved up and taken actor 7
with it. Actors 13 and 14 also appear to be a pair that move
together; in the MLE estimate they are at the right side of
the graph in the center height-wise, yet in the other pos-
terior estimates they are both up near the top of the graph.
It appears that actor 10 travels with these actors into the
center of the graph. Actor 17’s position also shifts from
the center top of the graph in the MLE to the upper-right-
hand corner. These plots as well as the marginal posterior
position plots seem to imply that the positional distribution
is not very well behaved. Once again the MLE and MKL
estimates would appear to be better estimates than the pos-
terior mean and mode because of this complex behavior.
This analysis produced MLE and MKL estimates that are
more similar; the MLE estimate for b is 2.38, with a graph
with the square root of sum of squared distances of 15.77,
while the MKL estimated the same quantities with 1.62
and 12.54.

The superiority of the MLE and MKL can be seen once
again in these density plots for the number of ties in graphs
generated by each of the estimates. The MLE and MKL
seem to generate graphs that tend to have close to the ob-
served value of 56 ties, while the posterior mean and mode
estimates generate graphs with many more ties.

Discussion

This article has provided a brief introduction to the latent
space model for modeling network data as well as code
that allows users to fit these models in the statistical free-
ware R. The code provided in the package latentnet1 is
slightly different than the model originally presented by
HRH in that all coefficients have a Gaussian prior, includ-
ing the intercept. This code also expands on the point es-
timates for the coefficients and positions discussed in HRH,
by providing all four of the estimators described: MLE,
posterior mean, posterior mode, and the estimator that min-
imizes Kullback-Leibler divergence from the posterior.
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Of the four explored here, the estimates that seem to
produce graphs most consistent with the observed network
are the MLEs and the MKL divergence estimates. It was
shown that by definition the MKL is designed to minimize
the posterior mean of the Kullback-Leibler divergence
from the true model. The MLE of the distances can be
shown to minimize the Kullback-Leibler divergence from
the data (Barndor-Nielsen, 1978). It follows that the MLE
of the positions are the values that minimized the Kullback-
Leibler divergence from the MLE distances. That is,

ˆg " argmax {P (Y " y)} " argmin {KL(!, g)},MLE g g g

where is the MLE of the data. The MKL minimizes the!̂
Kullback-Leibler divergence from the model with param-
eters given by the posterior expectation of the graph under
the mean-value parameterization of the exponential family
model (Handcock, 2003). Similarly, the MLE minimizes
the Kullback-Leibler divergence from the model with
mean-value parameter given by the observed graph. In this
sense, the MKL is the closest model to the posterior ex-
pectation of the graph, while the MLE is the closest to the
observed graph. Heuristically, if the model is approxi-
mately correct, one expects that the posterior mean graph
will be closer to the true model than the observed graph
due to statistical averaging and use of prior information. In
practice, the MKL estimate will usually be superior to the
MLE, as the averaging reduces the first-order statistical
variation while inducing a second-order bias due to mis-
specification. However, both should be considered, as they
represent contrasting assumptions about the model (Hand-
cock, 2003).

In network data, the purpose is to model the joint prob-
ability of all the ties in the network as well as the proba-
bility of a tie between any two actors. While a graph has
g actors and g(g%1) directed ties, it is only one realization
of the whole network. This is similar to time series data
where we only have one sample of the whole series but
many dependent observations within the series. In many
such statistical situations, the behavior of the MLE is un-
derstood under both large and finite sample sizes. These
illustrate that our intuition about sample size is altered
when the data is dependent. Working with a small network
forces more emphasis to be placed on the model than the
observations. In both Padgett’s Florentine and Sampson’s
monk data the MLE and MKL estimates appear to behave
similarly. As the size of the graph grows and ties are sparse,
it is reasonable to believe that the unrestrictiveness of the
MLE could lead to instability in the estimates. While the
MKL method may introduce bias into the estimates by put-
ting more trust in the model, it may also produce estimates
with less variability.

This article proposes a new estimator and examines
some of its properties when applied to two data sets. More
research is needed to truly understand the behavior of each
of the point estimates (especially the variance) as well as
to develop meaningful error bounds. It is unclear how the
estimators will perform as the number of actors grows, par-
ticularly since the dimension of the parameter space grows
with each additional actor. In order to understand the loss
of flexibility and the gain in modeling ability of using the

MKL estimates, it is necessary to understand the impact of
the prior on the posterior distribution of the parameters.
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