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ABSTRACT

Exponential-family Random Graph Models (ERGMs) have long been at the forefront of the analysis of rela-
tional data. The exponential-family form allows complex network dependencies to be represented. Models
in this class are interpretable, flexible and have a strong theoretical foundation. The availability of powerful
user-friendly open-source software allows broad accessibility and use. However, ERGMs sometimes suffer
from a serious condition known as near-degeneracy, in which the model exhibits unrealistic probabilistic
behavior or a severe lack-of-fit to real network data. Recently, Fellows and Handcock proposed a new
model class, the Tapered ERGM, which circumvents the issue of near-degeneracy while maintaining the
desirable features of ERGMs. However, the question of how to determine the proper amount of tapering
needed for any model was heretofore left unanswered. This article develops a new methodology for how
to determine the necessary level of tapering and as such provides a new approach to inference for the
Tapered ERGM class. Noting that a Tapered ERGM can always be made nondegenerate, we offer data-driven
approaches for determining the amount of tapering necessary. The mean-value parameter estimates are
unaffected by tapering, and we show that the natural parameter estimates are numerically weakly varying
by the level of tapering. We then apply the Tapered ERGM to two published networks to demonstrate its
effectiveness in cases where typical ERGMs fail and present the case for Tapered ERGMs replacing ERGMs
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entirely.

1. Introduction

Network models are widely used to represent relational infor-
mation among interacting units and the structural implications
of these relations. Social network studies have focused a great
deal of attention on random graph models of networks whose
nodes represent individual social entities and whose edges rep-
resent a specified relationship between the entities. Such entities
could be individuals in the workplace, countries within global
markets, satellites in space, or from a wide range of social or
natural phenomena. We refer to each entity as simply a node,
and to each connection between nodes as an edge. This intuitive
conceptualization of a network, the nodes together with edges,
invokes its representation as a graph.

We formally define a graph G as a pairing of a node set V and
an edge set E, so that G = (V, E). Each node is given a unique
label, and for simplicity we disallow multiple edges between
nodes or any self-loops. Edges may be directed or undirected,
and while methods exist to handle weighted values (Krivitsky
2012), for this work we focus on edges that take binary values
indicating whether a relation between nodes exists or does not.
Most often the number of nodes is fixed and known (N = |V])

and in the undirected case there are therefore |Gy| = 2(2])
possible graphs. In addition to the graph, it is common to have
covariate data on the nodes and edges. Here we represent it by
X and define a network as the union of the covariate and the
graph structure (i.e., {X, G}). We focus on the situation where
the covariate information is exogenous and suppress reference

to the covariates for notational simplicity. For the more general
case, see Fellows (2012).

Real-world networks reflect the complex social systems
that are their source. As such, statistical models for net-
work data should be able to represent complex dependen-
cies. Exponential-family Random Graph Models (ERGMs) have
shown themselves to be a useful class of models for repre-
senting complex social phenomena in this domain (Strauss
(1986); Goodreau (2007); Handcock et al. (2008); Goodreau,
Kitts, and Morris (2009)). An ERGM for the network can be
expressed as

exp(0 - t(y, X))

po(Y =yIX) = «0.%)

y e GnX) (1)

where Y is a random graph whose realization is y € Gy(X), the
set of all possible graphs on N nodes with covariates X; t(y, X) is
a d-vector valued function defining a set of sufficient statistics;
6 € R? is a vector of parameters; and c(d, X) the normalizing
constant. Each ERGM is defined by the choice of sufficient
statistics. These are chosen by the researcher, depending on
domain knowledge, to specify the generating social processes.
They can be any statistical summary of network properties
and are typically motivated by social theory (Goodreau, Kitts,
and Morris 2009) or symmetry arguments (Strauss 1986). In
this way, ERGMs constitute a family of models across different
choices of the sufficient statistics. Regardless of which sufficient
statistics are used, the ERGM will have the maximal entropy of
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any distribution satisfying the d-dimensional mean constraints
placed on t(y, X), E[t(y, X)] = 1.

Properties of exponential-family models have received
extensive attention in the statistical literature (Barndorff-
Nielsen 1978) and their application to networks has a long his-
tory (Holland and Leinhardt 1981; Strauss 1986). Schweinberger
et al. (2020) review random graph models for complex random
graphs. They emphasize the value of the exponential-family
framework and address two issues that have arisen in modeling
using ERGMs. One is that most ERGMs are not projective
(Shalizi and Rinaldo 2013). For ERGMs, projectivity is a form
of closure under marginalization and implies that the same
parameters govern the marginal distributions of all subgraphs.
While projectivity may be statistically convenient, it may not be
realistic as it implies the subgraph distributions are unaffected
by embeddedness within the overall graph. It does, however,
emphasize the importance of likelihood-based inference which
naturally deals with the lack of projectivity (Handcock and Gile
2010).

The second concern is that ERGMs with nontrivial depen-
dence structure can be ill-behaved. In an effort to maximize
entropy, the ERGM can be thought of as “spreading out” mass
across the graph space Gy(X) as much as possible while still
maintaining the mean constraints. This sometimes leads to a
large amount of mass being placed on extremal configurations
(such as the empty and complete graphs) and very little mass
being placed in the region around the observed graph. This
problem is referred to as near-degeneracy: despite having real-
istic mean values, no choice of the parameters places significant
probability mass on graphs that are realistic.

Figure 1 shows an example of near-degeneracy. This ERGM
uses the edge count and triangle count as sufficient statis-
tics, both of which are extremely common and useful choices
amongst researchers. Here we have used the exact enumeration
of all labeled graphs on N = 7 nodes as the context. Using the
edge count and triangle count to classify each graph, we end
up with 110 distinct classes. The left panel depicts the number
of graphs possible for each class within the graph space, with
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darker colors indicating relatively higher numbers. We see that
most configurations lie within the center of the graph space.
The right panel shows the ERGM with maximum likelihood
parameter values corresponding to mean constraints 10 and
10 for the edge and triangle counts, respectively. Even though
these constraints are realizable by a specific class, as indicated
by the red dot, very little mass is placed on this observed
class or the surrounding classes. Instead, the near-degeneracy
of the model puts a large amount of mass toward the extremal
configurations, especially the complete graph in the upper right
hand corner. As a result, simulations from this ERGM yield
graphs that are very dense (near or at the complete graph) or
very sparse (near or at the empty graph), but very few similar
to the observed class of graphs containing 10 edges and 10
triangles, despite the fact that those averages are met over the
entire distribution. The issue of near-degeneracy in ERGMs
is well-documented but unresolved (Handcock 2003; Snijders
et al. 2006; Schweinberger 2011; Rinaldo, Fienberg, and Zhou
2009).

However, recently there has been a breakthrough with
the Tapered ERGM (Fellows and Handcock 2017). Fellows
and Handcock (2017) propose an extension of the standard
ERGM which disallows near-degeneracy through additional
constraints on the sufficient statistics. This article further devel-
ops the ideas behind the Tapered ERGM and demonstrates the
usefulness of this class of models.

In Section 2, we provide a development of the Tapered
ERGM model and why tapering is effective in reducing the
impact of degeneracy. Section 3 motivates the use of bimodal-
ity and kurtosis as numerical measures of near-degeneracy. In
Section 4, we develop the methodology for Tapered ERGMs
and the incorporation of kurtosis in automatic selection of
the degree of tapering. In Section 5 we consider two net-
work modeling situations where standard ERGMs would nat-
urally be used, comparing the ERGM fits to those of Tapered
ERGMS. We conclude in Section 6 with a discussion of the
results and implications for practical modeling of complex social
networks.
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Figure 1. Near-degenerate ERGM. Each class of graphs, identified by the number of edges and triangles, is represented by a circle. LEFT: The number of graphs within each
class, where the intensity of the shading is proportional to number of graphs. The darker the shading, the larger the number of graphs. RIGHT: The ERGM for mean edge
and triangle constraints of 10 and 10, where the dot denotes the class with these mean counts. The darker the shading, the more mass the ERGM places on that class. Note

the mass placed on the extremes of the space.
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Figure 2. Variation in term counts across different levels of tapering. In each of the panels above, the dashed line indicates the term count in the observed network.
Each point is the mean parameter at that level of tapering with corresponding variation bars (plus/minus two standard deviations). We see that the mean parameters are
consistently at the observed values. The isolates and ESP(0) plots do not show the effects of tapering until further left because the variance constraints are not realized

until the tapering becomes heavier.

2. The Tapered Version of ERGM

We start with a mechanistic explanation of the Tapered ERGM
and follow it up with a conceptual and technical explanation.
The Tapered ERGM of Fellows and Handcock (2017) is the max-
imum entropy distribution subject to additional upper bounds
on the variance of the sufficient statistics. The solution is:

exp (6 - t(y) — 7 - (16, 7) — t(»)?)
c(0,71)

po (Y =y) =

xt1eR¥>0 0ecR? 2)

where we have suppressed the expression of the covariates. In
the above, 1(0,7) = Eg[t(Y)]. The form alone is enough to
intuitively grasp why tapering works: it adds additional terms to
the standard ERGM that measure the deviation of the statistics
from their mean. If the elements of ¢ are positive, graphs with
statistics far from their central location have lower probability.
This reduces the propensity of the model to place significant
mass on extremal configurations such as the empty and com-
plete graphs. The larger 7, the heavier the tapering and the less

the graph statistics vary from their mean parameters. It is also
possible to generalize the Tapered ERGM using other forms
of additional constraints, creating classes of models collectively
known as Restorative Force Models (Blackburn 2021).

2.1. Why Tapering Works

Figure 2 shows the effect of tapering applied to an adolescent
friendship network from the National Longitudinal Study of
Adolescent Health (Resnick et al. 1997). On the far right of each
panel, the mean parameter with two standard deviation bars
are plotted for the standard ERGM (no tapering). As we move
left within each panel, tapering is increased and the variance
of the term is constrained more and more. Eventually those
constraints become active, reducing the variation of the mean
parameter (i.e., the standard deviation of the term count). The
mean parameters always remain consistent at the observed val-
ues; they just vary less with increased tapering.

We need not rely on our conceptual intuition to see why
the Tapered ERGM reduces near-degeneracy. We can prove
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that we can always find a parameter 7 that will make pg - (Y)
nondegenerate, and we do so now. In Horvét, Czabarka, and
Toroczkai (2015), the authors provide two critical results. When
near-degeneracy occurs, the ERGM py (Y) is plagued by multi-
modality. One way to ensure py(Y) is unimodal is to require it
does not have any local minima. The first result addresses this
requirement.

Result 1. Let r(x) = h(x) exp((#, x)), where x is a vector. Then
r(x) has no minima for all 8 if and only if h(x) is strictly log-
concave.

The next result involves N(t(y)), the counting function rep-
resenting the number of graphs that have sufficient statistics
t(y). For example, if our vector of sufficient statistics for the
graph y is t(y) =(edge count, triangle count), then N(0,0) = 1
since there is only one graph with those statistics, namely the
empty graph. It is worth pointing out that the standard ERGM is
a probability mass function (PMF) with respect to the counting
measure. Furthermore, letting t(y) = t, the probability a graph
is sampled by the ERGM is

Nt
p(t10) = % exp(@-t) teT, T={s:3yeGysts=Lty)
c
where p(t|0) is now a PMF with respect to the measure N(¢)
due to the push-forward from the space of graphs Y to the
space determined by #(Y). From Result 1, Horvat, Czabarka, and
Toroczkai (2015) provide the following insight:

Result 2. Let N (t(»)) be a smoothed, continuous intgrpolator
of N(t(y)). An ERGM is nondegenerate if and only if N(#(y)) is
strictly log-concave.

Because of its discreteness, we need a continuous version of
N(t(y)) in order to build on Result 1. Even with N (t(»)), the
difficulty in utilizing this result is that computing N(¢) is in most
cases computationally impossible or at best extremely expensive.
Under the Tapered ERGM, however, we have

N(#) exp(—7 - (1 — )?)
cO,1)

We are now able to avoid computing N(t) and we can
guarantee the Tapered ERGM is nondegenerate so long as
N(@) exp(—1 - (u— t)%) is strictly log-concave. Neither Horvit,
Czabarka, and Toroczkai (2015) nor Fellows and Handcock
(2017) explicate a smoothing function N(#), but we do so here.
Recall that t is the vector of sufficient statistics for a graph .
N(t) is defined for all whole number-valued ¢ that are in the
support of t. For example, if ¢ is the vector of edge and triangle
counts, t = (1, 1) is not realizable. Thus, we need N(f) such that
it matches N(¢) if t is realizable yet also gives numerically similar
values for any nearby vector in R% . If we define T as the set of

p(tlo, 1) = exp(6 - 1)

realizable sufficient statistics, one possible choice for N@) is

i) = {N(t),ift €T

3
ZseT N(s) exp(—||t — s||2), otherwise 3

Note that in Fellows and Handcock (2017), the authors prove
the nondegeneracy for a larger class of models which subsumes

the Tapered ERGM as we have defined it above. The larger class
has the tapering center set to a general constant m instead of
. We will now show a proof specific to the Tapered ERGM as
defined in equation (2).

Theorem 3. Let chull(T) be the convex hull of the sample space
of statistics, T. For any vector y of mean parameters in chull(T),
there exists a vector of tapering parameters T € ]Rio such that
the Tapered ERGM with tapering center u is nondegenerate.

Proof. We will use N(t) as defined in equation (3) for our
smoothing function. It suffices to show that N(b) exp(—7 - (u—
t)?) is strictly log-concave. Note that although u = (6, 7) is
dependent on parameters 6 and 7, once those parameters are
chosen (6, t) is a constant.

Letr = log(N(t)) — h(t), where h(f) = 7 - (u — £)%. Then we

have g—f’, = —27;(j; — t;) and V*h a diagonal matrix
21’1
vih =
27Tk
Let x = (x1,..,x%) be any nonzero column vector. Then

xIv2hx = Y 211-xi2. Thus, regardless of V2 log(N(t)), we can
always choose 7 large enough such that x” v2rx < 0. Thus, r is

concave and the Tapered ERGM is nondegenerate by Results 1
and 2. O

2.2. Interpreting the Tapered ERGM Parameters

If the tapering parameters 7 are zero, then the Tapered model is
identical to the standard ERGM and an interpretation of the 6
parameters is as conditional log-odds. However, nonzero t has
an effect on the interpretation of the parameters. To see this, let

P(Yy = 1|Y; = yj) = P(Y,j) and P(Yj = 0]Y; = y5) =

P(Yi; ). Then, under the Tapered ERGM the log-odds of a tie
conditional on Yij. is

| P(Y})
o8 P(Y;)
exp (L 0utk(;) = X i — ((¥))?)
exp (X0 Bkte(Yy) — X0tk — (¥;))?)
=Y O ALYy — Y wl(uk — (V) — (k= (Y]
= D OA(Yy) = Y wl(k — (V)
+ (k= (VD) (= 1Y) + t(Y;)
= D OAn(Yy) + ) wl(u — t(Y;)
+ (ke — t(Y3;))) Aty (Vi)
= Z At (Yi) [0k + ki)

where At (Yy) = tk(Yij' ) — tk(Yij_ ) is the change statistic,
and 8gj = (ux — tk(Y;)) + (ur — tk(Yi;)) is the sum of the
differences from the mean. dy;; is a measure of the deviation of

= log




the network statistics from their mean. Hence, the interpretation
of the Tapered ERGM is that the conditional log-odds of a tie is
the sum of the (change in statistics) x (6x plus a penalty), where
the penalty is determined by t and the effect of the dyad change
on the change statistics.

Note that when 6y is the MLE, ék, U =
any given dyad Yj; it must be the case that ux =

t(Y) and for
(V)
or up = t(Y;). Hence, when 6 is the MLE, the log-odds

of a tie is Y, Ate(Yy) [ék + Yy — 1)Atk(Yl-j)]. The last
expression suggests a measure of the bias in the Tapered ERGM
parameter estimate 6 as an estimate of the conditional log-
odds is the average over the dyads in the network of the penalty
term: — 7 Zl] (2Yj; — 1) At(Yj). This is easy to compute as the
change statistics are available as a by-product of the computa-
tion of the maximum pseudo-likelihood estimator (MPLE) (van
Duijn, Handcock, and Gile 2009), which is typically used as a
starting value for the MCMC-MLE algorithm. We shall use this
measure in the case-studies of Section 5 to empirically show
that the bias in the Tapered ERGM parameter estimates are very
small (on the order of 1073 or smaller). The small magnitude
of the bias, together with the fact that most statistics need not
be tapered at all and incur no bias, points toward practically
interpreting 6 under the Tapered ERGM exactly as one would
under the standard ERGM.

3. The Kurtosis and Bimodality

While Section 2 shows that we can prevent multimodality,
we need a way to measure it. This brings us to a discus-
sion of kurtosis. One of the hallmarks of near-degeneracy is
bi/multimodality. When near-degeneracy strikes, often a large
amount of mass is placed at or near the extremes (empty and
complete graphs) of the graph space T with very little mass
placed near the realistic graphs. Consider again the seven node
graph model and suppose we observe a graph with sufficient
statistics 10 edges and 10 triangles. Figure 3 shows two bimodal
marginal distributions taken from an ERGM maximum like-
lihood fit. By construction, the MLE has mean parameters of
10 edges and 10 triangles, yet very little mass is put near those
observed values. The Tapered ERGM allows us to rein in this
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bimodality by tapering sufficiently around the mean parame-
ters until the distribution becomes unimodal. But the question
remains as to how much tapering is sufficient in order to remove
the bimodality. To answer this, we need an effective way to
measure the bimodality of a distribution. We now consider
measuring bimodality via kurtosis.

Since its inception in 1905, the meaning and interpreta-
tion of the kurtosis statistic has been debated (Darlington
1970; Moors 1986; Westfall 2014; DeCarlo 1997; Chissom 1970;
Balanda and MacGillivray 1988). For over a century, kurtosis has
been at times rightly and wrongly associated with peakedness,
heavy-tailedness, and modality. Our approach is to measure the
bimodality using kurtosis. Specifically, the kurtosis of a random
variable, X, is

4 4
Kurt[X] = E (X—_M> _ EX =W s
o EIX w15

This can be equivalently stated as the expectation of Z*,
where Z is the standardized random variable. Using this frame-
work, one can see immediately that only values with |Z| > 1
contribute nonnegligibly to the kurtosis since raising a number
less than one to the fourth power only brings that number
closer to zero. Thus, as Westfall (2014) points out, the only
unambiguous interpretation of the kurtosis is a measure of the
tail extremity; that is, the presence of outliers or the ability to
produce outliers. We can make no assertion about the peaked-
ness or even modality of the distributions if the peaks fall within
one standard deviation of the mean.

We can, however, extract more from the kurtosis in certain

contexts. Darlington (1970) makes the following argument for
interpreting the kurtosis as a measure of bimodality.

var[Z?] = E[Z*] — (E[Z%))?
= Kurt[X] — 1

From the above identity, Darlington argues the kurtosis can be
interpreted as “a measure of the degree to which the values of Z>
cluster around their mean of 1” and furthermore as “a measure
of the degree to which a distribution’s z-scores cluster around +1
and —1 From this identity we see that the lower bound on the
kurtosis is 1, and that this can only be achieved in a symmetric
two-point distribution, that is, one that is completely bimodal.

0.25
]
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0.05
|
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Figure 3. The marginal distributions of edges (left) and triangles (right) sampled from a near-degenerate ERGM. Much of the mass falls toward the empty and complete
graphs with very little near the mean parameters (dashed line). A restriction to such polarized behavior is unrealistic for most social processes.
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It would appear then that a lower kurtosis would indi-
cate bimodality, where several benchmarks could be used
(Kurt[X] = 3 for the Gaussian distribution and 9/5 for the uni-
form distribution). However, others (Hildebrand 1971; West-
fall 2014) were quick to demonstrate counterexamples where
bimodal distributions still had kurtosis values close to that of the
Gaussian distribution, such as a “two-tailed gamma” distribu-
tion or the so-called “slip-dress” distribution. In these contrived
examples, the two modes are very close to one another about
the mean, and heavy tails extend to infinity producing the large
kurtosis value. Yet, these examples show us precisely why it is
okay to interpret the kurtosis as a measure of bimodality in
the context of network modeling. The bimodal scenarios we
encounter with near-degeneracy occur when significant prob-
ability mass is placed at the extremal configurations, that is, the
empty and complete graphs (Horvat, Czabarka, and Toroczkai
2015; Handcock 2003). It is not possible to obtain a bimodal
distribution with a high (= 3) kurtosis value for two reasons:
(i) the separation of the modes is large; and (ii) there is no
opportunity for heavy tails to cover up bimodal peaks since the
PMFs have finite, bounded support over the space of possible
graphs. Thus, we can use the kurtosis statistic to help us measure
bimodality for our purposes of identifying near-degeneracy.

The kurtosis is bounded below by the square of the skewness
plus one. This lower bound is achieved only in a completely
bimodal distribution such as a Bernoulli with probability one-

half.
2
B (Y4
1253 o
The above inequality suggests we can use the bimodality
coefficient (Ellison 1987), B, to measure bimodality:
2
poritl (4)
V2
where y is the skewness and y; the kurtosis. 8 lies in (0,1] with
1 indicating complete bimodality. The uniform distribution has
a bimodal coefficient of 5/9, and any value above this threshold
can be considered bi/multimodal.
Now that we have a way to measure bi/multimodality, we can
use the bimodality coefficient as a measuring stick for what and
how much to taper.

4. Tapering Methodology

In this section we address two main concerns when using the
Tapered ERGM: (i) Will the level of tapering effect the numerical
value of the parameter estimates; and (ii) What level of tapering
should we use (and on which terms)? Our illustration in Section
2 suggests that the answer to (i) is most likely “no” Figure 5
shows that estimates of 6 are remarkably stable across a wide
range of tapering levels. In other words, the numerical value of
the parameter estimates appear to be insensitive to the degree of
tapering, as determined by 7. In addressing the first question, we
can show that as T goes to zero, the Tapered ERGM is identically
the ERGM.

Theorem 4. Let Pg(Y) denote the standard ERGM and Py (Y)
denote the Tapered ERGM. Thenas t — 0, Dk (Py,¢||Py) — O,
where Dk () is the Kullback-Leibler divergence of Py ; from Pg.

Proof. Let Pg(Y) be the standard ERGM and Py (Y) the
Tapered ERGM. That is,

exp (X; 0iti(»))

Py(Y =y) = &

and

exp (32 6:ti () — g ik — 5(1))?)
c(6.1)

The Kullback-Leibler Divergence from Py to Py . (Y) is

P T
Di(Po|IPe) = Y Po(y)log (;_((y))) ‘
y o

Py (Y =y) =

= Pyr(y)log (eXp (— D wu — ()’
y k

— log(c(@, 7)) + log(c(e))))
= Po:() (— Dl — tx ()
y k
()
%\ o)
o - ¢(0,7)
= ;rkok Eg . |:log< ) >i|

where o = Fy [ (1 — ()] = varg  [(»)].
Clearlyas t — 0,

exp (Z Oiti(y) — Y h(px — tk()’))2> — exp (Z 9ifi(y))
i k i

Therefore,as T — 0, ¢(6,7) — c(9) and log (CE%)) — log(1).
Thus, D1 (Pg,¢||1Pg) — 0ast — 0.

This result has two important implications. First, it ensures
the Tapered ERGM does not behave markedly different from
the standard ERGM across certain thresholds of 7 since the
convergence to the ERGM distribution is smooth as 7 goes to
zero. Second, and more importantly, the equivalency of the dis-
tributions as T approaches zero implies the parameter estimates
of the two distributions also become equivalent (assuming the
ERGM is minimal (Barndorff-Nielsen 1978, Corollary 8.1)).
The answer to question (ii) is more nuanced. While Theo-
rem 4 indicates that the effect is negligible for sufficiently small
7, it does not ensure it is in real-world usage. Indeed, we should
aspire to taper as few terms, and as little on each term, as pos-
sible. The argument for this is as follows. We saw in Theorem 4
above that the smaller 7 is, the closer the Tapered ERGM is to
the ERGM. Of course, in a nondegenerate scenario we would
not need any tapering at all, but we most often cannot know a
priori if the ERGM will be near-degenerate. So we should apply
the minimum amount of tapering necessary in order to define a
model with realistic behavior. This can be done in the following
manner, with greater explanation of each step to follow.

Algorithm 1. Setting the Tapering Parameter



1. Choose only the dyad-dependent terms to taper.

2. Ifthere are K terms to taper, set a large value of tx in order to
heavily taper each of the k = 1,. .., K terms.

3. If the MCMC estimation for 6 converges, proceed to the next
step. If the MCMC does not converge, go back to step 1 and
taper all terms.

4. Relax the amount of tapering by decreasing each t; until
the estimate of the bimodality coefficient for each of the k
statistics is no greater than 0.4.

Let’s work through this step by step. Step 1 advises us to
taper only the dyad-dependent terms. It is often these terms,
like the triangle count, that are explosive when near-degeneracy
strikes so it is natural to taper them. One may wonder why
we don’t simply taper all terms by default. The reason we do
not is not only because Theorem 4 tells us we would like some
7 = 0 (i.e., untapered terms), but also because 7 has an effect
on the interpretation of the parameters (Section 2.2). We know
empirically that 6 is very stable across a wide range of 7, so we
may as well make 7 as small as possible to get as close as we can
to the standard ERGM interpretation where 6y is the conditional
log-odds of a tie.

Step 2 tells us to set a large value of 7. This may seem to
contradict everything we just discussed above about wanting t
close to zero. But it is in fact consistent because in Step 4 we
then relax the tapering and dial back 7 to smaller values. The
reason we actually want to start by over-tapering is because at
0 (T)MLE> we know that i = t,5(y). Thus, the computation
is less sensitive to the value of © when we are in the vicinity of
the observed graph where t(y) & t,s(y). The heavy tapering
ensures 6(7) MLE exists and can be estimated accurately during
MCMC estimation. Once we have an estimate of 0 ()1 > We
can restart our MCMC routine at that value for smaller values
of 7. Convergence of the iterated MCMC should still be quick
since our initial estimate of 6(z)prg is likely very close to
é(f)MLE and the model is far from degenerate. Usually it is
enough to taper only the dependent terms, since in doing so the
independent terms (like edge count, e.g.,) end up being curtailed
indirectly. However, sometimes it is too difficult for the MCMC
routine to converge, and in this scenario it is wise to start over
and taper all terms.

Once we have an initial estimate of (1 | set, Step 4 tells us to
decrease the tapering. We can decrease 7 until one of two things
happens: the MCMC fails to converge (we have relaxed too far
and near-degeneracy may be occurring), or until the bimodality
coefficient 8 > 0.4, where B will make use of the bias-corrected
kurtosis (Blackburn 2021). The choice of 0.4 as the cut-off value
for B is somewhat arbitrary but very reasonable. Recall that
B € (0,1] where 1 indicates complete bimodality. The normal
distribution has a bimodality coefficient of 8 = 0.33, and the
uniform distribution has 8 = 0.55. The threshold of 0.4 is a nice
medium between these, so we should allow 74 to be as small as
possible such that it still produces 8 < 0.4.

Noticeably absent from the algorithm above is what con-
stitutes a “large” value of ;. This is because each value of
must be set relative to px = E[tx(y)]. In Fellows and Handcock
(2017), the authors suggest 7y = ﬁ, which ensures obser-

vations r standard deviations from the mean are tapered most.
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This also takes the standard deviation of #(y) to be /ig, an
assumption of Poisson dispersion. In reality we do not know if
the variance of #;(y) is over- or under-dispersed, and the tuning
parameter r allows us to adjust for this. Using a default value
of r = 2 stems from a rough use of the empirical rule in the
normal distribution. Thus, setting a “large” value of t; might
instead use r < 2; for example, very heavy tapering would use
r = 0.5 which corresponds to 7y = Mik. We should point out that
setting overly small values of r (i.e., excessively large tapering)
is also a danger. Doing so will constrain the model too much
and not allow the Markov chain to explore the graph space away
from the observed graph. Using r = 2 as a starting point and
then slowly lowering r to increase tapering is the way to proceed,
since we must be careful not to immediately jump to r values so
small that the model also cannot converge because it is overly
constrained. If we find that lowering r (increasing tapering) still
does not make the model converge, we should consider tapering
all terms (not just the dyad-dependent terms) and starting again
using r = 2.

The theorems of this section shows that it is theoretically
possible to fit networks using the Tapered ERGM, and the
algorithm above shows that it is also practical.

4.1. Penalized Likelihood via the Kurtosis

There is yet another way to use the kurtosis to assist in setting
the tapering parameters . Instead of relying on the guesswork
of Algorithm 1, if we set a target kurtosis value we can simply
maximize the likelihood pg (YY) subject to a penalty on how
far the kurtosis deviates from the target value. Note that in
this framework there is no need to work with the bimodality
coefficient and we can instead use the bias-corrected sample
kurtosis, K¢, directly (Blackburn 2021).

We can always increase t to make the kurtosis of the Tapered
ERGM closer to a target kurtosis, say Kr. However, in doing
so the values of t will necessarily increase until K¢ = Kr
on average. In order to avoid over-tapering, we must also set a
penalty on the magnitude of 7. That is, we estimate T as

Kc — Kr\?
T = arg max |:l(9,r, Y ) —T—y (u> i|
T Ko

where /(0,7 ;y) is the log-likelihood of Equation (2). Hence,
we actually seek to optimize a doubly penalized likelihood; we
penalize kurtosis values too far from K7 while simultaneously
penalizing values of t that are too large. The value in this
approach is that it does not require the user to manually adjust
values of r in order to find the optimal level of tapering. Instead,
a default value of r = 2 is used to initialize the optimization, and
then the penalized likelihood is optimized with user-specified
values for K7, K, and y. Sensible default values are K = 3,
the kurtosis of the Gaussian distribution; and K, = 0.6, half the
distance from 3 to 1.8, the kurtosis of the Uniform distribution.
We have found that setting 7, = ﬁ and optimizing over the
scalar r > 0 is quite effective. The choice of penalty coefficient
y is somewhat arbitrary, though we recommend y = 1/2. It is
worthwhile to note the search for 7 is in the region of minimal
tapering and the standard ERGM is often chosen.
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4.2. Likelihood-based Inference

We can sample from the model (2) using the same type of
MCMC procedure as for the standard ERGM (Handcock et al.
2003). These draws can be used to create an MCMC estimate
of the log-likelihood (Geyer and Thompson 1992). This, or the
penalized likelihood of Section 4.1, can be estimated. For the lat-
ter, MCMC estimates of the bias-corrected kurtosis, K¢, can be
computed from the same sample so the additional computation
compared to the standard ERGM is small.

Krivitsky (2012) review likelihood-based inference for
ERGM in finite, super and infinite population scenarios, includ-
ing the asymptotic normality of the MLE. The standard errors
of the MLE are often approximated based on the Hessian of the
log-likelihood. The next result gives expressions for the Hessian,
providing a minor correction to Equation (4) in Fellows and
Handcock (2017).

Theorem 5. At the MLE, the Hessian of the log-likelihood is

ol6,t3y) oui(0,7) Ouk(0,7) dpk(8, 1)
— ) = 22 Tx
36;060; v 96; ; 36; 96;
where
(o, 1
M = (I —B) 1.
36;

and ¢ is the vector with ! element ci = cov(t,(Y), t;(Y)).

Proof.

8“‘7’(9) T)
00;

= cov (tr(y) ti(y) — szk(ﬂk(e T) = tk(YD%)
P 1

m(6,7)

= cov(t,(Y), t,(Y)>+sz ag OVt (Y, (V)

Collecting all the partial derivatives on the left side, we have

I (0,7) pui(0:7)
96 & Zz 6 OV &)

= COV(fr(Y), ti(Y))
Which can be written as a system of linear equations

o, ;
(1~ p) 00 u(®,7) _d
a0;
where, adopting the notation of Fellows and Handcock (2017),
we define matrix B with B,z = 214 cov(t,(Y), t(Y)) and vector

¢ with ¢l = cov(t,(Y), t;(Y)). Thus, the correct expression is
(o, 1
@1 _ (I-B)~ ¢
d6;
O

The applications in this article use Hessian-based standard
errors, although it is also possible to compute standard errors
using a parametric bootstrap around the MLE model fit.

5. Case-Studies of Social Networks

In this section we fit the Tapered ERGM to two real-world
networks, each time noting the tapering methodology and the
advantages of the model.

5.1. Friendship Structure Among Adolescents

Derived from a National Study on Adolescent Health (Resnick
etal. 1997), the Faux Desert High Network is a simulated social
network of middle and high school students. This is a medium-
sized network comprised of 107 students, with 439 directed
edges between them representing friendship nominations. We
have information on the grade (7 through 12), sex, and race
(with the vast majority identifying as White, but also including
Black, Hispanic, Asian, and Other) of each student. While this
is a simulated network, the simulation is based on real-data and
the simulation is to preserve the privacy of the adolescents.

Additionally, we note there are 677 triangles in the network.
We would like to know if these three-cycles are a product of
homophily (“birds of a feather flock together”), transitivity (“a
friend of my friend is also my friend”), or some combination
thereof. Typically, we cannot fit an ERGM with a triangle term,
as the term nearly always induces near-degeneracy, and we are
forced to use less than satisfying alternatives. However, this is
an exceptional case, and we actually can fit such a model for
this network using only a standard (untapered) ERGM. This
gives a unique opportunity for a direct comparison between the
ERGM and Tapered ERGM and for the effects of tapering to
be explicitly measured. The ERGM can be fit using relatively
few terms, which are summarized in Table 1. We see that the
triangle term is essentially zero, and there are strong effects of
matching on grade at every level. In other words, under this
model homophily on grade level is almost solely responsible
for the observed clustering. This is unsurprising given most
activities and classes within a school are segregated by grade.
Figure 4 displays some graphical goodness of fit diagnostics
showing that the model is indeed a good fit.

How might this fit change if instead we used a Tapered
ERGM? We can consider two different scenarios here. First,
consider the exact same model as the ERGM, but we instead
decide to taper the dependent terms (as recommended by Algo-
rithm 1), which in this model are the triangles, isolates, and
the edges with zero shared partners (esp(0)) terms. The heavier

Table 1. ERGM fit versus Tapered ERGM fit on Faux Desert High Network.

Term ERGM Tapered ERGM
edges —3.48 (0.10) —3.49 (0.10)
triangles —0.008 (0.038) —0.002 (0.054)
isolates 1.16 (0.47) 1.20 (0.63)
esp(0) —1.35 (0.13) —1.35 (0.15)
match.grade.7 222 (0.23) 2.19 (0.24)
match.grade.8 2.07 (0.17) 2.05 (0.17)
match.grade.9 1.99 (0.16) 1.98 (0.16)
match.grade.10 1.57 (0.11) 1.57 (0.11)
match.grade.11 1.78 (0.15) 1.77 (0.15)
match.grade.12 1.28 (0.28) 1.28 (0.28)

NOTE: In the Tapered ERGM, the optimal tapering scaling factor of r = 2.484 was
found with automatic tapering via the kurtosis-penalized likelihood method of
Section 4.1, where tapering was done on the dyad-dependent terms.
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the ‘grade’attribute are plotted as the dashed line for reference (exactly as in the left panel). We see that even without the nodal attributes, the Tapered ERGM is able to fit
a triangle model and still arrive at stable estimates very similar to that of the ERGM including nodal attributes. Once again, the standard errors are comparable to that of
the untapered ERGM. In both the left and right panel, the error bars have been omitted from the isolates term because the low number of isolates in the network lead to

large standard errors which otherwise distort the graph.

the tapering, the smaller the standard deviation of the counts
of each term. The left panel of Figure 5 shows what happens
across different levels of tapering. On the far right of this plot
are the ERGM parameter estimates. As we move left along
the horizontal-axis, the tapering increases and the standard
deviation of the triangle count decreases (as do the standard
deviations of the other terms, though not as much). We see
that not only do the parameter estimates themselves remain
basically unchanged, so too do their standard errors. Only under
severe tapering (far left of the plot) do the standard errors grow
significantly larger.

The second scenario to consider is a very practical one. Imag-
ine we do not have any nodal attributes in our data. As such,
we cannot match on grade level in our model. We would still
like to fit a triangle term, but alas, without the nodal attributes
the triangle term forces the ERGM to be near-degenerate and
MCMC estimation fails. This is where the Tapered ERGM flexes

its power. If we taper the dependent terms (triangles, isolates,
and esp(0)), we can fit the model without problem. Moreover,
we can also choose to taper only the triangle term and the
results are nearly identical. The right panel of Figure 5 shows
the parameter estimates and standard errors of the Tapered
ERGM without nodal covariates. What is remarkable is how
close these estimates are to that of the standard ERGM which did
incorporate the nodal attributes. The Tapered ERGM not only
allowed us to fit an otherwise near-degenerate model, the results
are very similar to that of the ERGM using more information.
Note that the triangle term is statistically significant in this
model, but the parameter estimate is still very close to zero. The
key point to take away here is that the level of tapering essentially
does not effect parameter estimates; in fact, tapering even gives
reasonable estimates in models heretofore impossible to fit.
Tapering is always done relative to each term, specifically
relative to each term’s corresponding mean parameter. For
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example, we can control the level of tapering on the triangle
term through v, = 1/(ruui), where r is a user specified
multiplier and 4 is the mean value parameter for triangles.
Figure 2 shows what happens to the term counts as we vary
r. The relation above shows that r is inversely proportional
to the amount of tapering, t; small values of r lead to heavy
tapering (leftward) and tapering decreases as r increases (right-
ward). Because the Tapered ERGM centers tapering on the mean
parameters, the mean parameters all lie near the observed values
(dashed lines in the plot). As we move left, tapering increases
and eventually the variance constraints for each term all become
active. Certain terms like the triangle count exhibit tapering at
nearly all levels of r (as expected since near-degeneracy often
causes the triangle count to explode as the MCMC progresses),
whereas other terms like the number of isolates do not show
the effects of tapering until large values of 7. It is worth not-
ing that the edge count was not tapered in this model, yet it
exhibits tapering because all of the dependent terms—triangles,
isolates, esp(0)—were tapered. Because the mean parameters are
consistent across levels of tapering, we should strive for as little
tapering as necessary.

5.2. Ethnic Heterogeneity in the Activity and Structure of a
London Street Gang

The data for this network were gathered by two sociologists
investigating the role of ethnicity within a London street gang
(Grund and Densley 2012). The gang was believed to have
formed in 2005 and mainly operates in a low-income housing
area of inner-city London. Using police arrest and conviction
data, as well as fieldwork that involved interviewing some of the
gang members, the authors of the study focus on 54 “confirmed”
members of the gang who were known to be affiliated between
2006 and 2009. The dataset contains a number covariates

° ©)

including the birthplace, age, number of arrests, number of
convictions, incarcerations, and rankings of each gang member.
A tie exists between two gang members if they co-offended (were
arrested together for committing a crime) at least once. The
network consists of 133 undirected ties. Figure 6 shows that
there are six isolates within the network, though the authors
later removed them and analyzed only the largest connected
component using standard ERGMs (Grund and Densley 2015).
Though somewhat of a common practice, removing isolates
is rarely justified and distorts the social processes at work in
forming the network. Therefore, in the forthcoming treatment
we analyze the network both ways, with and without the isolates.

Although every member of the gang would be racially
defined as Black, they do not all share the same ethnicity. Grund
and Densley (2015) use place of birth and national heritage to
serve as “a proxy measure for ethnic background.” The authors
are quick to admit that two individuals from the same region
may not identify as the same ethnicity with regard to culture,
language, etc., but their “fieldwork with the gang confirms the
validity of this categorization.” As such, they identify four dis-
tinct ethnic identities within the gang: (1) Somali (n = 6), (2)
West African (Congo, Ghana, Ivory Coast, Nigeria, and Sierra
Leone, n = 12, including two siblings), (3) Jamaican (n = 12),
and (4) British (n = 24).

Grund and Densley (2015) posit that who co-offends with
whom is driven by ethnic homophily, triad-closure, and poten-
tially an interaction between the two. Specifically, they hypoth-
esize that “gang members are even more likely to offend with
each other when they have the same ethnic background AND
share another co-offender from the same ethnic background”
(Grund and Densley 2015). To disentangle these effects, the
authors fit an ERGM to the data. Clearly, the most important
term for these purposes would be the triangle, which can also
be indexed by ethnic attribute. That is, including a separate tri-
angle term for each of the four ethnicities, along with matching

U West Africa

Jamaican

e UK

Somali

Figure 6. The London Gang Network. A tie exists between two gang members if they have committed at least one crime together. All gang members are Black but the
gang is comprised of four distinct ethnicities, categorized by the authors as their countries of origin.



on ethnicity to measure homophily, would provide a conclu-
sion to their hypothesis. Unfortunately, the authors note that
counting triangles elicits near-degeneracy and cannot include
such terms. As a workaround to measuring the effects of triad
closure, they include a geometrically weighted edgewise shared
partner (GWESP) term (Snijders et al. 2006) and a customized
GWESP term which only counts edgewise shared partners
matching on the same ethnicity. With these and ethnic matching
terms all significant, the authors conclude that their hypothesis
is correct.

With Tapered ERGMs, we do have the ability to measure the
effect of triad closure directly by fitting triangle terms and our
model provides clear answers to the questions of the researchers.
ERGMs have the functionality to model triangles based on spe-
cific attributes, in this case ethnicity, but typically this presents
the problem of near-degeneracy during maximum likelihood
estimation of parameters. With Tapered ERGMs this isn't so,
and we can easily fit such terms. With the same objective of
disentangling the effects of ethnic homophily and triad closure
on who co-offends with whom, as well as any interaction, we fit
a separate triangle term for each ethnicity as well as a matching
term for each ethnicity. Because triangles can also be ethnically
heterogeneous, we also fit a general triangle term to account
for the effect of triad closure where gang members do not all
share the same ethnicity. Looking at the data we see that for
one particular ethnic group, Somalis, any homogeneous ties also
occur within homogenous triads. Thus, we cannot include both
a Somali triangle term and a Somali matching term together in
the model because it is not possible to estimate both simulta-
neously. We therefore make the decision to include the Somali
matching term but remove the Somali triangle term, for the pur-
pose of model stability. Table 2 shows the results of two Tapered
ERGMs. Model 1 was fit to the largest connected component
of the gang network as Grund and Densley (2015) did; Model
2 was fit to the entire network including the six isolates and
hence also has an isolates term. The results of both models are
expectedly very similar to each other. Models 1 and 2 were both
fit with automatic tapering via the kurtosis-penalized likelihood
method of Section 4.1. In both cases, a mild value of r = 2
was used as a starting value, and each time the tapering was
allowed to decrease further until the maximum of the penalized
likelihood was found (r = 2.466 and r = 2.486 for Model 1 and
2, respectively).

Unsurprisingly, the Somali matching term is highly signifi-
cant (as would be a Somali triangle term had it been included

Table 2. Summary of Tapered ERGM:s fit on London Gang Network.

Term Model 1 Model 2 T bias
edges —3.23(0.18)***  —3.34(0.17)*** 0.001 —0.0001
triangles 0.68 (0.10)*** 0.71 (0.09)***  0.001 —0.0012
triangles(West Africa) 0.11(0.38) 0.12(0.37) 0.011  —0.0023
triangles(Jamaican) 0.17(0.61) 0.41(0.54) 0.027 0.0000
triangles(UK) 0.56 (0.38) 0.61(0.42) 0.021 —0.0015
match(West Africa) 0.96 (0.60) 0.95(0.56) 0.008 —0.0005
match(Jamaican) 1.35 (0.66)* 0.94 (0.55) 0.012 0.0006
match(UK) 0.27 (0.40) 0.31(0.42) 0.007 —0.0004
match(Somali) 2.17 (0.59)*** 2.33 (0.50)*** 0.027 0.0004
isolates 0.98 (0.67) 0.027 —0.0027
<.05 *H<.01 **%H<.001.
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instead of the Somali matching term) since that ethnicity tends
to cluster tightly together with regard to co-offending. What
is surprising, however, is that the general triangle term is also
highly significant while nothing else is (save the edge term, and
the borderline significant Jamaican matching term in Model 1).
This tells us that outside of the Somali gang members, the most
important thing driving who co-offends with whom is whether
or not doing so would close a triad, regardless of the ethnicities
of those in the triad. Neither ethnic homophily nor homogenous
triad closure are significant for any ethnicity other than the
Somalis (notwithstanding the borderline significant Jamaican
matching term in Model 1). This leads us to conclusions almost
entirely opposite of those made by Grund and Densley (2015):
for this particular gang, gang members are more likely to offend
with each other if doing so would close a triad; they are not
more likely to offend with each other when they have the
same ethnic background or if they share another co-offender
from the same ethnic background (excepting Somali gang
members).

Figures 7 and 8 show that both Model 1 and 2 provide
superior fits to the data than that of the ERGM of Grund and
Densley (2015), especially with regard to the edgewise shared
partner distribution, further showing the importance of the
general triangle term. The excellent fit of Model 2 to the degree
distribution underscores the wisdom of not removing the iso-
lates from a network when modeling. It is worth noting that
other models were fit including the other covariates (number of
arrests, number of convictions, prison, age, ranking), but none
improved the overall fit and none were significant. Furthermore,
including additional terms in the model, for example, edgewise
shared partner terms, would improve the overall fit but were
intentionally left out as to give a fair comparison to the ERGM
fit by Grund and Densley (2015), who were only concerned
with triad closure and ethnic homophily. This example clearly
demonstrates the vital need for Tapered ERGMs, since without
the ability to fit fundamental terms like the triangle it is very
possible to make incorrect inferences.

5.3. Supplemental Case-Study: Going to Extremes with the
Last.fm Friendship Network

Last.fm is an online music service that allows users to create a
community of “friends” in addition to streaming music, with
over 60 million users across the globe (Last.fm 2020). This
dataset was collected by Toivonen et al. (2009) and used in
their comparative study of social network models. The network
is very large, consisting of 8,003 nodes and 16,824 undirected
ties. This network contains only mutual friendship structure and
does not include any nodal covariates or information on musical
preference.

Whereas a standard ERGM may struggle with a network this
size, the Tapered ERGM is able to fit the data with relative ease.
Nonetheless, fitting a network of this magnitude is not without
some difficulties and nuances that are worth mentioning. The
large size of the network coupled with the lack of exogenous
information requires an extreme amount of tapering in order
to achieve a fit. With such heavy tapering, estimation of the
standard errors can become strained and results should be
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Figure 7. Goodness of fit diagnostic plots for the Tapered ERGM fit on the largest connected component of the London gang network (Model 1 in Table 2).

interpreted carefully. This is an rare example of an extreme
case, but in general tapering values are often small and the
effect on the standard errors is limited. We refer the reader
to the Appendix to “Practical Network Modeling via Tapered
Exponential-family Random Graph Models” published in the
Journal of Computational and Graphical Statistics for further
details.

6. Discussion

For too long, practical modeling via ERGMs has been hin-
dered by concerns about near-degeneracy. Near-degeneracy
constrains the space of ERGMs in that many intuitive terms, like
the triangle, most often cannot be used within the ERGM as they
induce near-degeneracy. The Tapered ERGM of Fellows and
Handcock (2017) frees the ERGM, ironically, by constraining
it; that is, by placing variance constraints on select statistics
the Tapered ERGM can incorporate any term with a guarantee
of nondegeneracy. Knowing what level of tapering to use was
left as an open question that was unanswered until now. The
data provide no insight as to how much tapering is necessary,
so we developed two methods here for determining the proper
amount of tapering.

In this article we have expounded upon the idea of tapering
and have shown the Tapered ERGM to be highly effective in

modeling networks. The concept of the kurtosis and why it
is appropriate in the context of ERGMs is at the core of how
to apply Tapered ERGMs. Employing a novel bias-corrected
measure of the kurtosis, we can use a benchmark bimodal-
ity coeflicient threshold of 0.4 to know if we have tapered
enough. This is an integral part of Algorithm 1 which lays
out exactly how, what, and when to taper the terms of the
Tapered ERGM.

Alternatively, we may also use the kurtosis within a penalized
likelihood setting to inform how much tapering is necessary,
as outlined in Section 4.1. Theorems 3, 4, and 5 prove that
the Tapered ERGM lies on a firm theoretical foundation in
addition to its practicality. With all of the benefits and fewer of
the downsides of ERGMs, the Tapered ERGM can be used as
a replacement for ERGM as the default modeling framework
for network analysis. One appealing feature of the Tapered
ERGM is that it includes ERGM as a special nested model.
Hence, it allows a standard ERGM model to be selected if
supported by the data and a better model to be used in cases
where the standard ERGM is not appropriate. Tapered ERGMs
are also naturally appropriate for curved exponential families.
Curved exponential families are complex because the structure
is determined by the curved parameterization. However, our
penalization still naturally applies and should be well behaved
if the curved parameterization itself is.
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Figure 8. Goodness of fit diagnostic plots for the Tapered ERGM fit on the London gang network (Model 2 in Table 2).

The networks analyzed here provide several insights. The
analysis of the friendship network of adolescents allowed us
to empirically show that the choice of the tapering parameters
7 does not critically effect the parameter estimates and thus
has no effect on scientific analysis. In situations where the data
supports severe tapering, one can choose between accepting
the tapering and assessing how realistic the terms represent the
underlying social processes. The London street gang network
demonstrated how important Tapered ERG models really are.
Without them, substantively desirable terms like the triangle
cannot be fit and incorrect inferences may occur. The analysis of
the London street gang network resulted in conclusions nearly
polar opposite of those reached by the authors of the original
analysis done using standard ERGMs as they were unable to use
triangle terms.

It is important to recognize the behavioral modification in
modeling, that is, induced by concerns about near-degeneracy.
Most practitioners model dependency by including sufficient
statistics in the model from a very narrow palate (e.g., GWESP
from Snijders et al. 2006). An alternative approach is taken by
Wilson et al. (2017) who consider raising network statistics to a
positive power less than one. This sub-linear curving produces
statistics that are less degenerate as the power deceases, but

comes at the cost of making such statistics difficult to interpret.
Statistics in these cases are usually chosen not because they make
the most sense, but because they provide a computational fit.
The Tapered ERGM allows practitioners to fit their model of
choice.

Finally, the additional computational burden of Tapered
ERGMs is modest. They can be fit using the same MCMC
machinery as standard ERGMs. No new terms need to be coded.
An open-source R package implementing the methods devel-
oped in this article, ergm. tapered, (Handcock, Krivitsky,
and Fellows 2021; Krivitsky et al. 2003-2020; R Core Team 2020),
was used to do the simulation studies and analyze the case-
studies. It is publicly available.
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