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Recent research into the properties of human sexual-contact networks has suggested that the degree distri­
bution of the contact graph exhibits power-law scaling. One notable property of this power-law scaling is 
that the epidemic threshold for the population disappears when the scaling exponent p is in the range 
2 < p ~ 3. This property is of fundamental significance for the control of sexually transmitted diseases 
(STDs) such as HIV/AIDS since it implies that an STD can persist regardless of its transmissibility. A 
stochastic process, known as preferential attachment, that yields one form of power-law scaling has been 
suggested to underlie the scaling of sexual degree distributions. The limiting distribution of this preferen­
tial attachment process is the Yule distribution, which we fit using maximum likelihood to local network 
data from samples of three populations: (i) the Rakai district, Uganda; (ii) Sweden; and (iii) the USA. 
For all local networks but one, our interval estimates of the scaling parameters are in the range where 
epidemic thresholds exist. The estimate of the exponent for male networks in the USA is close to 3, but 
the preferential attachment model is a very poor fit to these data. We conclude that the epidemic thresholds 
implied by this model exist in both single-sex and two-sex epidemic model formulations. A strong con­
clusion that we derive from these results is that public health interventions aimed at reducing the transmis­
sibility of STD pathogens, such as implementing condom use or high-activity anti-retroviral therapy, have 
the potential to bring a population below the epidemic transition, even in populations exhibiting large 
degrees of behavioural heterogeneity. 
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1. INTRODUCTION 

The course of an epidemic of an infectious disease is gov­
erned by a threshold parameter, R0, the basic reproductive 
number (Anderson & May 1991 ). R0 is the expected num­
ber of secondary cases produced by a single index case in 
a population of susceptibles. In a stylized formulation, R0 

is a product of the transmissibility of the infectious agent, 
the duration of the infection and some measure of the con­
tact rate between susceptible and infected individuals. 
Public health strategies for control and eradication are 
based on reducing transmissibility, shortening the dur­
ation of infection and reducing the contact rate between 
susceptible and infected individuals. A puzzle in sexually 
transmitted disease (STD) epidemiology has been how 
epidemics are maintained given the relatively small num­
ber of sexual contacts that people have (relative to the 
number of contacts for non sexually transmitted infections 
such as measles or influenza). The answer to this puzzle 
is that heterogeneity in sexual activity can drive an STD 
epidemic (Hethcote & Yorke 1984). 

In single-sex models with heterogeneous levels of sexual 
activity, R0 increases approximately linearly with the vari­
ance in the number of sexual partners (Anderson & May 
1991). Analogous results have been derived for two-sex 
models (Newman 2002). Heterogeneity in sexual activity 
is typically estimated from local network data (Morris 
1997) gathered in sexual history surveys. In sexual net­
work analysis, sexual-contact networks are represented as 
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random graphs, where the nodes of the graph represent 
individual people and the edges represent sexual contact. 
The number of edges adjacent to a particular node is its 
degree, and the collection of nodal degrees is the degree 
distribution of the population (Wasserman & Faust 1994). 
It is the variance of this degree distribution that plays such 
an important role in determining the threshold repro­
duction number for an STD. An understanding of the 
degree distribution of a sexually active population and of 
the micro forces that generate this distribution is an 
important step toward designing public health inter­
ventions to eradicate STDs. 

Representative surveys of sexual behaviour reveal that 
the typical person has very few sexual partners in the 
course of a year (Serwadda et al. 1995; Laumann et al. 
1994; Lewin 1996). Given this observation, concern 
clearly focuses on the statistical properties of the tails of 
the degree distribution. Recent work on the properties of 
human sexual-contact networks has suggested that they 
are characterized by power-law decay of their tails 
(Liljeros et al. 2001). These networks are described as 
'scale free' in the recent network literature, to reflect their 
extreme skewness. However, the key scientific question 
that arises in this work is not whether a network is scale 
free, but whether the network's idealized degree distri­
bution has infinite variance, a phenomenon occurring in 
a specific range of the scaling exponent p of the power 
law. A distribution characterized by a scaling parameter 
in this range places significant probability on the occur­
rence of very large degrees. Consequently, it can be shown 
that there is no epidemic threshold in a population charac­
terized by an idealized infinite-variance degree distribution 
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(a) 

(c) 

• 
(Lloyd & May 2001; Pastor-Satorras.& Vespignani 2001; 
Newman 2002), allowing a pathogen of arbitrarily small 
transmissibility to be maintained (Lloyd & May 2001). 
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Figure 1. (a) Simulated 50-actor predominantly heterosexual 
network with infmite-variance degree distribution. The 
underlying distribution is Yule with parameter p = 2.5. The 
algorithm producing this network is essentially that of 
Molloy & Reed (1995). (b,c) Simulated 50-actor 
predominantly heterosexual network with infinite-variance 
degree distribution and a (b) maximum or (c) minimum 
propensity to form short paths. The realized degree 
distribution in (b) and (c) is identical to that in (a). Filled 
circles, males; open circles, females. 

The intuition underlying this surprising result is that a 
network that is simultaneously consistent with (i) the low 
mean degree characteristic of human sexual behaviour and 
(ii) the power-law decay of the tail of the degree distri­
bution will exhibit large connected components. Ran­
domly infecting a node in such a network is therefore likely 
to yield a large epidemic. Figure 1a illustrates this idea 
with a simulated 50-actor (mostly) heterosexual network 
with an infinite-variance degree distribution (explicitly 
equation (2.1) with p = 2.5). The large connected compo­
nent suggests that the expected size of an epidemic started 
by randomly infecting a single node would be large. 

Modelling a finite population with an infinite-variance 
degree distribution is clearly an idealization. Note, how­
ever, that the probability under such models that the 
populations considered here contain one or more individ­
uals with more contacts than the population size is infini­
tesimally small. 

In recent work on the scaling of a variety of systems with 
possible power-law distributions, the scaling exponent has 
been inferred from the plot of the empirical cumulative 
distribution against degree (or frequency) on double-log­
arithmic axes. A theoretical curve is then fitted to the 
apparently linear region of this empirical plot, either 'by 
eye' or using a curve-fitting algorithm such as least­
squares regression (Axtell 2001). The scaling exponent is 
estimated from the slope of the line. If least-squares 
regression is used, the standard error of the slope estimate 
is used as a measure of the uncertainty of the scaling 
exponent. 

This is a very poor statistical approach to the estimation 
of the scaling exponent as the assumptions justifying least­
squares regression do not hold. First, the empirical values 
are highly correlated (typical sequential correlations are 
0.7 or higher). This is especially true for the values for 
higher degrees where the sequential correlation 
approaches unity. The additional information in the latter 
points is very small, and visual trends are as likely to be 
caused by the high correlations as to be real. For this rea­
son, considering only the upper tail of the distribution and 
inferring a pattern is a very dubious practice. Second, the 
statistical variation in the values is not constant but 
increases rapidly with the degree (typically by an order of 
magnitude). This is caused by the logarithmic nature of 
the plot and the decreasing probabilities. Third, it is usu­
ally the procedure to exclude values from the plot that 
correspond to zero frequencies (e.g. fig. 2 in Liljeros et al. 
2001). These points contain a great deal of information 
on the degree distribution, and their exclusion introduces 
bias into the estimates. Fourth, the high-degree frequencies 
are sensitive to misreporting and population heterogeneity 
(e.g. Morris 1993). While these can be adjusted for stat-
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istically, the least-squares and regression approaches are 
overly influenced by them. Finally, accessible statistical 
methodology, such as the likelihood approach applied 
here, exists that does not suffer from these defects. 

The only empirical estimates of scaling parameters in 
human sexual networks currently available come from an 
analysis of sexual history survey data carried out in 
Sweden, a country with an HIV/AIDS prevalence of less 
than 1%, and this analysis was subject to the methodolog­
ical problems described above. A critical test of the 
adequacy of the current formulation of sexual network 
scaling models will therefore come from estimating the 
scaling parameters using robust unbiased methodology in 
a variety of populations, including some with a clear epi­
demic. We estimate the scaling parameters of the hetero­
sexual-contact network in three populations: (i) Rakai 
district, Uganda; (ii) Sweden; and (iii) the USA. 

2. MATERIAL AND METHODS 

(a) Data 
We used local network data gathered from men and women 

as part of three large representative surveys of sexual behaviour. 
The Rakai district is an administrative unit of southern Uganda 
with a mature AIDS epidemic and an HIV/AIDS prevalence of 
ca. 16%. The primary mode of HIV transmission in Rakai is 
believed to be heterosexual. Data were collected as part of the 
Rakai Project Sexual Network Survey (Serwadda et al. 1995). 
Data for Sweden come from the 1996 'Sex in Sweden' survey 
based on a nationwide probability sample and financed by the 
(Swedish) National Board of Health (Lewin 1996). Data for the 
USA come from the National Health and Social Life Survey 
(NHSLS) (Laumann et al. 1994). Neither Sweden nor the USA 
is characterized by a generalized HIV/AIDS epidemic, with a 
national prevalence for both countries of less than 1%. For all 
surveys, we used the reported number of sexual partners in the 
last year as the estimate of individual network degree. Sample 
sizes are given in table 1. 

The degree distributions for the three samples are plotted in 
figure 2. In the recent network scaling literature, it is customary 
to plot sample degree distributions as (apparently) continuous 
survival plots on logarithmic axes (Amaral et al. 2000; Liljeros 
et al. 2001). That is, the log-probability of degree at least k is 
plotted against log(k). Such plots can be visually misleading on 
several fronts: (i) they suggest a continuous distribution of net­
work degree; (ii) they obscure the fact that there are frequently 
zero-frequency degrees for k < kmax in the sample; (iii) they do 
not represent those individuals who have been sexually active 
but had k = 0 for the sample interval; and (iv) they overemphas­
ize log-linearity because of the extreme autocorrelation in the 
tail. Figure 2 presents the degree distributions as raw frequency 
histograms, emphasizing their discrete nature and the occur­
rence of zero-frequency degrees. 

(b) Stochastic model 
The underlying stochastic model motivating the partnership 

distributions is essentially that of Simon (1955). It is based on 
two assumptions: (i) a constant probability (p- 2)/(p- 1) that 
the r + 1 th partnership in the population is initiated with a pre­
viously sexually inactive person; and (ii) the probability that the 
r + I th partnership will be with a person with exactly k partners 
is proportional to kf(k lr), where f(k lr) is the frequency of 
nodes with exactly k partnerships out of the r total partnerships 
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in the population. Simon called the limiting partnership distri­
bution of this process the Yule distribution, following the pion­
eering work of Yule (1924). Recent authors have referred to this 
process as 'preferential attachment' (Barabasi & Albert 1999). 
The probability mass function (PMF) of the Yule distribution 
(Johnson et al. 1992) is 

(p- 1)T(k)T(p) 
p(K=k)= T(k + p) ,p> 1, 

fork= 1, 2, ... , (2.1) 

where T(p) is the gamma function of p. The Yule distribution 
has power-law behaviour in the sense that p(K = k )lk -p is 
approximately constant for large k. The stochastic formulation 
requires p > 2, so the mean of the Yule distribution is 
(p- 1)/(p- 2). For p.;;; 3 the variance of the Yule distribution 
is infinite. Any value of p greater than 2 corresponds to a prefer­
ential attachment model. 

(c) Statistical inference 
Consider fitting a PMF pe(K = k) to survey information where 

8 is the parameter. For example, for the Yule model the para­
meter is p, the scaling exponent. We adopt a likelihood frame­
work to estimate the model parameters and compare the 
different models against each other. The likelihood framework 
provides a set of powerful tools for inference. Given a random 
sample of n individuals with reported degrees Ku ... , K., the 
likelihood of the model is 

n 

LPo(K=k;IK> kmin) kmin=O, 1, •••• (2.2) 
i= 1 

A maximum-likelihood estimator (MLE) for 8 is a value 8 that 
maximizes equation (2.2) as a function of 8. Formulae for the 
full data likelihoods are given in Handcock & Jones (2002). 

Although the statistical properties of the MLE can be analysed 
asymptotically, we employ bootstrap methods to quantify the 
small-sample properties of MLEs and to calculate confidence 
intervals (Efron & Tibshirani 1993). 

We adapt the model to allow for the possibility that the tail 
behaviour (i.e. k > I) of the degree distribution may differ fun­
damentally from the majority of the observations for which 
k = 0 or I (May & Lloyd 2001). We generalize the Yule model 
to be able to include parameters to fit the probabilities of lower 
degree (Handcock & Jones 2002). To choose the best-fitting 
Yule model for the observed data, we employed a Bayesian 
information criterion (BIC) approach to model selection 
(Raftery 1995). The BIC represents the integrated likelihood of 
a model and takes into account both the number of parameters 
a model uses and the sample size. Given a random sample of 
size n, (Ku ... , K.), the BIC is given by 

where d is the dimension of 8, and .(j is the generalization of 
_('to include k = 0, I, ... , kmin· 

3. RESULTS 

The results of the Yule model fits are given in table 1. 
For all populations apart from Rakai women, the best­
fitting model fitted the proportions with degree zero and 
one separately. 
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Table 1. Results of statistical inference for Yule model. Estimates of p are given with 95% bootstrap confidence intervals. kmin 

is the lowest degree to which the parametric model is fit for all k < kmin. 

country sex n kmin BIC p (95% CI) 

Uganda women 803 0 1070.45 17.04 (12.58, 25.19) 
men 621 1587.79 5.43 (4.32, 6.53) 

Sweden women 1335 1 2158.64 4.23 (3.60, 5.21) 
men 1476 3041.55 3.25 (3.01, 3.63) 

USA women 1919 3224.03 3.84 (3.34, 4.55) 
men 1506 3267.56 3.03 (2.80, 3.32) 

(a) (b) 

600 600 

400 400 

200 ~I 200 

0 0 
0 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 

degree degree 

(c) (d) 

@Ol @Ol 
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0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 

degree degree 

(e) (f) 

1200 1200 

800 Jl 800 

400 400 
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degree degree 

Figure 2. Reported degree distributions for (a,c,e) men and (b,d,f) women from the three population samples (a,b: Uganda; 
c,d: Sweden; e,f: USA). The plots are histograms showing the absolute number of observed degree k (including zeros). 

For all models but one, the interval estimate of the sca­
ling parameter falls above the range in which the Yule dis­
tribution has infinite variance (i.e. p > 3). The 95% 
confidence interval for p for men from the USA NHSLS 
sample includes values within the infinite-variance region. 

Elsewhere, we have shown the effect of conditioning on 
higher degree on the confidence intervals of the scaling 
parameter estimates for Swedish males (Handcock & 
Jones 2002). However, it is worth noting here that, in 
addition to reducing the 'goodness-of-fit' substantially and 
increasing the BIC, estimates based on high kmin (e.g. 4 
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or 5 as in Liljeros et al. (2001)) yield wildly increasing 
confidence intervals. 

4. DISCUSSION 

Using methods appropriate to the inference problem, 
we have estimated the scaling parameter of the Yule distri­
bution, the limiting distribution for the preferential attach­
ment process, for local sexual network data from three 
large datasets. The scaling parameter estimates indicate 
that the variances of the idealized degree distributions for 
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both sexes are finite in two out of the three populations, 
with the plausibility that p < 3 only for American men. 

The estimate of the Yule scaling parameter for Amer­
ican men was 3.03 and the confidence interval overlaps 
the region of infinite variance. However, the Yule distri­
bution was not the globally best-fitting model for the 
American data. In a separate paper (Handcock & Jones 
2002), we have developed a variety of stochastic models 
for sexual network growth and estimated the models using 
the same data analysed here. The best-fitting model for 
American men does not have a power-law tail, and there­
fore, has finite variance. 

The predictions of the model depend on the form of the 
population degree distribution. The intuition underlying 
power-law scaling models is that the tails of the degree 
distributions in human sexual networks are long and 
decrease relatively slowly. However, the extremely high 
values of the scaling exponents of the Yule model for most 
of the local networks indicate that the observed degree, in 
fact, falls off rapidly within the range of the data. Models 
with power-law tails fit the observed data because of the 
essentially L-shaped nature of degree distributions, where 
the great majority of people have low degree and a very 
small fraction have high degree. This observation suggests 
that a unitary behavioural process, such as preferential 
attachment, is unlikely to underlie empirical sexual net­
work degree distributions. 

This, of course, does not preclude more complex forms 
of preferential-attachment-like processes from contribu­
ting to the formation of sexual networks. One model that 
has been suggested is the so-called truncated power law 
distribution, which displays power-law behaviour below 
some characteristic ceiling K (Newman 2002). In a separ­
ate work (Handcock & Jones 2002), we compare a variety 
of models motivated by different stochastic processes 
using likelihood-based techniques for multi-model infer­
ence (Burnham & Anderson 2002). 

While the language of recent work may be novel in epi­
demiology, the interventions suggested by the putative 
power-law behaviour of sexual networks are not parti­
cularly radical, as has been suggested (Liljeros et al. 200 1; 
Dezso & Barahilsi 2002). Behavioural heterogeneity was 
recognized as an important contributor at an early stage 
in the HN/AIDS epidemic (Anderson et at. 1986) and 
degree-based interventions were proposed (Woolhouse et 
at. 1997). Targeting at-risk populations such as commer­
cial sex workers (Ford & Koetsawang 1999), truck drivers 
(Morris et at. 2000), army recruits (Nelson et al. 2002) 
and injection drug users (Neaigus 1999) has a proven rec­
ord in reducing disease incidence. 

Our results suggest that efforts to reduce pathogen 
transmissibility are not wasted. A sexual network with 
finite variance will have an epidemic threshold for positive 
transmissibility. Indeed, public health efforts aimed at 
reducing the transmissibility of HN have met with great 
success. Recently, Velesco-Hemandez et al. (2002) have 
argued that the use of high-activity anti-retroviral therapy 
and other public health interventions in San Francisco 
have brought the R0 value for HN in homosexual men 
below the threshold and, all things being equal, a slow 
endemic fade-out can be expected. Thailand's 100% con­
dom use intervention for commercial sex workers and 
army recruits has been a spectacular success in curbing an 
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incipient generalized AIDS epidemic (Ford & Koetsawang 
1999; Nelson et al. 2002). 

Much of the recent interest in the scaling of networks 
has focused exclusively on the behaviour of the degree dis­
tribution (Pastor-Satorras & Vespignani 2001; Liljeros et 
at. 2001; Dezso & Barahilsi 2002; Newman 2002), and 
some of this work proposes policy recommendations based 
on the inferred properties of the degree distribution 
(Liljeros et al. 2001; Dezso & Barabilsi 2002). However, 
there are other features of networks that could have a sub­
stantial impact on epidemic processes. Two structural 
properties of networks that have received some attention 
are concurrency and local clustering. Morris & Kretzsch­
mar (1995, 1997) have documented the impact of con­
currency in sexual networks on the speed and final size of 
epidemics. Networks characterized by moderate amounts 
of concurrency (holding degree distribution constant) pro­
duce larger epidemics faster. Watts (1999) has popu­
larized the concept of 'small world' networks, namely, 
those networks with high clustering and short minimum 
path length (relative to the Bernoulli graph). The joint 
effect of high clustering and short path length means that 
an epidemic could spread rapidly through a small-world 
network. Amaral et at. (2000) note that power-law net­
works can be small world networks, but power-law scaling 
of the degree distribution is not a necessary condition for 
the small world phenomenon. 

The limitations of the exclusively degree-based perspec­
tive of Liljeros et at. (2001) or Dezso & Barahilsi (2002), 
for example, are highlighted by the fact that infinite-vari­
ance networks can have dramatically different structures 
depending on the values of other network parameters, and 
that these different structures are expected to produce 
qualitatively different epidemic behaviour. In figure 1b,c, 
we present simulated networks with the same degree dis­
tributions as that of figure 1a. However, in both these net­
works, we further specified the propensity to form short 
paths between actors, a measure of clustering in networks 
(Wasserman & Faust 1994). Networks were simulated 
conditional upon the degree distribution used in figure 1 a 
using a Markov Chain Monte Carlo algorithm (Handcock 
2003). These are based on an exponential random-graph 
model for the network structure, and not simply on the 
marginal degree distribution (Frank & Strauss 1986). Fig­
ure 1 b shows an infinite-variance network with a high pro­
pensity for forming short paths, whereas figure 1 c presents 
an infinite-variance network with a low propensity. It seems 
highly likely that the epidemic behaviours on these net­
works, nonetheless characterized by the same infinite­
variance degree distribution, would be qualitatively differ­
ent. The network with low propensity for short paths yields 
isolated cliques of high connectivity, in contrast to the con­
nected giant component of the high-propensity network. 

The simple model of Newman (2002), assuming a 
power-law degree distribution and random mixing con­
ditional on the degree distribution, predicts that, for some 
of the observed values of p, an epidemic would be imposs­
ible. Possible explanations for this potentially counter­
intuitive result include: (i) a power-law does not actually 
describe the degree distribution; (ii) mixing is not random, 
but is a function of actor attributes; (iii) geographical- or 
social-locality effects segment the network; and (iv) there 
are substantial changes in network structure over time. 
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These observations highlight the need to exercise cau­
tion in developing public health policy from information 
on the degree distribution alone (Liljeros et al. 2001; 
Dezso & Barabasi 2002), regardless of the inferential pro­
cedures employed to characterize the network. 

The analysis we have provided here indicates that inter­
ventions aimed at reducing transmissibility still have the 
potential to eradicate STDs. Though sexual degree distri­
butions may have long tails, the models analysed here are 
characterized by finite variance. Both degree-based and 
transmissibility-reducing interventions have the possibility 
of lowering the reproductive rate of STD agents below the 
epidemic threshold and should continue to be pursued in 
the quest for STD elimination. 
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