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Abstract 
Many demographic problems require models for partnership formation. We consider a model for matchings 
within a bipartite population where individuals have utility for people based on observed and unobserved 
characteristics. It represents both the availability of potential partners of different types and the preferences 
of individuals for such people. We develop an estimator for the preference parameters based on sample 
survey data on partnerships and population composition. We conduct simulation studies based on the 
Survey of Income and Program Participation showing that the estimator recovers preference parameters 
that are invariant under different population availabilities and has the correct confidence coverage. 
Keywords: discrete choice, marriage markets, matching, survey on income and program participation, two-sided 
partnership 

1 Introduction to the two-sided matching market 
Many social processes of pair formation can be viewed as two-sided matching problems. These 
scenarios are prevalent in demography, economics, sociology, political science, and education, 
among other fields. For example, heterosexual marriages, job searching, and residency assign-
ments for medical school graduates all require members of two disjoint groups to mutually consent 
to form a relationship or match. Yet, the underlying mechanisms which dictate such processes are 
often opaque. We consider not only how an actor chooses from a set of actors from the opposite 
side, but also the interactions between pairs of actors in a choice situation and the stability of the 
matching result. Actors from opposing sides have to choose each other voluntarily in order for a 
‘match’ to occur. Of particular interest to many researchers is the role individual and societal pref-
erences play in the match-making process. 

These preferences are difficult to discern for multiple reasons. First, it is challenging to collect 
data which records complete information about characteristics of observed pairings and the 
pool of options from which each individual made a selection. Second, the final observed matchings 
are as much a result of the availability of different types of individuals as they are of individual 
preferences. For example, in the heterosexual marriage market, women may prefer men who 
are highly educated. However, a limit in the supply of men with this characteristic means that 
some women must either choose a partner with lower education levels or remain single. It is im-
portant to distinguish the effects of preferences from those of availability in the final matchings 
realized. This problem has long been recognized in demography and, as we will review in the 
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next section, has motivated an impressive body of literature without having been satisfactorily re-
solved (Choo & Siow, 2006; Dagsvik, 2000; Logan et al., 2008). 

Menzel (2015) proves a series of new mathematical results related to the asymptotic distribution 
of matching outcomes in a two-sided market. In this paper, we develop Menzel’s (2015) technical 
findings for applications in demographic studies of two-sided matching processes. We propose a 
revealed preferences model which, given an observed set of stable matchings in a large population, 
uses a re-parameterized version of Menzel’s (2015) equations to recover latent preference param-
eters in the population. These preference parameters are used to estimate the total utility of a given 
partnership, given the characteristics of the individuals in that partnership. To measure uncer-
tainty of parameter estimates, we also propose both an analytical and an empirical approach to 
compute confidence intervals. We conduct simulation studies to show that for realistic popula-
tions, the revealed preferences model reconstructs preference parameters that are invariant under 
different population availabilities. We also show that the proposed confidence intervals achieve 
appropriate coverage. 

The revealed preferences model can be generalized for applications where an individual is per-
mitted to have multiple relationships, as in the case of an employer and its employees (Yeung, 
2019). However, for the purposes of this paper, we focus only on the simpler case in which indi-
viduals have at most one partner, also known as one-to-one matchings. 

The paper is organized as follows: in Section 2, we provide background information on the gen-
eral two-sided matching problem and review existing literature which addresses the challenges of 
identifying individual preferences in such settings. In Section 3, we detail the proposed revealed 
preferences model and introduce relevant mathematical notation. We also address how we over-
come challenges in the identifiability of certain preference parameters. In Section 4, we discuss par-
ameter inference using a surrogate likelihood approach which depends on the sampling process 
through which the data were obtained. We also describe methods of computing standard errors 
for parameter estimates and constructing confidence intervals. In Section 5, we demonstrate appli-
cations of the revealed preferences model. We provide details on three simulation studies in which 
we attempt to recover known preferences using our proposed method. We present the results of 
these simulation studies in Section 6 which demonstrate the model’s accurate estimation of param-
eters. We conclude in Section 7 with a discussion regarding the implications of the results and ex-
amples of ways the revealed preferences model might be useful in other fields. 

2 Background 
In most social settings, relationships are constantly shifting over time. For example, marriages form 
and dissolve, employees join and leave firms, and students enroll in and drop out of schools. These 
complex movements are difficult to capture in any data set due to their continuous nature. To cir-
cumvent this problem in the context of marriages, we focus on newly formed partnerships in a given 
sample at a discrete point and assume that this organization of one-to-one matches is stable. 

The concept of stable matchings has been previously explored in depth by economists and sta-
tisticians. Stability is achieved when no two individuals who are not currently partnered with each 
other exist such that both individuals would prefer each other over their current partner. 
Furthermore, no person in a partnership would prefer to be single over their current partner. 
Gale and Shapley (see Roth & Sotomayor, 1990) showed that in large populations, there are vari-
ous stable matchings that can be realized. By assuming matching stability, we are able to assume 
that the observed data accurately reflect individual and societal preferences at that time point. 

One approach to study two-sided matching scenarios is through the use of two-sided discrete 
choice models, so called because individuals in the population have a set of discrete options with 
which they can match. The goal of two-sided matching models is to obtain the frequencies for the 
different types of partnerships that can occur, where the partnership type is defined by the combin-
ation of observable characteristics of the individuals in the partnership (Dagsvik et al., 2001). 

In general, discrete choice models statistically relate the choice decision to the decision maker’s 
attributes and the attributes of the alternatives available. Game theorists and statisticians initially 
proposed discrete choice models to understand agent preferences in one-sided settings. In these 
scenarios, each individual has a set of discrete possible choices. Essentially, there is a ‘chooser’ 
and a ‘chosen’. The agent in the role of chooser is the sole decision maker of their outcome,  
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although his decision may be affected by the decisions of other choosers around them. The one- 
sided discrete choice model estimates the utility the chooser would derive from every possible 
choice in his option set and assumes that agents make the utility-maximizing choice. The param-
eters of interest are the chooser’s preferences. 

However, the traditional one-sided discrete choice model is unsuitable for use in two-sided scen-
arios. First, as mentioned earlier, the option set of each agent is rarely observed completely. 
Second, the observed matchings in two-sided processes are no longer reflective of the preferences 
of a single individual, as both actors involved in the partnership must consent to the partnership. 
That is, rather than dividing the population into groups of ‘choosers’ and ‘chosens’, both individ-
uals in the partnership are choosers of each other. Each member of the partnership aims to maxi-
mize his or her own utility, and preferences may not necessarily be reciprocal. For example, highly 
educated women may have a preference for highly educated men, but highly educated men may 
not have a preference for highly educated women. 

Among others, Schoen (1981), Pollak (1986), and Pollard (1997) approached the two-sided 
matching problem to obtain the frequency distribution of match types. However, the methodolo-
gies they propose are limited in that they say little about the behavior of agents in the two-sided 
market. Thus, there is no apparent mechanism for detecting the underlying preferences which mo-
tivate the matchings. 

In contrast, Logan et al. (2008), Dagsvik (2000), and Menzel (2015) all theorize two-sided ver-
sions of the discrete choice model which consider the role of both preference parameters and avail-
ability of partners in matching markets and propose methodology which can implicitly be used to 
estimate said preferences. Logan et al. (2008) propose a model for bipartite populations where 
each side has a distinct utility function for partnerships with agents on the opposing side. In the 
case of heterosexual marriages, all men have an identically defined deterministic component to 
their utility which depends on the man’s own observed characteristics x and the characteristics 
of his partner z; similarly, all women have an identically defined deterministic component to their 
utility which depends on the woman’s own observed characteristics z and the characteristics of her 
partner x. Here, x ∈ X and z ∈ Z, where the sample spaces X and Z represent the set of possible 
types of men and women, respectively, and may be continuous or discrete. Unobserved character-
istics are accounted for in the utility by including an individual fixed effect term for each actor.  
Logan et al. (2008) assume that an individual’s unobserved option set within the local marriage 
market can be approximated by the observed sample distribution of characteristics. 

Logan et al. (2008) show that their proposed method for small populations could theoretically 
be used to compute maximum-likelihood estimates (MLEs) of preference parameters. Rather than 
basing their inference on the true likelihood of the observed match being realized, they propose 
inferences based on the likelihood that the observed match is stable. For computation of these es-
timates, they propose Bayesian inference based on Markov chain Monte Carlo (MCMC). 

The approach suggested by Logan et al. (2008) is limited in that the Bayesian inference works 
best for small populations. For example, the authors apply their method to make inferences about 
gender-based marital preferences using data from the National Survey of Families and Households 
(NSFH). With a sample containing 314 men and 360 women, they are able to compute parameter 
estimates for the two-sided model. 

However, the method cannot be used with large sample data sets such as the Survey of Income 
and Program Participation (SIPP), where the number of people of each gender exceeds 16,000 or 
the American Community Survey (ACS), where the number of people of each gender exceeds 
100,000. In such cases, the calculations required to update parameter estimates in each step of 
the MCMC process are extremely complex and often intractable. Additionally, when large pop-
ulations with multiple stable matching solutions are studied, the posterior distribution of the pa-
rameters may have multiple maxima, thereby also rendering the parameters unidentifiable. Logan 
et al. (2008) also note limitations in parameter identifiability when certain parallel terms are in-
cluded in the utility functions. 

Dagsvik (2000) focuses the identification and estimation of preference parameters in a closely 
related two-sided matching market model. He proposes constructing aggregate supply and de-
mand functions based on preferences on both sides of the matching market. When the asymptotic 
supply and demand functions are equal, they derive equilibrium equations for the number of part-
nerships achieved between individuals of specific types. These equations imply that availability of  
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partners and personal preferences are asymptotically separable in their relationship to the distri-
bution of matching outcomes in a large population. This is a significant finding because, intuitive-
ly, the ability of people to achieve their preferred partnership outcome is constrained by the 
existence of partners. Dagsvik (2000) then shows that these equations can be manipulated to ob-
tain point estimates of preference parameters. However, methodology for analytically computing 
standard errors for these estimates is not presented. In addition, the results only apply to discrete 
agent types. 

Nevertheless, the insights by Dagsvik (2000) lay important groundwork for the work done by  
Menzel (2015). Specifically, Menzel (2015) proves that the relationships suggested by Dagsvik 
(2000) hold true for large populations. Menzel (2015) derives equations which establish a rela-
tionship between the preference parameters and availabilities of men and women of each type 
in the population and the limiting distribution of types of matches across the possible outcomes. 
These calculations prove that in a large population, the interdependency between availability and 
preferences can be accurately modeled, and therefore that preferences can be recovered independ-
ently of the population availability context. Menzel (2015) then proposes that the relationship he 
develops can be used to construct a likelihood function for observing a particular matching. His 
results also apply to continuous agent characteristics. 

We develop the results of Menzel (2015) to derive reparametrized equations which allow 
asymptotically stable estimates of the proportions of single and partnered persons of each type 
in the population. We propose a subclass of two-sided discrete choice models which we refer to 
as revealed preference models. In this subclass of models we, like Logan et al. (2008), Dagsvik 
(2000), and Menzel (2015), focus on bipartite networks. Actors in the network are divided into 
two distinct groups. Edges, which represent partnerships, form only between members of oppos-
ing groups. Whereas Logan et al. (2008) assume that the full opportunity set of each actor is ob-
served, we allow agents of different observed types to have different opportunity sets (Yeung, 
2019). The goal of our study is to extend Menzel’s (2015) findings to estimate a set of latent struc-
tural parameters that describes the decision-making behavior of a given population which led to 
the observed matching outcome. The difficulty of this problem is that the set of alternatives for 
each actor is not generally observed and determined endogenously in the market. Our proposed 
model utilizes key findings from Menzel (2015) about the limiting distribution of matches in a 
large population and applies them to estimate preference parameters based on an observed distri-
bution of matches. We extend Menzel (2015) by developing a modification of his estimator that 
corrects for bias in small populations across a range of sample sizes and sample fractions. 

Our study extends from the non-transferable utility assumption following Dagsvik (2000),  
Logan et al. (2008), and Menzel (2015). Variants of this model have been used to represent 
decision-making in a matching market that assumes transferable utility (TU) within partnerships, 
with two recent studies by Dupuy and Galichon (2014) and Chiappori et al. (2017) building on a 
TU framework developed by Choo and Siow (2006). We note here only the basic commonalities 
and differences between the TU model of Choo and Siow (2006) and the NTU model of Menzel 
(2015). The TU model is grounded in the economic theory of Becker’s (1973, 1974) model of mar-
riage. It requires the key assumption that the members of a couple engage in within-couple ex-
changes of utility-providing goods and services. Choo and Siow (2006) interpret these 
exchanges as determining ‘…each spouse’s share of responsibilities within a marriage’. The major 
statistical modeling implication is that in a TU model, the choosing individual only considers the 
prospective match’s observable characteristics (Chiappori, 2020). In contrast, within the NTU 
framework, there is no similar exchange of utility-providing goods and services, and the individual 
is influenced by the prospective match’s observable (to the researcher) characteristics and the char-
acteristics that are to the researcher unobservable. In the NTU case, increased availability leads to 
increased propensity to find a match. 

3 Revealed preferences model 
To facilitate our discussion of the revealed preferences model, we will discuss the problem within 
the context of heterosexual marriages within a two-sex population unless otherwise noted. In this 
setup, we consider a population with two distinct groups, and individuals are either male or fe-
male. At any given point in time, individuals have at most one partner of the opposite sex, and  
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they also have the outside option to remain single (unpartnered). Both the male and the female 
must agree to the partnership for that partnership, or ‘marriage’, to be observed. 

Individuals evaluate their marital options using a utility function, which contains a deterministic 
and random component. Actors of the same gender are assumed to have deterministic components 
to their utility functions that depend on their own observed characteristics x and those of their po-
tential partners, z. The random component of the utility function accounts for the fact that agents’ 
characteristics are only partially observed. Agents choose the partner from available options who 
will maximize their own total utility. The latent parameters in the deterministic component of the 
utility function which govern this pair formation are commonly known as ‘preference’ parameters 
in the sense that they represent how actors would choose among different alternatives if given a 
choice (Logan, 1996a; Logan et al., 2008). 

We consider a population with Nw women and Nm men, so that the total population size is 
N = Nw + Nm. Nh represents the number of households in the population, where a household is 
an entity consisting of either a single (unpartnered) man or woman or a partnered couple, so 
that Nh ≤ N, and Nh = N only when all individuals choose to remain single. Using the same no-
tation introduced in Section 2, we observe a p-vector of covariates x ∈ X on the women and a 
q-vector of covariates z ∈ Z on the men. Let xi and zj denote the observed attributes of woman i = 
1, . . . , Nw and man j = 1, . . . , Nm, respectively. The equations in this section are written generally 
so that the elements of x and z may be continuous, discrete, or a combination of the two. For ease 
of presentation, however, in the simulation studies in Section 6 where we apply the revealed pref-
erences model, we assume that x and z are discrete. 

Actors may perceive potential partners differently based on their own characteristics. Thus, the 
perceived utility gained by partnering with a particular opposite-sex individual may differ from 
one decision maker to the next. However, all actors are assumed to choose the partner within their 
respective choice sets that maximizes utility. Given the utility-maximizing behavior of the decision 
makers, we define the utility gained by woman i with observed attributes xi from partnering with 
man j with observed attributes zj as 

Uij = U(xi, zj | θ∼
W)

􏽼������􏽻􏽺������􏽽
deterministic
component

+ ηij
􏽼􏽻􏽺􏽽

unobserved random
component

, (1) 

where θ
∼

W is the set of parameters denoting the woman’s preferences. The deterministic part of the 

utility functions depends on variables representing the respective types of women and men. 
Similarly, we define the utility gained by man j with observed attributes zj from a partnership 
with woman i with observed attributes xi as 

Vji = V(zj, xi | θ∼
M)

􏽼�������􏽻􏽺�������􏽽
deterministic
component

+ ζ ji
􏽼􏽻􏽺􏽽

unobserved′ ;random
component

, (2) 

where θ
∼

M is the set of parameters representing men’s preferences. From this point forth in the pa-

per, we will use tilde below a Greek letter to refer to a vector. 
Following Menzel (2015), we assume that unobserved random components of the utility func-

tions as defined in Equations (1) and (2) are independently and identically distributed draws from 
a distribution in the domain of attraction of the extreme-value type-I (Gumbel) distribution. This 
domain includes Exponential, Gamma, Gaussian, Lognormal, and Weibull distributions. Here, 
we will focus on the Gumbel itself, but note our model and methods are generalizable. 

3.1 Model specifications 
Having introduced the general setup of a two-sided discrete choice model, we now go into detail 
about model forms for the deterministic and random utility components. We focus on the special 
case where the deterministic components of the utilities in (1) and (2) are additive linear functions;  
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however, other choices of utility functions can also be used (see Dagsvik, 1994 for inference of la-
tent preferences under other choices of utility functions). 

For additive linear utility functions, let 

U(xi, zj | θ∼
W) = θw0 +

􏽘Kw

k=1

θwkXk(xi, zj),

V(zj, xi | θ∼
M) = θm0 +

􏽘Km

k=1

θmkZk(xi, zj),

(3) 

where xi and zj are vectors measuring observed characteristics of woman i and man j, respectively. The 
woman’s deterministic utility consists of an intercept term θw0 and Kw functions Xk(xi, zj) which re-
present utility that woman i derives from the partnership based on her perception of her own charac-
teristics and the characteristics of man j. For example, Xk(xi, zj) might be an indicator function that 
represents whether certain observed attributes are identical for the pair (i.e., the partnership is hom-
ogamous). The corresponding Km functions for the man’s side are denoted as Zk(xi, zj). Here, θ

∼
W = 

[θw0, θw1, . . .θwKw ]
T and θ

∼
M = [θm0, θm1, . . .θmKm ]

T are the preference parameters. 
The random component of the utility model accounts for unobserved information about indi-

viduals in the data which may impact partnership choices. The random terms are assumed to be 
identically distributed draws from an extreme-value type-I (Gumbel) distribution. 

We additionally define the random utility for the choice of remaining single as Menzel (2015) 
did, so that 

Ui0 = 0 + max
k=1,...,Nδ

m

{ηi0,k},

Vj0 = 0 + max
k=1,...,Nδ

w

{ζ j0,k},
(4) 

for females and males, respectively. 
The single household utility specification in Equation (4) implies that the deterministic compo-

nent of the utility for an individual choosing to be unpartnered is 0. The non-deterministic com-
ponent of the single utility function of females is defined as the maximum of Nδ

m independent 
draws of ηi,k, the Gumbel-domain-of-attraction distributed random term of the male partnered 
utility function presented in Equation (1). Similarly, the non-deterministic component of the single 
utility function for males is the maximum of Nδ

w independent draws of ζ j,k from Equation (2). A 
interpretation for this formulation is that in a market of Nm men, woman i also considers Nδ

m out-
side latent non-market alternatives (and vice versa for men). 

We focus on the case where ηi,k and ζ i,k are i.i.d. Gumbel. Since the maximum of Nδ
m i.i.d. 

Gumbel random variables is also Gumbel distributed with the location parameter increased by 
δ log Nm, the hyperparameter δ effectively sets the expected utility for an individual choosing 
to be unpartnered. We choose δ based on prior expectations of how the proportion individuals 
in the population who are single will change for different market sizes. For this model, we set 
δ = 1/2. This specification ensures that the share of singles in the market is stable for different mar-
ket sizes (Menzel, 2015, Assumption 2.2). Intuitively, increasing the value of δ will make the 
choice of remaining single more attractive in large populations, while decreasing the value of δ 
makes the single option less attractive. 

3.2 Large-population approximation 
Let w(x) be the number of women in the population with characteristics x and m(z) be the number 
of men in the population with characteristics z. For notational convenience, let w̅(x) = w(x)/N and 
m̅(x) = m(x)/N. 

Consider a population with utilities drawn from models (1), (2), (3), and (4). Then, the stable 
matching induces a probability distribution over the observed characteristics. Consider sampling  
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a random person from the population and their classification of matched or single. Let f (x, ∗) and 
f (∗, z) be the probability that the person is an unmatched woman of type x and an unmatched man 
of type z, respectively. Let f (x, z) be the probability the person is in a match between a woman of 
type x and a man of type z. Finally, let f̅ = {f (x, z), f (x, ∗), f (∗, z)}, x ∈ X , z ∈ Z. Together, f̅ de-
fines a distribution satisfying the overall normalization constraint 

∫ f (x, z) dx dz+ ∫ f (x, ∗) dx+ ∫ f (∗, z) dz = 1. (5) 

More specifically, 

w̅(x) = f (x, ∗) + f (x, ⋄ ),

m̅(z) = f (∗, z) + f ( ⋄ , z),
(6) 

where f (x, ⋄ ) is the probability the person is a matched woman of type x, 

f (x, ⋄) = ∫ f (x, z) dz,

f (⋄, z) = ∫ f (x, z) dx.

A major result of Menzel (2015) is that, under mild regularity conditions, if the population size is 
large and the matching is stable, the frequencies approximately satisfy the relations 

f (x, z) = 2 e
W(x,z | β

∼
)
f (x, ∗)f (∗, z) ∀x, z, (7) 

where the factor of 2 counts individuals rather than partnerships and 

W(x, z | β
∼
) = U(x, z | θ

∼
W(β

∼
)) + V(z, x | θ

∼
M(β

∼
)), ∀x ∈ X , z ∈ Z

is the sum of the deterministic components of the utilities and θ
∼

W(β
∼
) and θ

∼
M(β

∼
) are functions such 

that β
∼ 

parameterizes W(x, z |·). The solution must satisfy the population equilibrium conditions 

on the parameter values, β
∼
, 

f (x, ⋄)
f (x, ∗)

= ∫ 2 e
W(x,s | β

∼
)
f (∗, s) ds ∀ x,

f (⋄, z)
f (∗, z)

= ∫ 2 e
W(s,z | β

∼
)
f (s, ∗) ds ∀ z.

(8) 

The typical number of stable matchings possible increases exponentially with the population size. 
However, all of these stable matchings have the same limiting probability distribution (f̅ ) over the 
observed characteristics. 

Together, (6) and (7) make it possible to obtain estimates β̂
∼ 

of the preference parameters. 

3.3 Parametrization and identifiability 
We say that a parametrization of the model, β ∈ B, is large population identifiable if for each 
β1, β2 ∈ B with β1 ≠ β2 there exists a state of the covariates x and z such that 

P(c̅ | β1) ≠ P(c̅ | β2).

Based on Equations (7) and (8), and the expression 

W(x, z | β
∼
) = U(x, z | θ

∼
W(β

∼
)) + V(z, x | θ

∼
M(β

∼
)), ∀x ∈ X , z ∈ Z
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only the sum of the partnered individuals’ utilities is identifiable. U(x, z | θ
∼

W) and V(z, x | θ
∼

M) may 

not be separably identifiable when they are additive linear functions as in Equation (3) and include 
parallel terms. In general, let θ

∼
W(β

∼
) and θ

∼
M(β

∼
) be functions such that 

W(x, z | β
∼
) = U(x, z | θ

∼
W(β

∼
)) + V(z, x | θ

∼
M(β

∼
)), ∀ x ∈ X , z ∈ Z.

In this case, W(x, z) can be parameterized in terms of β
∼
. We will consider parametrizations, where 

β
∼ 

is identifiable. To emphasize the relationship between β
∼
, θ

∼
W , and θ

∼
M, we refer to the gender- 

specific preference parameters as θ
∼

W(β
∼
) and θ

∼
M(β

∼
) for the rest of this paper. 

3.4 Reparametrization of the model 
We can reparametrize these expressions to improve interpretability and ease computation. Define 
parameters g(x, ∗) and g(∗, z) via the equations 

f (x, ∗) =
w̅(x)eg(x,∗)

(1 + eg(x,∗))
,

f (∗, z) =
m̅(z)eg(∗,z)

(1 + eg(∗,z))
,

(9) 

so that g(x, ∗) and g(∗, z) both have range the real line. 
We can interpret g(x, ∗) as the log-odds that a women with characteristics x is single. Similarly, 

we can interpret g(∗, z) as the log-odds that a men with characteristics z is single. Hence, this rep-
arametrization is essentially from probabilities to logits. We will use g(x, ∗) and g(∗, z) in place of 
f (x, ∗) and f (∗, z) to ease computation and interpretability. Note that 

f (x, ⋄ ) =
w̅(x)

(1 + eg(x,∗))
,

f (⋄, z) =
m̅(z)

(1 + eg(∗,z))
, 

so that (6) is automatically satisfied and (7) becomes 

f (x, z) = pref(x, z)w̅(x)m̅(z) ∀x, z, (10) 

where 

pref(x, z) = 2
eW(x,z)+g(x,∗)+g(∗,z)

[1 + eg(∗,z)][1 + eg(x,∗)]
∀ x, z 

Equation (10) explicitly separates the availability component of the model (w̅(x)m̅(z)) from the 
preferences-related component (pref(x, z)). In this parametrization, (8) becomes 

e−g(x,∗) = ∫2
eW(x,s)+g(∗,s)m̅(s)

1 + eg(∗,s) ds ∀x,

e−g(∗,z) = ∫2
eW(s,z)+g(s,∗)w̅(s)

1 + eg(s,∗) ds ∀ z.

(11)   
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4 Data and inference 
4.1 Data 
The analysis depends on the sampling design that produces the data. Let c(x, ∗) and c(∗, z) be the 
sample counts of unmatched women of type x and unmatched men of type z, respectively. Let 
c(x, z) be the sample counts of matches between women of observed characteristics x and men 
of type z in the population. Finally, let c̅ = {c(x, z), c(x, ∗), c(∗, z)}, x ∈ X , z ∈ Z. Together, c̅ de-
fines the empirical version of the distribution f̅ . 

We define a household to be a unit which is either ‘single’ if it contains of a single, unpartnered 
person or ‘partnered’ if it contains two individuals in an exclusive partnership. This definition of 
household is different from the one often utilized in demography work, where households can con-
sist of a combination of unpartnered and partnered individuals, as well as their offspring. Single 
households are further differentiated by the gender and type of the individual living in it. Each part-
nered household is further differentiated by the combination of the type of female and the type of 
male who live in the household. Each household holds either exactly one single person of any gender 
or one married couple, and a household is characterized by the type(s) of the individual(s) in it. 

Our method can be applied with a broad range of complex survey sampling designs, with the 
requirement that they produce estimates of f̅ . Here, we focus on the situation where the data 
are a probability sample of the individuals in a population where the weights are ww

i for the ith 

woman and wm
j for the jth man. It is presumed that the weights are normalized via post- 

stratification to sum to population quantities over the covariates in the model. It is also presumed 
that the characteristics of the partner, if any, of sampled individuals are available. We take a super 
population framework, where the population is sampled from a super population process. 
Specifically, the N members of the population are independent and identical draws from a super 
population stochastic process. The sample of women is denoted {xi, zi, ww

i }nw
i=1, where zi are the 

characteristics of the women’s partner, if any. If the sampled women is single formally set zi 

to *. Similarly, the sample of men is {zj, xj, wm
j }nm

j=1.

Estimates of w(x) and m(z) may be available from auxiliary surveys. Otherwise, we can use the 
data alone and standard design-based estimates of w(x) and m(z), written as w̃(x) and m̃(z), re-
spectively. Note that these represent availabilities and do not depend on the preference parame-
ters. The parameters are then ψ

∼
= (β

∼
, {g(x, ∗)}x∈X , {g(∗, z)}z∈Z).

4.2 Large-population likelihood approach 
Had we observed the entire population, the likelihood for ψ

∼ 
would involve the complex depend-

encies between the individual choices and matchings in the population. Each of the matchings is 
interdependent. Our approach is to use as a surrogate for the likelihood for ψ

∼
, one based on the 

likelihood of the observed frequencies of pairings by covariates, c̅, and model (7) and (8). 
Specifically, we approximate the exact likelihood for ψ

∼ 
by 

lp − log-lik(β
∼
, g(x, ∗), g(∗, z) | {xi, zi, ww

i }nw
i=1, {zj, xi, wm

j }nm
j=1)

=
􏽘

x∈X

􏽘

z∈Z
c(x, z) log f (x, z) +

􏽘

x∈X
c(x, ∗) log f (x, ∗) +

􏽘

z∈Z
c(∗, z) log f (∗, z)

(12) 

The log-likelihood (12) can be written in terms of g(x, ∗) and g(∗, z) using (10). The values w̃(x) 
and m̃(z) replace w(x) and m(z) in these expressions. 

To obtain estimates, (12) can be maximized subject to the constraints expressed in (11) to pro-
duce the maximum large-population likelihood estimator (MLPLE), ψ̂

∼
. This was achieved via a 

sequential quadratic programming (SQP) algorithm for non-linearly constrained gradient-based 
optimization (Johnson, 2020; Kraft, 1994). The algorithm optimizes successive second-order 
(quadratic/least-squares) approximations of the objective function (via BFGS updates), with first- 
order (affine) approximations of the constraints. We note that there are many possible survey sam-
pling schemes in use, and the sampling could be at the individual level or at the household level. 
These alternative survey designs are straightforward to incorporate into the above equations and 
we do not explicate it here.  
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4.3 Correcting the estimator for bias and confidence coverage 
It is likely that the estimator of Section 4.2 will be biased primarily as it is based on a large- 
population approximation to the generating process followed by a number of statistical approx-
imations. As noted in Section 4.1, we take a super population framework, with N specifying the 
size of the draw from the super population to the population and n ≤ N the size of the subsequent 
draw of the sample from the population. There is added uncertainty associated with both steps 
(specifically, the large-population approximation at the first step and the sampling error at the se-
cond step). 

The large-population approximation does not take into account information in the matching 
that is not captured by the counts of matches and singles by type. In addition, the super population 
sampling distribution of these counts is not multinomial. While the utilities in Equations (1) and 
(2) are independent, the matches are interdependent and hence so are the counts. However, the 
counts are asymptotically (with N) sufficient for the parameters (Menzel, 2015) and the bias 
should be smaller for large population sizes. 

To address this, we propose using bootstrap procedures to estimate the sampling distribution of 
the estimator and correct for bias and confidence coverage. We propose two versions of this boot-
strap: a parametric version that is preferred where computationally feasible and a classical version 
to be used for large population sizes. 

4.3.1 Parametric bootstrap 
If the population size is small (e.g., less than 20,000), we can generate the (stochastic) relational 
utilities for all population members using Equations (1), (2), and (4) at the MLPLE parameter val-
ues. We can then use the Gale–Shapley algorithm to achieve a stable matching for that population. 
This matching is from the population generating process of the data. We follow it with a sampling 
of size n using the sampling design of the data including survey weights (e.g., stock-stock, stock- 
flow, census). We repeat this process b times, so that we have b bootstrapped samples. We fit the 
revealed preferences model to each of the b samples and obtain the bootstrapped parameter esti-
mates for a single parameter ψ

∼
, which we denote as ψ

∼

∗ = [ψ
∼

∗

(1)
, ψ

∼

∗

(2)
, . . . , ψ

∼

∗

(b)
]. Doing so requires us 

to re-solve a constrained maximization problem for each bootstrap sample. This can be computa-
tionally expensive but is simply parallelizable (as we have done in the software associated with this 
paper Handcock et al., 2022). 

The empirically estimated bias of ψ̂
∼
, denoted as 􏽤biasψ̂

∼
, is equal to the mean of the bootstrapped 

parameter estimates ψ
∼

∗ minus ψ̂
∼
. We then propose as our bias-corrected point estimator 

ψ̂
∼BC

= 2ψ̂
∼

− 1
b

􏽐b
i=1 ψ

∼

∗

(i)
. 

As we are drawing directly from the super-population generating and sampling processes, we 
believe this will provide a firm basis for bias-reduction and coverage correction for the census case. 

4.3.2 Large-population bootstrap 
The computational burden of the Gale–Shapley algorithm is large for large populations (e.g., 
N > 20, 000). In this case, we consider a classical bootstrap for survey data, simple random resam-
pling b data sets from the original data with replacement so that we have b sets of bootstrapped 
samples (Shao & Tu, 1995). As before, we fit the revealed preferences model to each of the b sam-
ples and obtain the bootstrapped parameter estimates for a single parameter ψ

∼
, which we denote as 

ψ
∼

∗ = [ψ
∼

∗

(1)
, ψ

∼

∗

(2)
, . . . , ψ

∼

∗

(b)
] and propose a bias-corrected point estimator appropriate for survey data 

ψ̂
∼BC

= ψ̂
∼

− N−n
n−1

1
b

􏽐b
i=1 ψ

∼

∗

(i)
− ψ̂

∼

􏼠 􏼡

(McCarthy & Snowden, 1985). 

In this scenario, N ≫ n so that sampling uncertainty dominates errors from the large- 
population approximation. We then appeal to survey sampling bootstrap asymptotics as justifica-
tion (Shao & Tu, 1995, Theorem 6.5). 

This procedure and its parametric complement appear to work well, as is borne out in the simu-
lation studies of Sections 5 and 6.  
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4.4 Measuring uncertainty of the estimates 
Once we obtain the parameter estimates ψ̂

∼
, a natural next step is to measure their uncertainty. 

The covariance matrix of the estimates can be approximated by a standard Central Limit 
Theorem argument. The approximate log-likelihood function, augmented by the constraints, is 

log-likA(ψ
∼
| {xi, zi, wwi}

nw
i=1, {zj, xi, wmj}

nm
j=1) (13)  

= lp − log-lik(ψ
∼
| {xi, zi, wwi}

nw
i=1, {zj, xi, wmj}

nm
j=1) +

􏽘|X|+|Z|

k=1

λkhk(ψ
∼
), (14) 

where {hk(ψ
∼
)}|X|+|Z|k=1 are constraints (10). Its Hessian is 

E
∂2log-likA

∂ψ
∼

∂ψ
∼
′

⎛

⎝

⎞

⎠ = H J
JT 0

􏼒 􏼓

, (15) 

where H is the Hessian of (12) with ijth element E ∂2lp−log−lik
∂ψ

∼
∂ψ

∼
′

􏼒 􏼓

and J is the Jacobian matrix of the 

constraints with kjth element 
∂hk(ψ

∼
)

∂ψ
∼

. The estimate of the (asymptotic) covariance matrix of the 

MLPLE of ψ
∼ 

is the (1,1) block of the Moore–Penrose inverse of this matrix (Hartmann & 

Hartwig, 1996). 
The accuracy of the estimate of the covariance matrix depends on the application-specific accur-

acy of the various approximations. Thus, the analytically estimated standard errors may not ac-
curately reflect the standard errors of parameter estimates that are observed over repeated 
samples from the same population. However, they are easy and fast to compute. It is natural to 
consider robust (sandwich formula) variance estimators for this situation. However, these per-
formed poorly as they did not adequately take into account the constraints. 

As an alternative, we propose estimating standard errors empirically using the bootstrap proce-
dures of Section 4.3. Most directly, the empirically estimated standard error of ψ̂

∼
, denoted as 􏽢seψ̂

∼
, is 

equal to standard error of the bootstrapped parameter estimates ψ
∼

∗. 
We also consider various methods employing bootstrap procedures to compute confidence in-

tervals for each parameter. The percentile bootstrap, is the most straightforward of these methods. 
We denote ψ

∼

∗

(α) 
as the α percentile of the bootstrap parameter estimates ψ

∼

∗. The (1 − α)% percentile 

bootstrap confidence interval for parameter ψ
∼
, 

(ψ
∼

∗

(α/2)
, ψ

∼

∗

(1−α/2)
).

The second method we employ is the basic bootstrap confidence interval. For the parameter ψ
∼ 

with 

estimate ψ̂
∼
, we use the basic bootstrap procedure to obtain a (1 − α) confidence interval, 

(2ψ̂
∼

− ψ
∼

∗

(1−α/2)
, 2ψ̂

∼
+ ψ

∼

∗

(α/2)
).

We also consider a modified version of the studentized t bootstrap confidence interval. Here we 
obtain a (1 − α)% confidence interval as: 

(ψ̂
∼

− t∗(1−α/2)􏽢seψ̂
∼
, ψ̂

∼
+ t∗(α/2)􏽢seψ̂

∼
).
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We test the performances of the analytical confidence intervals as well as those of all three pro-
posed bootstrap confidence interval methods in Section 6.5 as part of our simulation studies. 

5 Simulation studies of model and inferential accuracy 
In this section, we illustrate the statistical properties of the revealed preferences model by conduct-
ing three simulation studies which we refer to hereafter as studies I, II, and III. In simulation study 
I, we show that the revealed preferences model accurately estimates underlying preference param-
eters which partially motivate matching outcomes in a population under different availability 
scenarios. In simulation study II, we investigate the relationship between the population size N 
and bias of preference parameter estimates produced by the revealed preferences model when cen-
sus data is available. In simulation study III, we investigate the relationship between the relative 
sample proportion nh/N and bias of preference parameter estimates when data are available for 
a sample of a population. In all three studies, we show the bias-corrected maximum large- 
population likelihood estimates (MLPLEs) for the preference parameters, adjusted using the meth-
odology proposed in Section 4.3. In addition, in studies II and III, we also show the MLPLEs prior 
to bias correction and compare them to the bias-corrected MLPLEs, demonstrating that the bias- 
corrected MLPLEs consistently improve estimate accuracy with little cost to precision. 

Together, the simulation studies shown in this paper make a significant contribution to existing 
literature as they clearly demonstrate the novel ability of our proposed revealed preferences meth-
odology to separate effects of preference and availability on matching outcomes. Previously,  
Menzel (2015) presented a simulation study with maximum-likelihood estimation of preference 
parameters. However, his results were extremely limited in that he considers populations that 
are restricted to size N ≤ 2, 000 and are generated under a single availability scenario. In contrast, 
we will show that the revealed preferences model recovers preferences for given sample or census 
data for a wide range of population (sample) sizes and under different availability scenarios. We 
also demonstrate the use of bias-correction procedures to improve the accuracy of our estimates. 
For researchers in other fields who will apply our model, we also consider several different spec-
ifications for the systematic component of the utility function to demonstrate the flexibility of our 
proposed approach. 

The remainder of this section is structured as follows: we first describe a general procedure for the 
three simulation studies. We then describe the two availability scenarios considered for generating in-
dividuals of different genders and education in each simulated population in Section 5.1. In Section  
5.2, we discuss the choice of β

∼

0 and the different utility model specifications considered for the function 

W(xi, zj | β
∼
). Once we have defined the availability scenarios and utility model specification, we then 

provide further detail about the different specifications of each study in Section 5.3. 
The basic procedure for the different simulation studies is the same. We begin by assuming a 

heterosexual marriage market in which males and females base partnership decisions on their 
own education level and the education of prospective spouses, as well as some other unobserved 
characteristics. We assume that the marginal distributions of gender and education within the 
population are known and represented as availability scenario A = {w̅(x), m̅(z)}. We also assume 
that the form of the partnership utility function W(xi, zj | β

∼
) and the preference parameters β

∼ 
for 

individuals in the market are both known. 
We suppose a population of size N which reflects the gender and education distributions of 

availability scenario A and the partnership preferences β
∼
. In simulation studies I.i and II, we as-

sume the data consist of information on the full simulated population, while for simulation studies 
I.ii and III, we suppose that the data are a sample of nh households from the simulated population. 
We then obtain the distribution of partnerships c̅, either empirically or via large-population ap-
proximation described in equation 7. We fit the revealed preferences model to the data to produce 
estimates β̂

∼ 
of the original preference parameters. 

5.1 Choice of availability scenarios 
We consider two marginal distributions for gender and education as our availability scenarios, re-
ferred to hereafter as A1 as A2. Both availability scenarios were chosen based on data from the 2008  
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Panel of the Survey of Income and Program Participation (SIPP), which has been made 
publicly available by the United States Census Bureau (U.S. Bureau of the Census, 2020). The 
2008 SIPP is a nationally representative panel study that followed individuals in sampled house-
holds from 2008 through 2012. Individuals responded to a set of core questionnaires administered 
every 4 months and in 2009, individuals over the age of 15 answered a series of supplemental survey 
questions on their marital history, and, if currently married, the date their most recent marriage 
began. 

We limit the analytic sample to individuals 18–59 years old who at wave 2 had married in the 
past year or were not currently married and were living in households that responded to Waves 1 
and 2 of the 2008 SIPP Panel as well as the marital history topical module administered at the 
Wave 2 interview. We focus on marriages that initiated no more than a year prior to the survey 
data to ensure we capture preferences at the time the marriage was initiated and to avoid bias 
due to marital dissolution, remarriage, or educational upgrading (Kalmijn, 1994; Schwartz & 
Mare, 2005). With these limitations, our analytic sample consists of 21,597 individuals, 1,040 
of whom had married in the last year, and 20,527 who remained single in the last year. The 
1,040 newly married individuals were by survey design married to another sample member, 
and, therefore, were in 520 couples in our sample. Within a given year, entering into a marriage 
is therefore relatively rare, with only 5% of individuals in our analytic sample having entered a 
new marriage. Thus preferences for marriage, meaning for getting married in a given year, are 
negative when we run the revealed preferences model in Section 6. This 2008 SIPP sample design 
corresponds to Menzel’s (p. 913) sample of households that are assumed to be drawn from a popu-
lation resulting from the stable matching. In our case, we have 21,077 households that include 520 
couples. 

The maximum education level attained by each individual is a categorical variable coded as 1 for 
less than a high school education, 2 for a high school degree, 3 for some college, and 4 for a bach-
elors degree or beyond. The education level of female i is stored as xi and the education level of 
male j is stored as zj. 

The first availability scenario A1 is factual (a population like the 2008 SIPP). In other words, it 
utilizes the gender and education distributions of the overall population based on the 2008 SIPP 
sample, and the partnership preferences of individuals are equal to preferences estimated in the 
2008 SIPP sample. In this availability scenario, about 49.1% of individuals are women and 
51.9% are men. 

Availability scenario A2 has the same marginal distribution of education and availability as the 
non-Hispanic Black population in the 2008 SIPP data. However, the preferences of individuals in 
availability scenario are kept the same as those of individuals in scenario A1. Under availability 
scenario A2 about 58.0% of individuals are females and 42.0% are males, which reflects a signifi-
cant gender skew not seen in scenario A1. In both A1 and A2, women are less likely to have less 
than a high school degree (education category 1) and are more likely to have completed any college 
(education category 3 or higher). 

In simulation studies I.i and I.ii, we simulate populations from both scenarios A1 and A2. Given 
the utility model specification, we assume that in both scenarios all individuals are characterized 
the same true preference parameters β

∼

0. By fitting the revealed preferences model on data from 

populations based on both availability scenarios, we show that preference parameter estimates 
are unbiased even as the availability of potential partners changes. Thereafter, in simulation stud-
ies II and III, we only simulate populations based on availability scenario A1 (Tables 1 and 2). 

Table 1. Availability scenarios 

Availability scenario Source of availability distribution Type  

A1 2008 SIPP full sample Total U.S. population in 2008 

A2 2008 SIPP non-Hispanic Black sample A realistic sub-population availability   
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5.2 Utility model specification 
We now discuss three different partnership utility specifications under which we test the perform-
ance of the revealed preferences model. We first consider a very simple model specification in 
which a female experiences a shift in utility, relative to her utility had she remained unpartnered, 
only when she partners with a man whose education level is the same as her own. The tendency for 
partnered individuals to share similar characteristics is reflected by homogamous pairings, and 
preference for such partnerships is referred to as homophily. We designate this specific model as 
the uniform homophily model because the shift in the deterministic component of the utility is uni-
form for all types (education levels) of individuals. The set of parameters for this model is denoted 
as β

∼

UH. The sum of woman i and man j’s utilities if they partnered with each other is 

Wij(xi, zj | β
∼

UH) = β0 + β1I{xi = zj}. (16) 

The uniform homophily model can be extended if we assume that the utility a woman derives from 
a partnership is based not only on whether she and her partner have equal education levels, but 
also on the education level itself. Once again, there is a corresponding utility function for males. 
We refer to this as a differential homophily model, where the change in utility depends not only on 
partners share a particular trait, but also on the value of trait considered. The set of parameters for 
this model is denoted as β

∼

DH, 

Wij(xi, zj | β
∼

DH) = β0 +
􏽘4

k=1

βkI{xi = zj = k}. (17) 

The third model we consider is a modified version of the saturated mix model, which includes 
every possible first-order term. In the saturated mix model, women and men both derive a different 
utility from each possible combination of education levels in the marriage. The full set of param-
eters is denoted by the vector β

∼

SM.

We are able to remove the intercept term β0 from the utility model because it is a constant value 
added to the matching utility of every pair. Thus, the sum of the utilities of two individuals in a 
marriage is given by 

W(xi, zj | β
∼

SM) =
􏽘

p,q

β p,qI{xi = p, zj = q}. (18) 

Table 2. Gender and education distributions under the two availability scenarios  

Males Females 

Education level % Population % of Males % Population % of Females   

Availability scenario A1 

1 (< high school)  7.4  14.5  5.3  10.9 

2 (high school)  14.5  28.5  11.2  22.8 

3 (some college)  19.5  38.4  21.0  42.9 

4 (≥ bachelors)  9.5  18.6  11.5  23.4 

Total  50.9  100.0  49.1  100.0  

Availability scenario A2 

1 (< high school)  7.2  17.1  7.1  12.3 

2 (high school)  13.8  33.0  15.3  26.4 

3 (some college)  15.9  37.8  25.4  43.7 

4 (≥ bachelors)  5.1  12.1  10.2  17.6 

Total  42.0  100.0  58.0  100.0   
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The term β p,q is the coefficient to an indicator which equals 1 if the couple consists of a woman of 
type p and a man of type q, and 0 otherwise. The saturated mix model consists of P × Q first-order 
parameters, where there are P possible types for women and Q possible types for men. 

Out of the 21,077 households in the SIPP analytic sample, there is 1 couple which consists of a 
woman with education level 1 and a man with education level 4, and 1 couple which contains a 
woman with education level 4 and a man with education level 1. The low counts make estimation 
of the θ1,4 and θ4,1 parameters difficult, as the joint utility of such couple is perceived as effectively 
negatively infinite. To facilitate estimation in these cases, we consider pairings between a woman 
with education level 1 and a man of education level 4 to have equal utility to a pairing between a 
woman with education level 2 and a man of education level 4. This ‘reduces’ the β1,4 and β2,4 pa-
rameters to a β1 or 2,4 parameter. Likewise, we can equate pairings between a woman with educa-
tion 4 and man with education 1 to pairings between a woman with education 4 and a man with 
education 2, so that β4,1 and β4,2 are replaced by β4,1 or 2. Thus, rather than using the fully saturated 
model with 16 parameters to estimate, we consider a reduced mix model with only 14 parameters, 
represented in vector form as β

∼

RM. The situation here is very similar to the ‘collapsing cells’ situ-

ation in contingency table modeling (Agresti, 2012, Section 10.1). 
We note that mix models are of particular interest to demographers who have access to large 

samples from populations. When the size of the available data is small as is the case for simulation 
studies II and III, however, model saturation can result in biased and highly variable parameter 
estimates and the less parametrized uniform homophily or differential homophily model may 
be preferable. 

The testing procedure for each model specification is the same, and we outline the basic proced-
ure which is used in simulation study I. We first choose a set of preference parameters β

∼

0 given the 

specific model that we assume is the underlying truth. This is done by using RPM to fit that model 
on the analytic 2008 SIPP data and calculating parameter estimates β

∼
. We assume that these esti-

mates are equivalent to the true preference parameters of individuals under all availability scen-
arios, so that β

∼

0 = β
∼
. In each simulated population, the known preferences β

∼

0 are applied to 

calculate total household utility for every potential partnership and form a stable matching. We 
fit the revealed preferences model on the observed stable matching outcome from the simulated 
population, constraining the MLPLEs to lower and upper bounds of −10 and 10, respectively, 
and utilize the methodology proposed in Section 4.3 to obtain bias-corrected MLPLEs. We com-
pare these estimates to the true underlying true preferences β

∼

0. We make minor modifications to 

this process for simulation studies II and III which are described below. 

5.3 Details for simulation studies I, II, and III 
Having established the availability scenarios and utility models, we will consider in this paper, we 
now provide further detail on each of the simulation studies. 

To demonstrate that the revealed preferences model produces unbiased estimates of β
∼ 

given ei-
ther an observed distribution of partnerships ̅c or a large-population approximation of ̅c, we con-
duct simulation study I in two parts. In study I.i, we simulate populations of size N = 6, 000. The 
generating distribution for the populations may be either availability scenario A1 or A2, and a 
population consists of individuals whose partnership utilities are either all determined by the dif-
ferential homophily utility model (Equation 17) or the reduced mix utility model (Equation 18). 
Thus, we consider four possible combinations of availabilities and utility model specifications, 
and we simulate 1,000 populations of each combination. For every simulated population, based 
on the utility function and β

∼

0 we obtain a stable matching using the Gale–Shapley algorithm. 

(Gale & Shapley, 1962) We then compute the empirical distribution of partnerships c̅ observed 
in this stable matching. Treating the simulated data as a census, we fit the revealed preferences 
model to obtain preference parameter estimates. 

Ideally, to obtain the distribution of partnerships within a population, we would always use the 
Gale–Shapley algorithm to first achieve a stable matching for that population. However, a large  
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amount of memory and computational power is required to create stable partnerships for large 
population sizes (e.g., greater than 20,000), since the household utility matrices {Wij}Nw×Nm 

and 
{Mij}Nm×Nw 

must be calculated for all potential pairings. In such cases, rather than implementing 
the Gale–Shapley algorithm to achieve a stable matching, we can approximate the empirical dis-
tribution of household types in the outcome and estimate preference parameters based on the 
large-population approximation (Equation (7)). In general, we suggest using the large-population 
approximation rather than replicating the actual matching process when working with simulated 
populations with more than 6,000 individuals. 

In study I.ii, we show that a large-population approximation of c̅ is suitable for unbiased esti-
mation of preference parameter estimates. We begin once again assuming that a population can be 
characterized by the same four combinations of availabilities and utility model specifications con-
sidered in study I.i. In this case, however, we suppose that N = 300 million within a single popu-
lation. Rather than simulating the population directly, we approximate the distribution of 
partnerships that would occur in a stable matching within such a population. We then sample 
about 20 thousand households from this approximated distribution, fit the revealed preferences 
model to the sample data, and obtain preference parameter estimates. For each combination of 
availability and utility model, we take 1,000 samples. 

We note here that populations generated using availability scenario A1 can be considered ‘fac-
tual’ in that they resemble the 2008 SIPP sample. In other words, both the underlying marginal 
distributions of gender and education A1 and the preferences β

∼ 
used to generate matchings in 

the simulated population are based on the 2008 SIPP. In contrast, populations generated using 
availability scenario A2 are ‘counter-factual’ as the population composition changes while prefer-
ences of the 2008 SIPP are maintained. 

In simulation study II, we simulate 1,000 populations each of size N = 60, 600, and 6, 000 with 
the assumption that the education and gender for individuals in all populations are generated 
based on availability A1 and all individuals have a uniform homophily utility model (Equation  
16) for partnership. We choose the uniform homophily model for this part of the study to avoid 
negatively infinite estimates at N = 60. We also make a small modification here to the model test-

ing procedure described previously; we do not set the true underlying preferences β
∼

0 equal to β̃
∼

UH
, 

the preference estimates obtained by fitting the uniform homophily model on the SIPP data. 

Instead, we increase the intercept term in β̃
∼

UH 
by a magnitude of 4 to increase the number of part-

nerships and facilitate stable estimation of preference parameters. For each simulated population, 
we use the Gale–Shapley algorithm to obtain a stable matching and fit the revealed preferences 
model to the observed c̅ for the entire population. We then compare the bias of the median par-
ameter MLPLEs and bias-corrected MLPLEs at each N as N increases. We also evaluate the effect-
iveness of using a bootstrap approach for bias correction of β̂

∼ 
at different N. 

For simulation study III, we simulate populations of size N = 6, 000 with the assumption that 
the education and gender for individuals in all populations are generated based on availability A1 

and all individuals have a differential homophily utility model (Equation 17) for partnership. For 
each stable population, after using the Gale–Shapley algorithm to reach a stable matching, we 
sample nh = 600, 1, 200, or 3, 000 households. Similar to simulation study II, rather than set 

β
∼

0 = β̃
∼

DH
, we increase the intercept term in β̃

∼

DH 
by 4 units to increase partnership rates. We fit 

the revealed preferences model to the sample data and compare the performance the mean 
MLPLEs and bias-corrected MLPLEs β̂

∼ 
as nh increases. 

6 Results 
6.1 Simulation study I.i: population data 
For simulation study I.i, we simulate populations of size N = 6, 000 from ‘factual’ availability A1 

and ‘counterfactual’ availability A2 and utilized the Gale–Shapley algorithm to perform stable 
matching on the individuals in each simulated population. The utility derived from each potential 
partnership was calculated based on β

∼

0 for a specified deterministic utility function and an  
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extreme-value Type-I distributed random error term. The utility a woman achieves by staying sin-
gle is equal to maximum value of 

����
Nw
√

random draws from an extreme-value Type-I distribution. 
The plots in Figure 1 show the distribution of the 1,000 bias-corrected MLPLEs for each com-

bination of availability scenario A ∈ {A1, A2} and two utility model specifications (differential ho-
mophily and reduced mix). The red lines in the plots represent the true β0 preference values which 
induced the Gale–Shapley matchings. Negatively infinite estimates are recognized via a point mass 
at value −6 with an area proportional to the number of such estimates. 

The medians and standard deviations, of parameter estimates for the match and reduced mix 
models are presented in Online Supplementary Material, Tables 3 and 4. For this and all following 
simulation studies, we compute standard deviation as a standardized version of the interquartile 
range. Tables with numerical results are in Online Supplementary Material, Appendix A. 

Although availability of individuals differs between A1 and A2, under both model specifications 
the revealed preferences model produces estimates of the true preference parameters which are 
about equal in accuracy and precision. Based on the plots for study I.i in Figure 1, the mean esti-
mates of all reduced mix model parameters except β1 or 2,4 appear to align with the true values fairly 
well in all availability scenarios. Furthermore, the estimates for all parameters, with the exception 
of β1 or 2,4, resemble a normal distribution. 

We note that when using the reduced mix model, for both availability scenarios the distribution 
of β̂1 or 2,4 displays a right skew. When the population has very few or no pairings of a certain type, 
the model estimates the total utility of such a pairing as very negative, if not infinitely so. In our 
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Figure 1. Distribution of bias-corrected MLPLEs in simulation study I.i: Population data with N = 6, 000 (1,000 
simulations).   
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implementation of this model, we impose an upper bound of 10 and a lower bound of −10 on all 
parameters. The high frequency of extremely negative values (≤ −6) in the parameter estimates of 
β1 or 2,4 indicates that in that specific population, there were very few or no households which con-
tained a matching between a woman with education level 1 or 2 and a man with education level 4. 

We ran simulation study I.i with both the differential homophily and reduced mix model spec-
ifications on a third availability scenario (results not shown), in which men outnumber women 3:1 
and educational attainment was highly asymmetric across genders. We found that in this artificial-
ly extreme case, the occurrence of highly negative estimates of β1 or 2,4 increased. Furthermore, the 
estimates of β1,3 and β2,3 also showed a strong right skew. In general, the standard deviation of the 
parameter estimates tends to increase as the population becomes more skewed. 

6.2 Simulation study I.ii: sampling from a large population 
In this simulation study, we simulate samples from large populations using availabilities A1 and 
A2, each with a nominal size of N = 300 million and a household sample size of nh = 21, 077 
(equivalent to the size of the analytic SIPP sample). We find that the resulting estimates are very 
robust to the population size as long as it is modestly large (e.g., N > 6, 000). We choose to study 
large populations as they are typical in demography. Brien (1997), for example, compares model 
performance for three levels of population aggregation of the marriage market: in descending or-
der, state, metropolitan area, and county group. He finds that the highest, state level of aggregation 
best explains marriage differentials between population subgroups. 

We employ a large-population approximation of stable matching outcomes in the simulated 
population that would be observed if individuals had true preferences β

∼

0, either based on a differ-

ential homophily or a reduced mix utility model. The plots in Figure 2 show the distribution of the 
1,000 parameter estimates β̂

∼ 
for each combination of simulating availability scenario and revealed 

preferences model specification. The red lines in the plots represent the true values β
∼

0 which we are 

attempting to recover. 
The first row of Figure 2 shows the distributions of the parameter estimates under the differen-

tial homophily model given large simulated population. The medians and standard errors of the 
differential homophily model parameters are presented in Online Supplementary Material, 
Table 5. 

In both availability scenarios, we observe that the mean estimate for each parameter in the dif-
ferential homophily model is very close to the true value. We also note that when simulating from 
availability scenarios A1 and A2, the standard errors of the parameter estimates stay about the 
same. However, we also ran this simulation study under the artificially extreme availability scen-
ario described in the results for study I.i (results not shown) and found that in that case the stand-
ard error nearly tripled for all parameters. 

The second row of Figure 2 shows the distributions of the parameter estimates under the re-
duced mix model when the simulated population size is large. Due to space constraints, we relegate  
Online Supplementary Material, Table 6, which shows the medians and standard errors of the par-
ameter estimates, to Online Supplementary Material, Appendix A. The revealed preferences model 
recovers the true preference parameters β

∼

RM,0 for all availability scenarios. Furthermore, the 

standard deviations of all parameter estimates stay similar across the availability scenarios. 

6.3 Simulation study II: small population sizes 
Simulation study II is carried out for two primary purposes. The first purpose is to illustrate how 
the revealed preferences model can be used with population data that includes small to very-small 
population sizes. The second is to show the relationship between population size N and estimate 
bias and the relationship between population size N and the effectiveness of our proposed bias cor-
rection methodology. 

We simulate 1,000 populations each of sizes N = 60, 600, and 6, 000 from availability scenario 
A1. We then use the Gale–Shapley algorithm to obtain a stable matching in the population, with 

true preference parameters β
∼

UH,0 based on the uniform homophily model and the inflated  
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intercept. The distributions of the maximum large-population likelihood estimates (MLPLEs) and 
the bias-corrected MLPLEs for each N are shown in Figure 3. The median estimates and standard 
deviations of the MLPLEs and bias-corrected MLPLEs given in Online Supplementary Material, 
Table 7, respectively. 

The panels in the first column of Figure 3 show model estimates for each parameter when 
N = 60. Each panel corresponds to a single parameter and shows two distributions; the left box 
plot shows the distribution of the MLPLEs and the right box plot shows the distribution of the 
bias-corrected MLPLEs. The second and third columns of Figure 3 show the same information 
for N = 600 and N = 6, 000. 

At each population size, the MLPLEs for both the intercept term and the uniform homophily 
preference term underestimates the true value β

∼

UH,0, though the bias of the latter term is of a 

much smaller magnitude than of the former. For both parameters, bias decreases as the population 
N increases. The standard deviation of the MLPLE estimate decreases substantially as N increases; 
we see in Online Supplementary Material, Table 7 that when N increases by a factor of 10, the 
standard deviation decreases by a factor of approximately 1/3 for the intercept parameter and 
1/4 for the homophily parameter. 

When bias correction methodology is applied, the bias in the estimates of both the intercept and 
the homophily parameter decreases for all population levels. The improvement of the estimates 
due to bias correction is especially clear for the intercept term. We also notice that for both 
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Figure 2. Distribution of bias-corrected MLPLEs in simulation study I.ii: Sample data with nh = 21, 077 from a 
population of N = 300 million (1,000 simulations)   
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parameters the difference in the mean MLPLE and mean bias-corrected MLPLE is greatest at 
N = 60. The bias-corrected MLPLEs have a slightly higher standard deviation than the 
non-bias-corrected MLPLEs, though the magnitude of this different decreases with population 
size N. 

6.4 Simulation study III: increasing relative sample size 
In simulation study III, we investigate the relationship between the sample size nh and the bias of 
MLPLEs when fitting the revealed preferences model, as well as the impact of bias correction meth-
odology on the estimates as sample size increases. 

Figure 4 shows the distribution of parameter MLPLEs and bias-corrected MLPLEs at each value 
of nh, while the medians and standard deviations of the estimates are given in Online 
Supplementary Material, Table 8. At all three values of nh, the mean MLPLE estimate underesti-
mates the true value. We see much less bias, though still a small amount (<0.05 units), in the es-
timates for the matching preferences at each education level. The variance of the MLPLEs 
decreases as the sample size increases. 

After bias-corrected methods are used, the difference between the truth β
∼

DH,0 and the bias-corrected 
MLPLEs becomes very small. As with simulation study II, we see that a consequence of bias correction 
is a slight increase in variance for nh = 600 and 1200. At nh = 3, 000, however, the impact of bias 
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Figure 3. Simulation study II: Distribution of uniform homophily MLPLEs and bias-corrected MLPLEs for different 
population sizes N; 1,000 simulations.   
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correction on the variance of estimates is ambiguous. While the variance increases with bias correction 
for the intercept parameters and the parameters indicating homogamy on the education levels 2 (high 
school education) and 3 (some college), the variance of the parameters indicating homogamy at edu-
cation levels 1 (less than high school) and 4 (college degree or higher) actually decreases. 

We repeated this exercise at N = 1, 000 and nh = 100, 200, and 500 (results not shown) and 
obtained results that were consistent with the earlier findings. Specifically, the MLPLEs showed 
some bias at all nh, with bias in the intercept MLPLEs being much higher than in other parameters. 
The bias-corrected MLPLEs were closer estimates of the true β

∼

DH,0. As nh increased, the variance 
of both the MLPLEs and the bias-corrected MLPLEs decreased. In general we find that as long as 
the sample size is large enough to ensure non-zero entries in ̅c are rare, the bias-corrected MLPLEs 
have high accuracy and improve in precision as nh increases. 

6.5 Confidence intervals and coverage probabilities 
To supplement the findings in simulation study I.ii, we calculate 95% confidence intervals for bias- 
corrected MLPLEs based on samples from simulated populations of size N = 300 million, and we 
compare the empirical coverage rates of the true parameter values to the 95% threshold. 
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Figure 4. Simulation study III: Distribution of differential homophily MLPLEs and bias-corrected MLPLEs for 
different nh, where N=6,000; 200 simulations.   
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To calculate empirical coverage rates, we simulate S = 200 samples from large large populations 
from availability A1. For each sample, we fit the reduced mix model and produce analytical 95% 
confidence intervals based on the approximated Hessian matrix, as detailed in Section 4.4. We 
additionally implement the basic, percentile, and modified studentized t bootstrap methods also 
discussed in Section 4.4 to construct empirical 95% confidence intervals. An illustration of the 
coverage results from a single set of 200 simulations are presented for selected parameters in  
Online Supplementary Material, Figures 6 and 7 in Appendix B. 

The process of simulating 200 populations and constructing confidence intervals for each simu-
lation was repeated 40 times, so that we observed an empirical coverage rate across 200 simula-
tions 40 times. We show the mean coverage rates of the reduced mix model parameters using the 
various confidence intervals in the right-hand panel of Figure 5. The dotted black line at 0.95 de-
notes the 95% threshold we aim to achieve. The analytical confidence intervals appears to be the 
most volatile; across the 14 parameters estimated in the reduced mix model, the mean coverage 
rate of the analytical confidence intervals ranged from 19.3 to 99.2%. The three bootstrap confi-
dence intervals have a more consistent performance; within each interval type, the range of the 
mean coverage rates across the parameters is about 2 percentage points. The basic and percentile 
bootstraps both display undercoverage, with mean coverage rates around 90% across parameters. 
The studentized t interval achieves mean coverage rates closest to the 95% target. 

We pay special attention to the coverage rates for the β1 or 2,4 parameter. This parameter corresponds 
to a preference for couples with a female of education level 1 or 2 and a male of education level 4. As 
noted earlier, the number of couples of this type in the SIPP data and in the simulated samples was very 
small. The mean coverage rates of the percentile, basic, and analytical confidence intervals are all low-
est for this parameter, likely because of the low count of such couples in the data. We note, however, 
that the performance of the studentized t interval does not appear to be affected by the low couple 
count. In fact, the mean coverage rate of the studentized t interval for β1 or 2,4 is 95.3%. 

ledoMxiMdecudeRledoMylihpomoHlaitnereffiD

0.900

0.925

0.950

0.975

1.000

in
te

rc
ep

t

ho
m

op
hi

ly
 e

.1

ho
m

op
hi

ly
 e

.2

ho
m

op
hi

ly
 e

.3

ho
m

op
hi

ly
 e

.4

Parameter

M
ea

n

0.2

0.4

0.6

0.8

1.0

m
ix

.e
_1

.1

m
ix

.e
_2

.1

m
ix

.e
_3

.1

m
ix

.e
_1

.2

m
ix

.e
_2

.2

m
ix

.e
_3

.2

m
ix

.e
_1

.3

m
ix

.e
_2

.3

m
ix

.e
_3

.3

m
ix

.e
_4

.3

m
ix

.e
_3

.4

m
ix

.e
_4

.4

m
ix

.e
_1

.4
_2

.4

m
ix

.e
_4

.1
_4

.2

Parameter

M
ea

n

Confidence Interval percentile basic studentized t analytical

Figure 5. Mean empirical coverage probability by bootstrap confidence intervals for model parameters (40 sets of 
200 simulations from Availability scenario A1).   
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The coverage rates shown Figure 5 were produced based on populations simulated from the 
‘factual’ availability scenario A1. We repeated the procedure to evaluate confidence interval cover-
ages using populations simulations from the ‘counterfactual’ availability scenario A2 (results not 
shown. We found no evidence that the change in population availabilities impacted the coverage 
rates of the bootstrap confidence intervals. 

We also repeated this process to evaluate the performance of confidence intervals for differential 
homophily model parameters. In this case, we found that the analytical confidence intervals were 
two to three times wider than the student t intervals and captured the true value 100% of the time 
for all parameters, indicating overcoverage. We again observed that the studentized t confidence 
intervals consistently achieved the highest coverage rate of the bootstrap procedures. The basic 
and percentile bootstrap 95% confidence intervals show slight undercoverage, falling between 
89.6% and 91.3% coverage. A plot of mean coverage rates by analytical and bootstrap confidence 
intervals for the differential homophily model is provided in the left panel of Online 
Supplementary Material, Figure 5 under Appendix B. We show coverage results from a single 
set of 200 simulations for selected parameters in the differential homophily model in Online 
Supplementary Material, Figures 8 and 9 in Appendix B 

7 Discussion 
The ability to extract preferences separably from availabilities is a key feature of the revealed pref-
erences model and methodology, which we propose in this paper. In simulation study I.i, we simu-
late a small population (N = 6, 000) and run the Gale–Shapley algorithm to obtain a stable 
matching. Given statistics of the types of matchings, we are able to compute parameter estimates 
which are very close to the true values. We note that Logan (1996b) was able to show a similar 
result for his initial special case of the model. 

In simulation study I.ii, we simulate a large population and obtain an approximate distribution 
of household types in a stable matching. We sample couples and individuals from this matching 
and then maximize (12) over the sample data to obtain parameter estimates, showing that the 
method accurately recovers true preference parameter values even under various different avail-
abilities of prospective partners. In both simulation studies I.i and I.ii, the distribution of the par-
ameter estimates appears Gaussian in most cases. The standard errors decrease when the 
population size is larger, as in simulation study I.ii. 

When there are very few or none of a certain type of couple in the data, the total utility of such a 
pairing is estimated be negative infinity. As an example, we refer to the estimates of β1 or 2,4 in simu-
lation study I.ii, shown in the first column of Figure 2. If we observed no couples in which a woman 
has education level 1 or 2 and the man has education level 4, then the parameter estimate for the 
utility model term indicating such a match is negative infinity. This artifact is a form of separation 
also seen for generalized linear models (Heinze & Schemper, 2002). The high concentration of 
parameter estimates for β1 or 2,4 under −6 correctly captures this and reflects the lower utility cor-
responding to such pairings. 

For both availability scenarios A1 (‘factual’) and A2 (‘counterfactual’) under the differential ho-
mophily model, the standard errors of the estimates in simulation study I.ii are smaller than the 
corresponding values in Simulation study I.i (small population scenario). As in simulation study 
I.i, the distributions of the parameter estimates appear to follow a Gaussian distribution. 

In simulation studies II and III, we investigated the performance of the revealed preference mod-
el under different population and sample sizes. In simulation study II we assumed access to popu-
lation data. 

We found that for different population sizes N, the bias-corrected MLPLEs provided accurate 
estimates of preference parameters with the variance of estimates decreasing inversely with N. This 
is a significant finding as the previous formulation of the model proposed by Menzel (2015) re-
quired n/N to be small. We show that even when n/N = 1, the bias-corrected MLPLEs obtained 
using bootstrap methods recover true preference for pairings. The bias-corrected MLPLEs are 
similarly effective in reduced estimate bias in simulation study III, in which we obtain samples 
of different sizes from populations of N=6,000 individuals. We note again that bias in the 
MLPLEs is mitigated through the bootstrap bias correction. Together, the findings of simulation 
studies II and III provide strong support for the use of bias-corrected MLPLEs to estimate  
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preferences in revealed preferences models and show that accurate estimates can be achieved for a 
wide range of n/N. 

We also evaluate different methods of accounting for uncertainty in our estimates. Based on re-
sults in Section 6.5, we believe that the approximation of the Hessian matrix leads to volatile ana-
lytical confidence intervals which deviate from the threshold coverage rate of 95%. These 
confidence intervals are often too wide or narrow to be useful. We also find that among the three 
bootstrap based methods for producing confidence intervals, the mean coverage probabilities of 
the studentized t interval were the closest to 95%, while the percentile and basic method-based 
confidence intervals demonstrate slight undercoverage. 

The revealed preferences model can be used to make inferences which are particularly useful in 
demographic studies. For example, the preference parameter estimates when we fit the reduced 
mix specification of the revealed preferences model to the 2008 SIPP data are given in column 3 
of Online Supplementary Material, Table 4. The estimated utility of pairings in which both indi-
viduals have the same education level is substantially higher than it is for pairings where individ-
uals have different education levels. Homophilous behavior is expected by researchers who study 
matching problems. It is also consistent with the findings of Logan et al. (2008), who presented 
results which implied a preference for homophily in race and religion in heterosexual marriages. 

An important issue not addressed by this paper is the identification of the effective population 
that constitutes the market. A useful additional concept is that of awareness, that is, the set of peo-
ple a person effectively chooses among. It is possible to model the probability that a person is 
aware of another as a function of observed characteristics of the individuals (e.g., geographic dis-
tance, age difference) (Menzel, 2015). Incorporating them requires a significant expansion of the 
model (for example, geographic distance is a continuous variable, requiring the integral version of 
the model). For a treatment of this, see Zhang (2022). 
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A. Supplementary Tables918

Table 3: Medians and standard deviations (SDs) of differential homophily model bias
corrected MLPLEs in simulation study I.i (1,000 simulations, N = 6, 000)

Availability
Parameter Truth A1 A2

˜
βDH,0 Median SD Median SD

intercept -3.439 -3.435 0.136 -3.425 0.133
homophily e.1 1.883 1.887 0.391 1.879 0.332
homophily e.2 0.868 0.886 0.310 0.875 0.290
homophily e.3 0.557 0.561 0.238 0.558 0.256
homophily e.4 2.191 2.198 0.243 2.194 0.308

The homophily t parameter is the coefficient of an indicator which equals 1 if both
partners have education level t.

Table 4: Medians and standard deviations (SDs) of reduced mix model bias corrected
MLPLEs in simulation study I.i (1,000 simulations, N = 6, 000)

Education Availability
Parameter Truth A1 A2

Female Male
˜
βRM,0 Median SD Median SD

1 1 -1.572 -1.565 0.401 -1.585 0.330
2 1 -2.877 -2.854 0.433 -2.837 0.389
3 1 -3.419 -3.374 0.477 -3.377 0.422
1 2 -3.209 -3.070 0.496 -3.097 0.406
2 2 -2.570 -2.561 0.277 -2.561 0.270
3 2 -3.256 -3.226 0.283 -3.247 0.269
1 3 -3.695 -3.619 0.627 -3.524 0.672
2 3 -3.348 -3.311 0.348 -3.328 0.306
3 3 -2.888 -2.867 0.216 -2.855 0.217
4 3 -3.211 -3.207 0.330 -3.186 0.397
3 4 -3.387 -3.365 0.372 -3.311 0.425
4 4 -1.270 -1.249 0.190 -1.257 0.274

1 or 2 4 -5.082 -5.139 4.128 -4.838 4.349
4 1 or 2 -3.883 -3.829 0.450 -3.839 0.441

Education level codes: 1 =<high school, 2 =high school, 3 =some college, 4 =≥bachelors
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Table 5: Medians and standard deviations (SDs) of differential homophily model bias
corrected MLPLEs in simulation study I.ii (1,000 simulations, nh = 21, 077)

Availability
Parameter Truth A1 A2

˜
βDH,0 Median SD Median SD

intercept -3.439 -3.437 0.072 -3.435 0.064
homophily e.1 1.883 1.889 0.180 1.875 0.181
homophily e.2 0.868 0.854 0.156 0.864 0.145
homophily e.3 0.557 0.544 0.127 0.553 0.127
homophily e.4 2.191 2.200 0.115 2.195 0.149

The homophily e.t parameter is the coefficient of an indicator which equals 1 if both
partners have education level t.

Table 6: Medians and standard deviations (SDs) of reduced mix model bias corrected
MLPLEs in simulation study I.ii (1,000 simulations, N = 21, 077)

Education Availability
Parameter Truth A1 A2

Female Male
˜
βRM,0 Median SD Median SD

1 1 -1.572 -1.585 0.180 -1.563 0.167
2 1 -2.877 -2.892 0.238 -2.873 0.207
3 1 -3.419 -3.421 0.230 -3.422 0.198
1 2 -3.209 -3.219 0.297 -3.210 0.273
2 2 -2.570 -2.584 0.146 -2.576 0.137
3 2 -3.256 -3.273 0.157 -3.261 0.137
1 3 -3.695 -3.745 0.335 -3.740 0.287
2 3 -3.348 -3.360 0.185 -3.343 0.178
3 3 -2.888 -2.893 0.115 -2.884 0.104
4 3 -3.211 -3.212 0.164 -3.230 0.206
3 4 -3.387 -3.388 0.200 -3.378 0.256
4 4 -1.270 -1.271 0.092 -1.264 0.128

1 or 2 4 -5.082 -5.069 0.410 -5.047 0.529
4 1 or 2 -3.883 -3.889 0.230 -3.891 0.240

Education level codes: 1 =<high school, 2 =high school, 3 =some college, 4 =≥bachelors
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Table 7: Simulation study II: MLPLEs and bias corrected MLPLEs for different N with
Availability A1 and uniform homophily preferences (1,000 simulations)

Parameter Truth Bias Correction N = 60 N = 600 N = 6, 000

˜
βUH,0 Median SD Median SD Median SD

intercept 0.558 No 0.007 0.465 0.179 0.151 0.218 0.052
Yes 0.485 0.533 0.509 0.171 0.520 0.059

homophily 1.170 No 1.086 0.580 1.117 0.168 1.147 0.053
Yes 1.120 0.630 1.159 0.182 1.166 0.058

Table 8: Simulation study III, MLPLEs for different nh with Availability A1 and
differential homophily preferences at N = 6, 000 (200 simulations)

Parameter Truth Bias Correction nh = 600 nh = 1, 200 nh = 3, 000

˜
βDH,0 Median SD Median SD Median SD

intercept 0.561 No 0.223 0.142 0.227 0.092 0.218 0.057
Yes 0.531 0.156 0.537 0.107 0.519 0.064

homophily e.1 1.883 No 1.859 0.363 1.848 0.262 1.844 0.153
Yes 1.891 0.388 1.884 0.294 1.886 0.170

homophily e.2 0.868 No 0.872 0.262 0.861 0.186 0.870 0.121
Yes 0.866 0.295 0.846 0.199 0.872 0.129

homophily e.3 0.557 No 0.567 0.216 0.569 0.141 0.581 0.087
Yes 0.551 0.242 0.541 0.159 0.564 0.097

homophily e.4 2.191 No 2.122 0.269 2.106 0.178 2.110 0.119
Yes 2.206 0.281 2.173 0.197 2.193 0.126

Education level codes: 1 =<high school, 2 =high school, 3 =some college, 4 =≥bachelors
The homophily e.t parameter is the coefficient of an indicator which equals 1 if both

partners have education level t.

B. Confidence intervals from 200 simulations919

Figures 6 and 7 show the analytical confidence intervals and the empirical bootstrap con-920

fidence intervals produced over 200 simulations for the β4,4 and β1 or 2,4 parameters in the921

reduced mix model. These figures coincide with the simulation results related to uncer-922

tainty estimates described in Section 6.5. The horizontal axis gives the simulation index,923

and the vertical axis shows the range of the interval. The solid point at the center of each924

interval indicates the parameter estimate in the bootstrapped sample at that index. The925

horizontal red line in each plot represents the true parameter value, and intervals in blue926

are those which failed to include the true value. We provide the empirical coverage rate of927

the parameter for each method of confidence interval in the top-right corner of the plots.928

The first three panels of Figure 6 show the 200 confidence intervals for β4,4 produced929

by each of the three bootstrapping methods which were described in Section 4.4. The930

three methods for constructing the bootstrapped confidence intervals produce very sim-931

ilar results, with the basic bootstrap method achieving 95% coverage and the percentile932

and modified studentized t methods achieving 96% coverage. Furthermore, the confidence933

intervals appear to have similar lengths across the three methods.The bottom-right panel934
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shows the analytical confidence intervals produced for β4,4 based on the same simulated935

populations. We note that the analytical 95% confidence intervals only achieve 83% cov-936

erage in this set of simulations, indicating undercoverage.937

The performances of the three bootstraps methods are more varied more when eval-938

uating the β1 or 2,4 parameter. The modified studentized t and the percentile bootstrap939

confidence intervals achieve a coverage rate of 88% and 86.5%, respectively, while the basic940

bootstrap intervals achieve much lower coverage of 78.5%. Furthermore, the percentile and941

studentized t methods produce intervals which are generally wider than those produced942

by the basic bootstrap method. The analytical confidence intervals in the bottom-right943

panel of the figure are so narrow that few of them capture the true value, resulting in a944

poor coverage rate of 10.5%.945
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Fig. 6: Coverage of β4,4 in reduced mix model over 200 simulations
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Fig. 7: Coverage of β1 or 2,4 in reduced mix model over 200 simulations
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Fig. 8: Coverage of intercept β0 in differential homophily model over 200 simulations
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Coverage probability= 0.880
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Fig. 9: Coverage of βhomophily e.1in differential homophily model over 200 simulations
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