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Social scientists are increasingly interested in techniques for comparing changes in dis-
tributional shape in addition to mean levels. One such technique is based on the relative
distribution, a nonparametric summary of the information required for scale-invariant
comparisons between two distributions. The relative distribution is being used by so-
cial scientists to represent and analyze distributional differences, enabling researchers
to move well beyond comparisons of means and variances in a simple intuitive way. The
authors develop a nonparametric estimator for the relative density function. They study
its asymptotic properties, derive computable expressions for the asymptotic variance,
and consider local bandwidth selection. They also illustrate how the relative density
can be decomposed into a component due to location differences and a component due
to shape differences. This decomposition identifies that component of interdistributional
dissimilarity due to interdistributional inequality. The methods are illustrated by com-
paring the earnings distributions of working women to that of working men based on
the 1990 census and to women from 1967 to 1996.
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1. INTRODUCTION

n sociological research, differences among groups or changes
over time are a common focus of study. While means and

variances are typically the basis for the methods used in this re-
search, the underlying social theory often implies properties of dis-
tributions that are not well captured by these summary measures.
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Consider some of the current controversies regarding growing in-
equality in earnings, the effects of job change on permanent wages,
and racial differences in test scores. The distributional differences
that animate the debates in these areas are complex. They com-
prise the usual mean-shifts and changes in variance but also more
subtle comparisons of changes in the upper and lower tails of the
distributions. Survey and census data on such attributes contain
a wealth of distributional information, but traditional methods of
data analysis leave much of this information untapped. A good ex-
ample of the limitations of the traditional summary measures is the
debate surrounding the gender wage gap. While the ratio of me-
dian earnings of women to men was stable in the middle half of
past century, it began to narrow in the 1980s, and this led to predic-
tions that gender inequality may be history. However, an analysis of
the distributions of men’s and women’s earnings makes it clear that
progress toward gender equality of earnings was largely limited to
women in the bottom end of the earnings distribution (Bernhardt,
Morris, and Handcock 1995). Readers interested in trends in the
gender wage gap can find more information in the review article by
Morris and Western (1999). Many other examples of the failure of
the traditional numerical summary methods are given in Handcock
and Morris (1998, 1999). Other illustrations using census and Cur-
rent Population Survey information on the earnings distributions of
women and men are given in this article.

The relative distribution is a tool for the comparison of distribu-
tions in terms of their differences in shape. It appears, explicitly and
implicitly, in many independent research areas (Parzen 1992; Cwik
and Mielniczuk 1993; Holmgren 1995; Li, Tiwari, and Wells 1996).
Recently, it has been used to study changes in economic character-
istics over time and between demographic groups. For example,
Morris, Bernhardt, and Handcock (1994) study changes in yearly
earnings by race and gender from 1967 to 1987. Bernhardt et al.
(1995) used it and its extensions to take a closer look at the shrink-
ing gender gap in earnings. Handcock and Morris (1998) used the
relative distribution to study the changes in the distribution of yearly
hours worked between 1975 and 1993. In each of these areas of
study, the pattern of the changes has made it necessary to study dif-
ferences beyond the usual differences in the summary measures of
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location and variation (Butler and McDonald 1987; Karoly 1993).
Additional applications are given in Handcock and Morris (1999).

1.1. REVIEW OF FUNDAMENTAL IDEAS: THE RELATIVE DISTRIBUTION

In this section, we briefly review the statistical formalism under-
lying the concept of a relative distribution. A more expansive de-
velopment is given in Section 2.2 of Handcock and Morris (1999).

Let Fy be the cumulative distribution function (CDF) of an out-
come attribute measured on a reference group and F be the corre-
sponding CDF for a comparison group. Typically, the comparison
group is the measurement for a separate group or the same group
during a later time period. The objective is to study the differences
between the distributions of the outcome attribute in the reference
and comparison groups.

Let Yy ~ Fpand Y ~ F. We suppose that Fy and F' are absolutely
continuous with common support. The grade transformation of Y to
Yy is defined as the random variable (Cwik and Mielniczuk 1989):

R=FyY). (M

R is obtained from Y by transforming it by the function /'y, and so it
is continuous with outcome space [0, 1]. As R measures the relative
rank of Y compared to Yy, we refer to the distribution of R as the
relative distribution. We can express the CDF of R as

G(r) = F(Qo(r), 0<r<1 2

where r represents the proportion of values, and Qy(r) =
inf,{y | Fo(y) > r} is the quantile function of Fy. The probability
density function (PDF) of R is

J(Qo(r)
g() 0o 0<r<L 3
Figure 1 presents the constituents of a relative distribution and their
relationship. Panel (a) graphs the densities corresponding to ref-
erence and comparison distributions for hypothetical groups of in-
come earners. The horizontal scale is in thousands of dollars. In
this illustration, the reference group distribution is approximately
Gaussian, while the comparison group distribution has a higher me-
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dian and is left-skewed. A solid vertical line is drawn at the quan-
tile corresponding to » = 0.6, the value of y at the 60th percentile
of Yy. Here y(r) = Qu(r) = 7.63. The density of observations at
this value is given by the intersection of this line and the PDF for
each group. This is shown by the two horizontal lines: fo(Qo(7))
and f(Qq(r)) for the reference and comparison groups, respectively.
Note that /(Qo(r)) is about half of fo(Qo(r)). The relative density
is defined as the ratio of these two quantities (see equation (3)) for
every value r in [0, 1], and this density is plotted in the bottom panel
of Figure 1. Note that at » = 0.6, the relative density is about 0.5,
as the top graph suggests. For values in the lower eight deciles of
Yo (r < 0.8), the relative density is less than 1, indicating a lower
frequency of observations in the comparison distribution Y, and in
the remaining two deciles the value is greater than 1, indicating a
higher frequency of observations in the comparison group. Finally,
the upper axis is labeled in thousands of dollars. This complements
the lower axis labeling in terms of the proportion of the reference
group: It gives the dollar value at the corresponding percentile of
the reference group. For example, the 90th percentile (i.e., 7 = 0.9)
corresponds to an earnings of $10,000.

If the two distributions are identical, then the CDF of the relative
distribution is a 45° line, and the PDF of the relative distribution is
the uniform PDE

The relative distribution is an intuitively appealing approach to
the comparison problem because both the density and the CDF have
clear, simple interpretations. The relative density g(7) can be in-
terpreted as the ratio of the comparison population to the reference
population ata given level (Qg(7)). The relative CDF G(r) can be in-
terpreted as the proportion of the comparison group whose attribute
lies below the rth quantile of the reference group. More technically,
a proportion G(r) of the Y is below the values of a proportion » of Yj,.

The relative density has been explicitly studied in at least two
areas. Parzen (1977, 1992) has studied the relative CDF and den-
sity as part of “comparison change analysis.” He refers to them
as the comparison density and comparison distribution. Along the
same thread, Eubank, LaRiccia, and Rosenstein (1987) have devel-
oped statistics based on the relative density for comparing distrib-
utions. Separately, Cwik and Mielniczuk (1989, 1990, 1993) have

Downloaded from http://smr.sagepub.com at UNIV WASHINGTON LIBRARIES on October 2, 2009


http://smr.sagepub.com

398 SOCIOLOGICAL METHODS & RESEARCH

(a) PDF Overlay

N
° reference Y
------ comparison Yo
1o [Q(N] ¢
r=0.6
> \
3 -~
S o |
a
Qo (1] - \
o 7 Qo(r) -
2 4 6 8 10 12 14

earnings (thousand of dollars)

(b) Relative PDF
0 4 6 8 10 12

Relative density, g(r)

0.2 0.4 0.6 0.8 1.0

proportion of reference group

Figure 1: = Components of the Relative Density for Hypothetical Reference and Com-
parison Groups

NOTE: The top panel has graphs of their densities, and the bottom panel is their relative
density. PDF = probability density function.
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considered nonparametric density estimation for the relative den-
sity. They have developed a method for choosing an estimator that
is appropriately smooth. Based on (1), Cwik and Mielniczuk (1989)
have referred to the relative density as the grade density. Cwik and
Mielniczuk (1990) have considered related issues in their study of
Neyman-Pearson curves.

The relative CDF G(r) is implicitly a theoretical p-p plot of F
against Fy, an empirical version of which was considered by Wilk
and Gnanadesikan (1968). It is the plot {(F(x),Fo(x)) : x € R},
which can be represented in the functional form {(r, G(r)) : 0 <
r < 1}. Holmgren (1995) gives a nice discussion of the merits of
the relative CDF (p-p plots) compared to q-q plots. His theoretical
justification and results carry over to a relative distribution frame-
work. He formally shows that, under appropriate assumptions, the
relative distribution forms a complete summary of the information
required for scale-invariant comparisons between the comparison
and reference distributions. Our general framework and inferen-
tial results extend his methodology. The relative CDF is an ordinal
dominance curve related to receiver operating characteristic (ROC)
curves used in the evaluation of the performance of medical tests
for separating two populations (Begg 1991; Campbell 1994). The
precise relationship between the relative CDF and ROC curves is
discussed in Li et al. (1996).

Inference for the relative CDF has been considered by Gastwirth
(1968 [his Theorem 3.2]). Cwik and Mielniczuk (1990) developed
an estimator of the relative CDF based on integrating an estimate of
the relative density. They showed the uniform strong consistency
of their estimate. Handcock and Janssen (1998) showed that the
natural estimator of the CDF is a jointly asymptotic Gaussian by
treating it as an generalized U-statistic with an estimated parame-
ter. A statistic is classified as a U-statistic if it can be expressed
as the sum of component statistics that satisfy certain symmetry
conditions. The classification is important as the statistical prop-
erties of such aggregate statistics have been deeply explored (Ho-
effding 1948). We explicitly construct U-statistics in the appendix
that provide a window of insight into the statistical properties of
the estimators considered in this article. For more information on
U-statistics, see Serfling (1980). In the context of ROC curve esti-
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mation, Hsieh (1995) also derives the result under slightly stronger
conditions based on a strong approximation of the empirical ROC
curve (his Lemma 3). Handcock and Janssen (1998) give a nice
direct proof based on classical U-statistic methodology.

In this article, we develop the statistical estimation of, and in-
ference for, the relative density. In the remainder of this section,
we give two applications to illustrate the value of the approach. In
Section 2, we propose a kernel-based estimator and show that it is
asymptotically Gaussian. We derive expressions for the asymptotic
variance and use this to determine confidence intervals. We also
show how the bandwidth can be chosen using local bandwidth se-
lection criteria developed in Cao et al. (2000). Section 3 develops
a distributional decomposition of the relative density into a compo-
nent representing the effect of the difference in location between two
distributions and a component representing the relative distribution
adjusted for this difference. This decomposition allows the location
and shape difference between two distributions to be separated and
graphically compared.

1.2. APPLICATION TO MEN’S AND WOMEN’S EARNINGS DISTRIBUTIONS

An example of two distributions and their relative density is given
in Figures 2 and 3. Figure 2 presents and compares the earnings dis-
tributions for white men and white women based on the 1990 de-
cennial Census of Population and Housing. The density estimates
in Figure 2 are based on kernel smoothing techniques (Simonoff
1998). An interesting feature of census earnings data is the round-
ing of the values that leads to a density that is much more spiky
than typically seen. A key attribute of the estimator is the so-called
“bandwidth,” which controls the degree of smoothness. Intuitively,
a key feature of the underlying density is its smoothness—that is,
how rapidly the density changes for small changes in earnings. For
example, compare the densities in Figure 2 to the Gaussian density
with the same mean and variance. The densities in the figure are
much less smooth and have many local modes, even though their
overall shapes are similar. We would like to allow the smoothness of
our estimator of the density to be flexible. The data will tell us much
about the smoothness of the underlying density, and we would also
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Figure 2:  The Distributions of White Women’s and White Men’s Earnings from the
1990 Census

NOTE: The horizontal axis is on a logarithmic scale.

like the estimate to reflect our a priori sense that the density should
be somewhat smooth but likely not as smooth as the Gaussian den-
sity. Most estimators of densities include a parameter that increases
the smoothness of the estimate as it increases in value. The details of
the mechanism for controlling the smoothness depend on the form
of the estimator. We give the details for kernel estimators in Section
2, where the bandwidth is denoted by / (see Section 2 for details).
In this case, the bandwidth for the two estimators was chosen by
the Akaike Information Criterion (AIC), corrected for its tendency
to undersmooth (Simonoff 1998). The sample sizes here are very
large (n = 428,902 for the men and n = 284, 866 for the women).
The center of the men’s distribution appears to be at a higher earn-
ings than the center of the women'’s distribution (medians of $26,625
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and $17,570, respectively). In addition, the spread of the men’s dis-
tribution appears to be slightly wider (standard deviations in log-
dollars of 0.60 and 0.70, respectively, and $32,764 and $14,666,
respectively).

Figure 3 is the density of the relative distribution of women’s to
men’s earnings. A description of the estimator and a study of its
statistical properties are given in the next section. The value of one
represents the relative density if the two distributions were identical.
We can see that women are markedly overrepresented in the lower
quantiles of the men’s distribution. The relative frequency does not
balance out until about the 45th percentile of the men’s distribution.
The decline in the relative frequency of women is steady for the top
nine-tenths of men’s earnings. The bumps apparent in the density
are due to uneven heaping in the reported earnings for both samples.

The relative density enhances comparison of the distributions in
two ways. First, it expresses the relative frequency in terms of a
ratio, which is easier to understand both visually and numerically.
Second, it rescales the horizontal axis so that length is equivalent
to the proportion of men’s earnings. This facilitates direct compar-
isons between women’s and men’s earnings because the two axes are
now in comparable units. For example, women are more than 1.7
times more frequent than men between the 5th and 20th percentiles
of the men’s distribution. The upper axis is labeled in thousands
of dollars earned by men. As in Figure 1, this relates to the lower
axis, which is labeled in terms of the proportion of men. Effec-
tively, it gives the quantiles of the men’s distribution. This enables
the absolute dollar values of earnings to be referenced in the overall
relative plot. For example, we see that the mode of the relative dis-
tribution occurs at about $7,500. At these earnings, the frequency
of women is about 2.2 times that of men. We also see that for all
earnings above $25,000 (the 40th percentile for men), men are rel-
atively more prevalent than women.

These figures demonstrate how the relative distribution can aid
the comparison of distributions. This is not to suggest that they can
replace the direct graphical overlay (as in Figure 2); rather, they
complement the overlay by focusing on those characteristics of the
individual distributions essential for comparison alone. Figures 2
and 3 provide absolute and relative comparisons, respectively.
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Figure 3:  The Relative Density of White Women’s to White Men’s Earnings From the
1990 Census

NOTE: The upper axis is labeled in thousands of dollars. The dotted lines are 95 percent
pointwise confidence bounds.

2. ESTIMATION OF THE RELATIVE DENSITY

In this section, we consider estimating the relative density g(r).
As in our applications, in practice, information about the reference
and comparison distributions is often available in the form of in-
dependent samples from both distributions. Hence, suppose Y7, Ya,
..., Yy are 1.i.d. F, and independently Y1, Yoo, . . ., Yo, are i.i.d.
Fy. We do not consider sample weight here, but it can be incorpo-
rated in a straightforward manner. Denote the empirical distribution
function of Yy by F,0(y) = % St Z(Yoi < y), where Z(+) is the in-
dicator function.
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2.1. ESTIMATION WHEN THE REFERENCE DISTRIBUTION IS KNOWN

Some insight into the estimation process can be gained by con-
sidering the hypothetical situation in which we directly observe in-
dependent values from the relative distribution (1): Ry, Ra, ..., Ry
Lid. from G (e.g., R; = Fo(Y;)). We refer to the R; as the relative
data. The estimation of g(r) is then a standard density estimation
problem in which the support is [0, 1]. In this article, we will con-
sider kernel density estimates (Silverman 1986):

=L S k(I =k )
gm r)= mhm = hm )
where K(-) satisfies the conditions

/ Ku)du=1, (5)

/oo uK(u)du=0,

/ u?K(u)du =c% > 0.
The basic logic of this estimator is that an estimate of the density at
7 can be thought of as a weighted average proportion of relative data
values that are close to ». If there are many data values close to 7,
then the density will likely be higher there. The kernel is often cho-
sen to have similar shape to the Gaussian density. This weights the
number of data values closer to » more than those further away—in
line with the notion that values further away should have less influ-
ence on the estimate at » than the values that are close. Wand and
Jones (1995) give a book-length treatment of the motivations and
properties of kernel density estimators such as these. We assume
that the underlying relative density is sufficiently smooth (g being
uniformly continuous and g’ being square integrable). If 4,, — 0
with mh,, — oo as m — oo, then by Taylor series expansions (Sil-
verman 1986),

; 1 "
Bias(gn(r)] = 5/0%g"(r) + Olhy,)
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and

Vign) = £21E 4 o),

where R(v) = [*_[v(x)]%dx.

2.2. ESTIMATION WHEN THE REFERENCE DISTRIBUTION 1S UNKNOWN

In most situations, we do not observe the relative data directly
but only have access to independent information on the comparison
and reference distributions. In this case, we can consider the qua-
sirelative data generated by the grade transformation of the Y; by
F,, rather than Fy :

Qj:FnO(Yj) j=1,...,m.

We use this term to distinguish the O; from the closely related R;.
As Fo(-) estimates Fo(-), we might expect {Qj}]’-”:1 to act as a surro-
gate for {R;}/";. Note that the {Q;}, are not independent as they
depend on the {Yy;}7,. However, they will be close to uncorrelated
(their pairwise correlation is O(n~1')). In any case, the behavior of
estimates based on the quasi-relative data must be determined sep-
arately from those for estimates based directly on relative data.
Motivated by (4), we consider the following estimator of g(r):

i) = = S K () ©
m _]:1 m

The asymptotic properties of the estimator are described in the
following result:

Theorem 1. Assume that 0 < » < 1 and suppose both Fy(x) and
F(x) possess densities ( fo(x) and f(x), respectively) that are smooth
(enough so that g is uniformly continuous). Let K(-) be a twice con-
tinuously differentiable kernel function (satisfying (5)) and vanish-
ing outside some bounded interval. For each bandwidth sequence
{hm} with hy,, — 0 with mh3, — oo, mh), — 0,m/n — x? < oo,
we then have

\/ mhy, [gmm(r) —g(r) } 2,
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N ( 0, g(MRK)+k’(NRK) ) ;

where R(K) = f_ll K2(z)dz.

This result suggests that the sampling distribution of g, ,,(r') can
be approximated by a Gaussian distribution with mean g(r) and vari-
ance:

2
V{gnm(r)] = g(’;f;ilf ), 8 (;)]i(K) o

when the sample sizes are large. It is sufficient that fy(x) and f(x)
are positive, bounded, and uniformly continuous in some neighbor-
hood of x = Qy(r). It is informative to compare the properties of
this estimator to those of the estimator (4). We can interpret the
additional term in the asymptotic variance for g, ,,(r) compared to
gm(r) as the price we pay for using F,o as a surrogate for the un-
known F. In the appendix, we give a proof for the result that ex-
ploits the structural properties of the relative density. This allows us
to nicely use theory for U-statistics with estimated parameters and
empirical process ideas. The methodology has some independent
interest. For example, it can be used in the extension of this result
to cover nonparametric estimators of the relative density based on
local-polynomial fitting.

Simulation results (not shown here) indicate that the asymptotic
variance expression used in this result is a poor approximation to
the finite-sample variance of the estimator when g(7) is not smooth
(i.e., g”(r) has large magnitude). In this case, the other terms in
the expansion (A.1) for g, ,(7) play a significant role (even though
they are asymptotically negligible). By working through the proof
of the theorem, it is possible to refine the variance estimate to give
the following:

Corollary 1. An expression for the variance of g, ,,(r) that is more
accurate when the sample sizes are small is

_ hm 2
Vignm(r)] ~ g(r)R(Kn)ihm g-(r)
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2
(g(r)\/mK) T+ g (R )T (T r))
_|_

nhy,

as hy, — 0 with mh,, — oco,m/n — K% < oo as m — .

Simulation results (not shown here) indicate that this estimate
is quite accurate, unless n,m < 30, or the relative density is very
rapidly changing. This expression can be used with the Gaussian
approximation in the calculation of (pointwise) confidence inter-
vals for g(r) based on g (7).

If the sample sizes are small, the bootstrap can be used to deter-
mine the sampling distribution of the estimate and the correspond-
ing critical values. Here we will discuss approximations to those
critical values based on the Gaussian approximation in moderate to
large samples (i.e., n,m > 30). The sample sizes for the referenced
applications and the one considered in this study tend to be large
(e.g., greater than 1,000), and the approximations will be very close
to the exact values.

If the sample size is not small, we can use the Gaussian approx-
imation to the distribution of the estimate as the basis for a test for
a given significance level o

P(gn,m(r)_zocm X @[gn,m(’”)] < g(r)

Sgn,m(r) +Z(1/2 X i\/ [gnm(r)] ) —1l—-a

~

asm — oo,m/n — k> < oo. Here 1/ V [g,m(r)] is the variance
estimate obtained by replacing the relative density by its estimates
in the variance expression of Corollary 1.

2.3. SELECTION OF THE KERNEL BANDWIDTH

To apply the estimator (6), a kernel function K and the bandwidth
h must be selected. The choice for the kernel function depends on
properties of the (unknown) g. Fortunately, there are many choices
that appear to work similarly well. To choose the bandwidth, it is
common to select values that approximately minimize the average
mean squared error of the estimator over the entire unit interval. In
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the case where the reference distribution is known, the choice of /4
has been well studied (see, e.g., Simonoff 1998). Cao et al. (2000)
have developed an approach that allows the bandwidth for estima-
tion of g(r) to vary with 7. This has the advantage of allowing the
estimator to adapt to the local properties of the underlying relative
density. That is, for values of » where g() is smooth, the bandwidth
can be chosen to be large (reducing variability), and for values of
r where g(r) is rapidly changing, the bandwidth can be chosen to
be small (reducing bias). Cao et al. propose a method based on a
two-stage smoothed plug-in approach with a beta distribution as the
reference. They show that the resulting estimator has good proper-
ties when applied to simulated data (see Cao et al. 2000 for details).
All the relative density estimates in this study use local bandwidths
chosen according to their method. We have tried alternative fixed-
bandwidth estimators (e.g., Cwik and Mielniczuk 1993) and found
the local bandwidth approach to be preferable for samples of this
size. We will not give explicit details of the implementation here
but refer the reader to the development given in Cao et al. However,
we have written code to implement this method and have made it
freely available on the relative distribution Web site (see Section 5).

3. APPLICATION TO THE COMPARISON OF WOMEN’S NET
EARNINGS OVER TIME

In many applications, we have individual-level data available
from economic surveys and collected over time. In this case, a com-
mon reference distribution can be used for each time point. The re-
sulting series of relative distributions facilitates comparison among
the time series of distributions to produce a clearer image of the
relative changes over time.

Figure 4 represents the net earning distributions for working
women from 1967 through 1996. The data are drawn from the
annual March supplement of the U.S. Current Population Survey
(CPS) 1967 through 1997. The sample examined here consists of
white females, ages 16 to 66, and excludes the self-employed, full-
time students, and those in the military and in farming. We take real
annual earnings as our income variable, defined as the income re-

Downloaded from http://smr.sagepub.com at UNIV WASHINGTON LIBRARIES on October 2, 2009


http://smr.sagepub.com

Handcock, Janssen / STATISTICAL INFERENCE FOR RELATIVE DENSITY

409

Relative density

Density
02 04 06 08

1.2

1

0

>
Sl
= 52
= 'o?’i,l 22
s
w'g/&;,,: e
S s S s .
555 g 2
% S S g
4 5
Z 2 AL IS )
5 - 4
i 2227
S S5 e s 9
o 5 4
e == 4
S
Gt
& A
&z /ﬁ,/@"/w,”’@"" Gid
Z ~
\Wf{fwj'%"
7527
@;z,;;z;,f%z
tear, z
Ning, 3

C)

(a) Net earnings densities over time

‘ % ¢
0.6 T N
Proportion of women 08 10

(b) Net earnings relative densities over time

Figure 4:

Net Earnings Distributions Over Time for Working Women From 1967-1996

SOURCE: Based on the Current Population Survey.
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spondents reported receiving in wage and salary before deductions
during the previous year. Net earnings is defined as the earnings
divided by mean earnings for that year. The resulting sample size
is of the order of 10,000 per year.

Panel (a) shows nonparametric estimates of the densities for each
year. Distributions of this type are considered in Hardle (1990)
and Engel and Kneip (1999). The graph illuminates the basic log-
Gaussian structure of the distributions and suggests the variation
in absolute shape over time. Panel (b) presents the relative den-
sity estimates using the 1967 distribution as the common reference
distribution. Hence, the distribution for 1967 is uniform, while the
others represent changes relative to thatin 1967. These distributions
complement those in the first panel by emphasizing how the distrib-
utions have changed relative to each other. From them the dramatic
increase in variability in net earnings is apparent over time. The ear-
lier relative densities are uniform and stay approximately so through
the early 1970s. They confirm and visualize one of the “stylized
facts” of changes in economic conditions for working women over
this period: From the early 1980s, there was a marked trend of in-
crease in the proportion of women in both the upper and lower tails
of the net earnings distribution, as evidenced by the U-shaped den-
sities.

4. DECOMPOSING THE RELATIVE DISTRIBUTION INTO LOCATION
AND SHAPE COMPONENTS

The similarity in shape of the two densities in Figure 1 suggests
that the differences between the distributions could be largely ex-
plained in terms of a location shift. To investigate this possibility,
we can compare the multiplicatively scaled version of the wom-
en’s earnings that has the same median as the men’s earnings (i.e.,
Y™ = Y x median(Yp)/median(Y)) to the men’s earnings. Figure 5
presents the relative density of the scaled women’s earnings to those
of the original men’s distribution. Note that the concept of location
is closely tied to the measurement scale (here dollars). For example,
equating locations additively will give different results than equat-
ing them multiplicatively. Which is better depends on the shape
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of the distributions. In this case, the two distributions have simi-
lar shape on the log-dollar scale, and so it makes sense to shift the
distributions additively on the log-scale to equate them. This cor-
responds to a multiplicative shift on the original dollar scale. Note
that the relative density is the same if the men are shifted to the
women or the women are shifted to the men.

The median matching reduces the discrepancy between the two
distributions in the sense that the relative density is closer to the
uniform density. The sinking tails indicate that the women’s earn-
ings are less frequent in the extremes than the men’s earnings (con-
sistent with less variability in the women’s distribution compared
to the men’s distribution). The relative greater density of women
around the 40 percent quantile and 80 percent quantile is also ap-
parent. These relative densities are based on samples that have been
median matched using the ratio of sample medians (rather than the
unknown ratio of population medians). This introduces an addi-
tional small amount of variability that has not been reflected in the
confidence bands given in the figure.

We would like to quantify the degree to which the overall differ-
ence between the earnings of men and women apparent in Figure 5
is attributable to this difference in median value and how much is
attributable to other differences between the two distributions. We
would like, then, to decompose the overall difference between the
two populations (as expressed through their relative distribution)
into a component due to the difference in location between the two
populations and a component due to the difference in shape between
the two populations. The probabilistic formulation of this idea is
as follows. Let Y, denote a random variable describing the refer-
ence population multiplicatively, scaled to have the same median as
the comparison population (i.e., the random variable p x Y, where
p = median(Y)/median(Yy)). We shall say that Y, is Yy median
adjusted to Y. The CDF of Y, can be written as FA(y) = Fo(y/p).
Y, defines a hypothetical reference population that has the same
location (as represented via the median) as the comparison popula-
tion and retains the shape of the reference population. We remark
that alternative choices of location matching (e.g., additive median
shift, mean shifting) can also be used. In that case, the development
given below is similar, with the alternative Y4 replacing the median-
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Figure 5:  The Relative Density of Median-Matched Women’s to Men’s Earnings

NOTE: The upper axis is labeled in thousands of dollars. The dotted lines are 95 percent

pointwise confidence bounds.
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adjusted version given here. We choose the median-adjusted def-
inition because the distribution of earnings is approximately log-
normal. For example, if we consider the earnings distributions of
men and women, the hypothetical distribution for men’s earnings
would have the same median as the women’s distribution and the
same shape as the men’s distribution.

4.1. DECOMPOSING THE RELATIVE DISTRIBUTION

From these three distributions—Y, Y, and Yy—we can construct
two relative distributions that represent the effects of the location
and shape changes. In the notation of Section 1.1, let Ry g = Fp(Y),
Ry = Fo(Y,), and R}, = F4(Y). Note that the relative distribution
R{ will have a uniform distribution when the comparison and refer-
ence populations have the same median. In general, R‘g represents
the location difference between Y, and Y The relative distribution
R}, will have a uniform distribution when the only difference be-
tween the two groups is the median adjustment. We can interpret
R}, as representing the differences between ¥ and ¥, not directly due
to location differences (as measured by the median adjustment). In
this sense, it would be the relative distribution had the two popula-
tions had the same median.

These two components form a decomposition of Ry o in the sense
that R}1 is the relative distribution of Ry ¢ to Rﬁl. The decomposition
can be graphically represented in terms of the corresponding den-
sities. Denote the densities of Ry, R, and R}, by gi, g4, and g!,
respectively. Denote the CDF of R{ by Fi(r) = F4(Qo(r)), 0 <
r < 1. Mathematically, the relationship between the densities is

2in = gl xghp) where p=Fir), 0<r<l1.

Note that 7 is the percentile in the reference population for a given
value of the measurement, and p is the percentile in the hypothetical
reference population of that same value. Thus, we can interpret the
relationship in terms of the value of the measurement. Heuristically,
we can represent the decomposition of the relative densities by

Overall relative density ratio for « density ratio for
density ~ the location difference ~ the shape difference.
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In this sense, the overall relative density between the populations
can be thought of as the product of a relative density representing the
effect of the difference in location and the location-adjusted relative
density. The latter component may be thought of as the discrepancy
due to the different shapes of the two distributions. By comparing
plots of g}, g¢, and g, side-by-side, we can gauge the relative size
and nature of the components.

4.2. EXAMPLE: THE IMPACT OF LOCATION ON RELATIVE EARNINGS

In the beginning of this section, we compared women’s earnings
to a version of men’s earnings with the same median. Figure 5
graphically displays the degree to which the discrepancy between
men’s and women’s earnings is a reflection of a location shift. We
can now formalize this comparison in terms of the above decom-
position.

Figure 6 graphically represents the decomposition of the relative
density of women’s to men’s earnings in terms of the effects of lo-
cation differences. Panel (a) is the (unadjusted) relative density of
Figure 6 that is decomposed into the two components. Panel (b)
represents the component of (a) that is attributable to differences in
the location (as expressed by the median) between the two gender
populations. We see that the difference in location describes the
majority of the discrepancy between men’s and women’s earnings.
A location shift alone would have resulted in a larger discrepancy
in the lower tail and a somewhat decreased discrepancy in the upper
tail. Panel (c) represents the relative density in (a) adjusted for the
difference in the location. In terms of the notation of the previous
section, panel (a) is gj(r), panel (b) is g‘g(r), and panel (c) is g}l (r)
each for 0 < r < 1.

The differences in shape between the two distributions have a
moderate (and statistically significant) effect on the differences in
earnings compared to the overall effect of the difference in location
between men’s and women’s earnings. The shape effects are most
apparent in the tails of the distribution, where they lower the relative
density by 20 to 40 percent. In addition, the shape changes tend to
ameliorate the discrepancy between men and women for low earn-
ers and exacerbate them for high earners. This can be seen because
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Figure 6:  Decomposing the Differences Between Women’s to Men’s Earnings Into the
Impact of Their Difference in Location and Differences in Shape

NOTE: (a) The (unadjusted) relative density of women’s to men’s earnings from the 1990
census. (b) The effect of the location difference between women'’s to men’s earnings on (c).
(c) The relative density of women’s to men’s earnings, adjusted for the difference in location.

the relative density is below unity for the lower 25 and the upper 10
percent of the men’s distribution. This means that—net of the higher
median earnings for men—there are fewer women in the extremes
of the earnings distribution than men. Thus, the shape differences
reduce the relative frequency of both very low- and high-earning
women. In contrast, the higher median earnings for men result in
higher relative frequency of women in the lower earnings and de-
crease them in the higher earnings.
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5. DISCUSSION

The relative density estimator discussed in Section 2 has intuitive
appeal and is simple to calculate. The distributional results also al-
low hypotheses about the relationship between distributions to be
tested. However, kernel estimators such as g, () have well-known
drawbacks such as the substantial underestimation of g(r) for val-
ues of 7 close to 0 or 1 (relative to the size of /#). However, this
problem can be overcome in a number of ways, including the use
of a boundary kernel, as considered in Cwik and Mielniczuk (1993)
(see also Wand and Jones 1995). A number of alternative estimators
to the kernel estimator can be considered. The most natural are lo-
cal likelihood smoothers (Loader 1999) based on the quasi-relative
data. We are in the process of investigating the properties of this
approach, and our results will appear elsewhere.

The location-shape decomposition discussed in Section 3 incre-
ases the utility of the relative distribution approach by allowing for
comparisons to be made, standardizing for summary characteristics
of the distributions. The relative and absolute sizes of the location
and shapes effects can then be compared.

The software and data necessary for the applications of relative
distribution methods, including those described here, are available
at http://www.stat.washington.edu/handcock/RelDist. Additional in-
formation and applications of interest can also be found there.

PROOFS

A constructive proof of Theorem 1 can be based on the theory for
U-statistics with estimated parameters and empirical process ideas.
As K is twice differentiable, we can expand the estimator (6):

_ LN (r29
gn,m(r)— mhm jz_l:K< hm )

R r—Fo(Y))
 mhy, X_;K( N,
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Fo(Y) —Fuo(Y)) r—Fo(Y))
mh Z K < hy )

fam g K ()

=gn(r) + Ty m(r) + Ry m(r), (A.1)

where A; is between £, (r — F0(Y;)) and h;,'(r — Fo(Y})). The last
term is a remainder that is of smaller order in probability than the
other terms. We prove this in the lemma below. The first term is the
one-sample estimator (4), and the second represents the penalty for
using the quasi-relative data in place of data from the exact relative
distribution in the first term.

The second term can be expressed as a two-sample U-statistic:

| S
Tn,m(r) = %szhm (Yoi, Y}'Q’”)

i=1 j=1
with two-sample kernel
1 _,(r—F
b i) = = (Tl <) = Fon) ) K (2.
m m
which is dependent on m via h,,. Note that [k; (Yo,Y;r)] = 0 and
the projections are E[k;, (Yo,y;r)] = 0 and

g, (1) =Bk, (x, Y;7)]

=— /1 (I{Fo(x) <s}— s) h%K/ <rh— S)g(s)ds.
0 m m

Jammalamadaka and Janson (1986) consider the asymptotic be-
havior of one-sample U-statistics with kernel depending on m.
Based on an extension of their ideas to two-sample U-statistics with
kernel depending on m, we can obtain

o) = 3 Y. (i) 2o, (o) ) (A2)

i=1

as m — oo,m/n — k% < oo. Now,
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1 n
Vimhn, Z_:glhm (Yois7)

\/;Ts/{ ZI{FO(YOz)<f}—f} (hm )g(t)dt
\/ﬁ e / (DK’ ( ) gt

where U, (?) is the uniform empirical process (Shorack and Wellner
1986). We then have

\/ﬁ o / 1 U,,(t)K’(rh;t)g(t)dt
\/% e / 1 Uik ()
(]
o | 1K(rh;
2z [ T [ (5 )swunan
\/ﬁ 7 / IK(rh—;t) Un(Dg' (1)dt

Inhm +Inhm'

t) [&(OUn(dt) + Un(n)g' (1d1]

The second term /% nh, CONVErges in probablhty to zero:
/m
‘I S ‘ <\/— sup ‘Un(t)’\/ m < )]g (t)\dt—op(l)
no<i<1

as m — oo,m/n — k2 < oo because SUPo- < 1 |Un(D)] = Op(1),
and the integral converges to |g’(r)| by Bochner’s theorem. Thus,
I3 », 1s asymptotically negligible. Note, however, that if g(r) is not
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smooth, this term can contribute variation in moderate sample sizes.
In fact, we can write

r—t r—u
uta) =35 <))
X Con(Un(1), Un(5))g' (s)g" (Ddsdt

— hyc?r(1 = r)[g'(n)*R*(K)
2

asm — oo,m/n — k° < oo. While this variance is small, it
is highly correlated with 73, _and T}, (r) so that, in small sam-
ple sizes, its contribution matters This expression will be used in
Corollary 3 to obtain an expression for the variance that is more
accurate in small samples than the asymptotic approximation.

Pulling together these results, (A.2), the lemma, and (A.1), we
obtain that

V mhm |:gn,m(r) - gn,m(r):|

\/ﬁ - ( - ) 2()U(d1)
4 h1/2/0 K(’"hm )Ulm(dt)

+ Op(1)7

where
r—t

_ 1!
B = 5 [ &[5 et

and Uy, is the empirical process for G. To complete the proof of
the theorem, we need to show that g, ,,(7) approaches g(r) at a fast

enough rate that \/mh,, [ Enm(r) —g(r) } — 0. Note that g, ,,(7)

has the same distribution as g,,(7) in (4), so we can use standard
kernel density results to see that mh3, — 0 is a sufficient condition.

To calculate the variance terms explicitly, we can reexpress the
above as
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v m m[gnm(’”) gnm(r)} \/En1/2 {1/2 <r;mUi)g(Ui)
(5 e
1
S

e <52 o0

where Uy, ..., U, are i.i.d. unlform [0, 1] independent of the Q;s.
The Variance of the first term is then

m / ( ) (0dt — ",

2
[ (o] s

as m — oo, m/n — x? < oc. The expression for the second term
follows similarly.

Finally, we consider the third term in (A.1). The following lemma
indicates that it does not affect the estimator asymptotically.

Lemma. +/mh, R, (1) Lo 0asm — .

Proof of the lemma. For simplicity, assume the support of K is
contained in [—1, 1]. We can bound R, ,,(r) as

1 O (FoY) — Fu(Y))2.
o) < o > L 0 ()

and express A; as
r—Fo¥) o Fo(¥) — Fuo(¥))
/. / /- ’
where 0 < 6; < 1. Note that for A; ¢ [—1,1], we have K" (4)) =
0. Therefore, the terms in the sum that are different from zero are

Aj =
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those for which A; € [—1, 1]. Therefore, with A ;o = sup, |[Fp(?) —
Fo(?)|, we have

m
Rum()] < mL@nAZoaK”);I{—l <A<y,
where C(K"") is the upper bound for K. Now,

1S AJ <16 7 hy < Fo(Y) +8,(Fo(Y)) — Fao¥) < 1+ .
Therefore,

T{-1<A <1} <Z{r—hm— Do <Fo(Y)) <r+hpy+Au}
and
A L

Ran()] < CRN T

m
X Z I{I" - hm - A110 S FO(Y}) Sr"_hm"_AnO}
j=1

2
= K" Z G (14 b+ 20) = G = = D) |

2
= C(K”)% : { [Gm (r+hm + AnO) - Gm <V - hm - Al10>:|

_ [G(r+hm+Ano) - G<r—hm - AnO)]}

2
+C( ”)%. [G(r+hm+Ano) —G(l’—hm_AnO)]

S

n,m»

where G(s) = n% ijzl I{Fo(Y;) < s}. As G is Lipschitz, we have

’G(”'I'hm + A110) - G(I" — hpm — An[))’ < 2LG(hm + A o)
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and
2 Al
Vmhly ,, < 2LcC(K") h,?;, v mhy, (hm + An()) = 0p(1)

1 .
as Apo = Op(n~2) and mh3, — oo. We now consider 7}, :

1, < 20k Am
nml —= h3

m

< () o)) - [olr) ()]

The Dvoretzky, Kiefer, and Wolfowitz (1956) bound for the tails
of A, yields that for any given € > 0, there exists some finite C
such that A, < Cn~ % up to an event with probability less than or
equal to €. The inequality |f] < A, + A, on this set means that
|t| < Cyhyy, for some constant Cy. Using (2.13) in Stute (1982), we
see that

(o)) o) <0

Therefore, as mh3, — oo,

Vmhwl ), = 0p(1).

The lemma follows as € > 0 is arbitrary.
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