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ABSTRACT

This thesis is concerned with aspects of statistical inference for Gaussian ran-

dom fields when the ultimate objective is prediction. If we wish to predict a value

for a random field at unobserved locations in a bounded region it is essential to have

knowledge about the covariance function for that field. This knowledge is important

both for the quality of prediction and for the assessment of the quality of prediction.

The perspective taken in this thesis is that a predictor is incomplete without an as-

sociated measure of uncertainty. That is, obtaining a good estimate of the prediction

variance is as much of a concern as obtaining a good prediction.

Stein (1988a) has shown that the impact on the best linear unbiased predictor

from not using the correct covariance function is asymptotically negligible as the

number of observations increases if the covariance function used is “compatible”, in a

well defined sense, with the actual covariance function on the region of interest. The

concept of compatibility thus plays a central role in determining how a covariance

function should be estimated.

This thesis concentrates on likelihood based inference for the covariance function

when the random field is known to be Gaussian and the mean function has known

form. We find that the likelihood statistic tells us as much about the model chosen

as the data we are analyzing. If we use a peculiar model the likelihood statistic will

indicate this by exhibiting peculiar behavior. If we have di�culty accepting a peculiar

likelihood, we should choose a di↵erent model. Choosing to ignore the likelihood and

using an alternative estimation procedure for the same peculiar model will not make

the peculiar behavior exhibited by the likelihoods go away. We address numerical

issues that arise when an irregular likelihood is used for inference.

For spatial random fields observed on a fixed region, an increasing density

asymptotic framework may lead to bounded information for some of the parame-

xi



ters. We investigate the approximation of discrete observation in a fixed interval by

continuous observation on the same interval. We find that the distribution of the

maximum likelihood estimates are well approximated by their continuous versions

when the range of correlation is comparable to the length of the segment, in a sense

made precise. In this setting the empirical covariance function fails as an e↵ective

estimator of procurable characteristics of the covariance function. We investigate the

empirical spectral density and find that it also fails in a surprising manner.

We analyse the best linear unbiased prediction procedure from within a Bayesian

framework. The objective is to monitor the performance of the procedure when the

underlying model is misspecified. Particular attention is paid to the treatment of

parameters in the covariance structure and their e↵ect on the quality, both actual

and perceived, of the prediction.

These ideas are implemented using topographical data from Davis (1973) as a

forum.

Key words: Interpolation, Likelihood, Geostatistics, Compatibility, Robustness
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CHAPTER 1

INTRODUCTION AND COMPATIBILITY

1.1 Introduction and Motivation

This thesis is concerned with aspects of statistical inference for Gaussian random

fields when the ultimate objective is prediction. If we wish to predict a value for a

random field at unobserved locations in a bounded region it is essential to have

knowledge about the covariance function for that field. This knowledge is important

both for the quality of prediction and for the assessment of the quality of prediction.

This thesis concentrates on inference for the covariance function when the random

field is known to be Gaussian and the mean function is of a known form.

The motivating problem was the prediction of ore grades within the Mount

Charlotte gold mine on the basis of samples taken from drill cores. The samples

were spatially distributed along drill holes that spanned the geologically defined ore

body. The ore was mined in blocks of about 10 meters in dimension. The problem

faced by the mining engineers was the estimation of the average grade, in grams of

gold per tonne, within each of these blocks. This information is essential in deciding

where and how much to mine to maintain a fixed average grade. Their standard

procedure to determine overall tonnage was the volume weighted sample tonnage

within the ore body. This estimate was typically within 5% of the of the overall

tonnage determined when the ore was milled. The ore body extended far deeper

than the current drilling and mining level. A drilling scheme was planned to decide if

1
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mining should continued. A principal question was how to design the scheme so that

the ore distribution and overall grade could be predicted with a moderate amount

of drilling. Our approach was to model the spatial distribution of the ore grade by

a random field and predict the ore grades at unknown locations. The random field

can then be used as a foundation for answering the questions posed by the mining

engineers. The statistical issues raised by this formulation stimulated this thesis.

There are a multitude of scientific fields that now use the random field model as

a basis for prediction. We mention Forestry (Matérn (1960)), Meteorology (Gandin

(1963)), and Hydrology (Kitanidis (1983)). Of special note is the mathematical work

for the French Geostatistical school led by Matheron (1963, 1973). They have inde-

pendently developed methodology under the name ‘kriging’. Much of this method-

ology has grown with little cross fertilization between fields and detached from the

mainstream statistical community.

The statistical framework addressed in this thesis has a wide basis outside of

spatial settings. A general problem is the modeling of a response as a function of

input variables. Often the determination of the response for each set of input values

is expensive or restricted. A usual objective is to predict the value of the response

at additional values of the inputs based on observing the response at a moderate

number of inputs. Sacks, Shiller & Welch (1989) consider the prediction problem

when the response is the outcome of a complex computer model for chemical kinetics

problems. In these cases the stochastic basis for the response is the statistician’s lack

of knowledge of the underlying physical model. This approach has been applied to

the design of VLSI circuits and for numerical integration. The approach is a useful

extension to the classical linear model in the design of experiments. As identical

issues of statistical inference for the covariance structure arise, this thesis should be

of interest to researchers in these areas.
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The important design issue of the optimal choice of input locations is not dis-

cussed in this thesis. See, for example, Sacks & Ylvisaker (1966, 1968, 1970, 1971),

Cambanis (1985) and Sacks & Schiller (1988).

The balance of this chapter concerns the statistical framework. The next sec-

tions specify the problem and discuss issues that have arisen in the literature such

as the importance of the Gaussian assumption to a theory based only on the second

order properties and asymptotic perspectives. A guiding concept is that of the ‘com-

patibility’ of covariance functions defined by Stein (1988a). The bulk of this chapter

discusses easily verifiable conditions for compatibility.

1.2 The statistical formulation of the prediction problem

We conceptualize a quantity of interest Z(x) at each location x in a region

R ⇢ IRd . As discussed above, we choose to take a stochastic view and let each

Z(x) be a random variable so that Z(·) is a random field. The stochastic nature

could be due to physical sources, or provide a surrogate for the statistician’s lack of

knowledge. There are clearly philosophical issues that need to be addressed in each

area of application of the statistical theory. Some authors appear to have fixated on

this issue. See Philip & Watson (1986a,b,c).

Suppose Z(x) is a real–valued Gaussian random field on R with mean

IEZ(x) = �

0
f(x), (1.2.1)

where f(x) = (f1(x), . . . , f
q

(x))0 is a known vector function, � is a vector of unknown

regression coe�cients, and covariance function

Cov(Z(x), Z(x0)) = ↵K

✓

(x, x

0) for x, x

0
2 R

where ↵ > 0 is a scale parameter, ✓ 2 ⇥ is a p⇥ 1 vector of structural parameters

and ⇥ is an open set in IRp . The division is purely formal as ✓ may also determine



4

aspects of scale. We observe, from a single realization, {Z(x1), . . . , Z(x
n

)} = Z

0 and,

will focus on the prediction of Z(x0) . If L

i

is any linear functional of the field Z(x)

then the extension to observing L1, . . . , Ln

and predicting L0 is, from a theoretical

standpoint, straightforward. We will focus on the class of predictors that are linear

combinations of the data of the form

NX

i=1

�

i

(✓)Z(x
i

).

The best linear unbiased (BLU) predictor, b
Z

✓

(x0) , is the unbiased linear predictor

that minimizes the variance of the prediction error. It is straightforward to show that

the corresponding weight vector �(✓) defining b
Z

✓

(x0) is given by

�(✓) = K

✓

�1
k0 + K

✓

�1
F (F 0

K

✓

�1
F )�1

b

✓

, (1.2.2)

where
F = {f

j

(x
i

)}
n⇥q

,

k0 = {K

✓

(x0, xi

)}
n⇥1,

K

✓

= {K

✓

(x
i

, x

j

)}
n⇥n

,

b

✓

= f(x0)� F

0
K

✓

�1
k0.

It will be assumed that F and C have full rank. This theory is developed in,

for example, Goldberger (1962). The underlying field need not be Gaussian for the

predictor to be a BLU.

The quality of the prediction is determined by the distribution of the prediction

error, e

✓

(x0) = Z(x0) � b
Z

✓

(x0) . Note that neither the predictor nor the prediction

error depend on ↵ or � . This has been used to argue for methods of estimation for

the covariance structure that do not depend on the unknown � . Of course, had we

additional knowledge about � beyond the data this information should be used.

If we wish to base inference on a single realization of a random field then ad-

ditional structure is necessary. The natural assumptions are based on symmetry.
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We concentrate on homogeneity and isotropy of the covariance function, that is,

K(x, y) ⌘ K(|x� y|), 8x, y 2 R , so that the class is usually written as a function of

a single scalar variable K(x) , x 2 IR . These constraints can be weakened in natural

ways. For example, Matheron (1973) proposes a class of Intrinsic random functions

based on Generalized covariance functions. The idea is that only certain increments of

the random field are required to be stationary. Another possibility is to consider geo-

metric anisotropies (Journel & Huijbregts, 1978, p. 177) where K(x) ⌘ K(|V x|) for

a possibly unknown matrix V. Such approaches extend the coverage of homogeneous

and isotropic random fields. However, sound approaches to unspecified complex non-

stationarities in the random field have yet to be developed. An allied concern is the

necessity for methods robust against data contamination (Cressie (1984)). These are

intrinsically very di�cult problems. It is hoped that progress in statistical inference

for the isotropic and homogeneous random fields will provide a basis for inroads into

these more problematic situations.

1.3 Why does the covariance theory focus on Gaussian fields?

In this section it is argued that if one studies a random field only through

its mean and covariance characteristics, then this approach is highly suspect if the

field is not Gaussian. This is not to argue that most random fields are Gaussian,

or that analyzing non–Gaussian fields is improper, only that a di↵erent approach

should be taken. A Gaussian random field is a field in which each finite subset is

jointly Gaussian. Let N be a Poisson Process on IR with mean 1 and observed

discontinuity points t1, t2, . . .
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Consider the following three random fields.

A. Random Telegraph

If 2t
i�1  x < 2t

i

then

Z

A

(x) =
⇢

1 if i even

-1 if i odd

B. Point Process with Adjoined Random Variables

Let X1, X2, . . . be an independent and identically distributed sequence with

mean zero and unit variance and set Z

B

(x) = X

i

t

i�1  x < t

i

.

C. Ornstein–Uhlenbeck Process

Let W (t) be Brownian Motion on IR under the Ornstein-Uhlenbeck theory,

that is, a mean zero Gaussian process with covariance function

Cov{W (t1), W (t2)} = min(t1, t2) + (e�min(t1, t2)
� 1),

where t1, t2 � 0 . Under this theory, W (t) is di↵erentiable and we can denote

its velocity by Z

C

.

Each of Z

A

, Z

B

, and Z

C

has mean zero and covariance structure K(x, y) =

e

�|x�y| . However, the three processes have vastly di↵erent behaviors that should be

taken to account in any analysis. If the field is very non–Gaussian, linear prediction

is dubious. The field of interest is the conditional field given Z . Quantities derived

from this field, such as its mean and variance, are not very tractable unless the field

is Gaussian. The unconditional quantities are usually easy to work with, but less

useful. We will focus on Gaussian random fields in this thesis. The interesting and

harder problem of non–Gaussian fields will not be considered.
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1.4 Compatibility of covariance functions

The concept of compatibility for covariance structures of random fields was

defined by Stein (1988a). In this section we review the definition and implications

for spatial inference and prediction. The compatibility of covariance functions is a

central motivating idea in this thesis and will be the subject of the remainder of this

chapter.

Stein (1988a) has shown that the impact on the best linear unbiased predic-

tor from not using the correct covariance function is asymptotically negligible as the

number of observations increases, if the covariance function used is “compatible”

with the actual covariance function on the region of interest. The concept of com-

patibility plays a central role in determining how a covariance function should be

estimated. Compatibility reflects the intuitively sensible concept that, for purposes

of best linear unbiased interpolation, usually only the behavior near the origin of

the covariance function is critical. Compatibility has been used extensively by Stein

(1987b,c, 1988a,b) to investigate the e↵ect of misspecifying the covariance structure

of a random process on the BLU predictor.

Let Z(x) be a continuous, not necessarily Gaussian, random field on a bounded

region in IRd with mean function m(x) and covariance function K(x, y) . We ex-

plicitly state that Z(x) is a finite real-valued function taking values on a probability

space (⌦,F , P ) . It is well known that for any such mean function and covariance

function we can produce a unique Gaussian random field with those characteristics.

Let [m, K] denote the unique Gaussian probability measure defined by m(x) and

K(x, y) . The nature of this measure requires some clarification. Let V be the space

of all real-valued functions on R . Let G be the �� field of sets A

0
⇢ V that have

inverse images A in F . Now Z(x) defines a mapping from (⌦,F , P ) into V. The
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measure [m,K] is the one induced on V by

[m, K](A0) = P (A) 8A

0
2 G.

That is, (V,G, [m, K]) is a probability space and Z(x) takes values in V in accor-

dance with the probability measure [m, K].

Recall that two measures P0 and P1 on a space (⌦,F) are mutually absolutely

continuous if A 2 F , P0(A) = 0 () P1(A) = 0. This is denoted by P0 ⇠ P1. That

is, if we observe ! 2 ⌦ we can not distinguish between P0 and P1 with probability

1 . P0 and P1 are orthogonal if 9A 2 F with P0(A) = 0 and P1(A) = 1 . That is,

if we observe ! 2 ⌦ we can tell P0 and P1 apart with probability 1 . Based on a

finite sample from ! we should be able to distinguish between P0 and P1 with high

probability.

While two general probability measures on (V,G) may be neither mutually sin-

gular nor mutually absolutely continuous, any two measures on (V,G) corresponding

to Gaussian random fields are necessarily either mutually singular or mutually abso-

lutely continuous (Hajek (1958), p. 615). This property can be used to show that

[m0, K0] ⇠ [m1, K1] ()

(
[m0 �m1, K1] ⇠ [0, K1] and

[0, K0] ⇠ [0, K1].

Hence to establish mutual absolute continuity in the Gaussian case we may consider

two simpler cases:

1) K0 is identical to K1 , but m0 di↵ers from m1 , and

2) K0 di↵ers from K1 , but m0 is identical to m1 .

We are now in a position to state the definition of compatibility.

Definition: Let K0 and K1 be covariance functions defined on R , a bounded

region in IRd . Then K1 is compatible with K0 on R if [0, K1] and [0, K0] are

mutually absolutely continuous. We will continue the notation [0, K0] ⇠ [0, K1]. In
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addition, say that K1 is scale compatible with K0 on R if 9↵ > 0 such that K1 is

compatible with ↵K0 on R.

It should be emphasized that compatibility is a property of covariance functions

with respect to a given region. The random function Z(x) is not required to be

Gaussian.

The importance of this concept for spatial prediction follows from a result from

Stein (1988b). Let e

n

i

(x0) be the prediction error of the BLU predictor based on Z

and the covariance structure ↵

i

K

✓

i

, i = 0, 1 . Let \V
i

(·) denote the variance operator

under the covariance structure given by ↵

i

K

✓

i

.

Theorem 1.4.1 Stein (1988b):

Let x1, x2, . . . , xn

have x0 as a limit point. Suppose K

✓1 is scale compatible

with K

✓0 on R. If

\V0[e
n

0(x0)]! 0 (1.4.1)

as n!1 , then
\V0[en

0(x0)]

\V0[en

1(x0)]
! 1 (1.4.2)

\V1[en

1(x0)]

\V0[en

1(x0)]
! � (1.4.3)

as n!1. Here � is the constant such that K

✓0 is compatible with �K

✓1 on R.

If ↵0K✓0 is the actual covariance structure of the random field and we misspecify

it by a covariance structure that is scale compatible with K

✓0 then (1.4.2) indicates

we will still obtain an asymptotically e�cient predictor of Z(x0). The condition

(1.4.1) requires that the predictor based on K

✓0 be consistent for Z(x0). As x0

is a limit point of the observations this places only mild conditions on K

✓0 (Stein

(1987b)). From (1.4.3) we see that the ratio of the perceived variance under the

misspecified covariance structure to the actual variance under the actual covariance
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structure approaches a constant. If we can determine this constant and so find a

covariance structure compatible with the actual covariance structure, we will also

obtain an asymptotically accurate value for the prediction variance \V0[en

0(x0)].

The practical importance of this result is that it is not important, asymptoti-

cally, to discriminate between the actual covariance function of the random field and

a compatible covariance function when the objective is prediction.

The asymptotic perspective taken can be thought of as ‘fixed region’ in the

sense that the density of observations in a neighbourhood of x0 increases. This is a

natural asymptotic perspective for spatial random fields. In spatial applications the

observations are usually taken from a well defined spatial region that is defined by

external factors. In mining the region is defined by the geologic extent of homogeneous

mineralization. In the topological example of Chapter 5 the region is the north face

of the hill. If additional sampling is foreseen it will be taken from the same region,

thus increasing the density of observation within the region rather than extending

the region itself. This is not to say that the increasing region perspective is always

inappropriate for spatial random fields, only that it is not the foremost perspective.

In time-series the increasing region asymptotic approach is natural. Usually ad-

ditional sampling will occur at future time points, increasing the size of the region and

maintaining the constant spacing between the locations of the observations. Based

on this asymptotic approach the information about the covariance structure grows

unboundedly, so that the entire function can be estimated consistently. For some

time the increasing region perspective was the default choice for spatial random fields

(Mardia & Marshall (1984)), however the fixed region perspective is now receiving

more attention (Yakowitz & Szidarovszky (1985), Stein (1987a,b, 1988a)). Yakowitz

and Szidarovszky (1985) view the problem from a non-parametric regression stand-

point and have noted that it is not in general possible to get consistent estimates of
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the covariance function based on observations in a fixed region.

The real test of an asymptotic perspective is how well it approximates the

situations and quantities of data typically seen in practice. Often more than one

perspective is useful, although we emphasize that we regard the asymptotic solutions

as approximations to reality and not vice versa. This issue will be investigated in

Chapter 3.

The underlying theme is that only those parameters that matter for predictive

purposes are able to be estimated very well. That is, if a parameter is di�cult to

determine then the predictive inference is insensitive to its value. This is not a dictum

but we will see that it is the pattern for the prediction situations considered in this

thesis.

Of course incompatible covariance functions may still give very similar predic-

tions for a given data set, but the “more” incompatible covariance functions are, the

greater the di↵erences in the predictions tend to be, even on small data sets and odd

geometries. The examples in the next chapter indicate that it really does matter,

both from an estimation and a prediction perspective, that the class of covariance

functions correspond to a realistic model. There is some empirical and theoretical

evidence that likelihood based methods yield estimated covariance functions that are

as “close” to compatible to the true covariance function as possible within the class

considered.

1.5 Assessing compatibility of covariance functions

We have seen in the last section the theoretical importance of compatibility

for the statistical inference of covariance structures. To determine if two covariance

functions are compatible it is required to verify the mutual absolute continuity of

two measures. This is a di�cult problem as general conditions require the solu-
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tion of integral equations. While the application of compatibility is a recent idea,

the general question of absolute continuity of Gaussian measures has been consid-

ered since Hajek (1958) and Feldman (1958). Their interest was in the properties of

Radon–Nikodym derivatives based on observing the associated process on continuous

segments. Rozanov (1968) presents conditions for stationary processes in terms of

their covariance functions and spectral densities. Skorokhod & Yadrenko (1973) ex-

tended many of these results to homogeneous random fields. Ibragimov & Rozanov

(1978, III) provide an update to Rozanov (1968). The most recent survey is Yadrenko

(1983, §3.3).

In the next section we highlight three of their important results which will be

used in later sections. In the following sections we summarize research into easily

verifiable conditions for the compatibility of covariance structures.

1.5.1 Highlights of the compatibility results in the literature

Let Z

i

(x), i = 1, 2 be mean zero Gaussian random fields on a compact region

R in IRd

. Suppose Z

i

(x) has homogeneous covariance function K

i

(x) and spectral

density f

i

(�), � 2 IRd

. The basic result is:

Theorem 1.5.1 Skorokhod & Yadrenko (1973, Theorem 2):

Suppose f1(�) is bounded on IRd

. Then K1 is compatible with K2 on R if,

and only if, K1(x � y) � K2(x � y), x, y 2 R can be extended to a function on

IRd

⇥ IRd that

1) is square integrable on IRd

⇥ IRd

.

2) has a Fourier transform �(�1, �2) satisfying

Z

IRd

Z

IRd

|�(�1, �2)|2

f1(�1)f2(�2)
d�1d�2 <1
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These conditions are di�cult to verify in particular cases. An easily verifiable

su�cient condition can be derived from the approximation theory of functions (Nikol-

skii (1975)). Let C

1(R) be the set of infinitely di↵erentiable functions with support

in R. Consider, W

s

2 (R), the Sobolev class of order s over R. This is the closure of

C

1(R) with respect to the metric

kfk

W

s

2(R) =
Z

R

|f(x)|2dx +
X

|↵|=s

Z

R

|D

↵

f(x)|2dx

when s is an integer, and in the metric

kfk

W

s

2(R) =
Z

R

|f(x)|2dx +
X

|↵|=s

Z

R

Z

R

|D

↵

f(x)�D

↵

f(y)|2

|x� y|

d+2�

dxdy

when s = [s] + �, 0 < � < 1. Here ↵ is an d� tuple of non-negative integers,

|↵| =
P

d

1 ↵

i

and

D

↵

f(x) =
@

|↵|
f(x)

@

↵1
x1 · · · @

↵

d

x

d

As s increases the metrics bestow increasing smoothness on the functions

through their partial derivatives. When s is non-integral natural Lipschitz conditions

are placed on the partial derivatives. Crudely put, W

s

2 (R) consists of those functions

that have square integrable partial derivatives at up to order s. We assume that the

boundary of R is smooth enough so that the Sobolev condition can be extended

beyond R. This is purely a technical condition (Nikolskii (1975, p. 381)). We take

f(�) ⇣ g(�) to mean that there exists c1, c2 such that 0  c1 < f(�)/g(�)  c2 <1.

Theorem 1.5.2 Yadrenko (1983, §3.3, Theorem 3):

Suppose

f1(�) ⇣
1

(1 + |�|

2)p+d/2
p > 0 (1.5.1)

then K1 and K2 are compatible on R if K1(x)�K2(x) is a member of W

2p+d

2 (R) .

The condition (1.5.1) covers a wide range, but not all, behaviors for the co-

variance structure. Most reasonable structures satisfy this condition. This result
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indicates that the covariance functions will be compatible if their di↵erence is smooth

enough. In particular this result implies that compatible covariance functions must

have similar behaviors at the origin. In Skorokhod & Yadrenko (1973) this condition

was erroneously given as both necessary and su�cient.

The final condition from the literature is an analogue of the previous result in

terms of the spectral densities:

Theorem 1.5.3 Yadrenko (1983, §3.3, Theorem 4):

Suppose

f1(�) ⇣ |�(�)|2 (1.5.2)

where �(x) is the Fourier transform of a function square integrable in some neigh-

bourhood of the origin. Then K1 and K2 are compatible on R if

Z

IRd

[1�
f2(�)

f1(�)
]2d� <1 (1.5.3)

Note that this condition is independent of the compact region R. The condition

(1.5.2) is a technical smoothness condition on the spectral density. Spectral densities

that satisfy (1.5.1) also satisfy (1.5.2). The result indicates that if the ratio of the

spectral densities does not vary all that much in the tails then the two covariance

structures will be compatible.

1.5.2 Compatibility within the Vecchia class

Vecchia (1985) presents a parametric covariance class for two dimensional ran-

dom fields. The class is most directly defined through its two dimensional spectral

densities:

f

M,N

(�) = �

2

rQ
j=1

||�|

2 + ✓

j

|

2n

j

qQ
j=r+1

(|�|2 + ✓

j

)n

j

sQ
j=1

||�|

2 + �

j

|

2m

j

pQ
j=s+1

(|�|2 + �

j

)m

j
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where {✓

j

}

r

j=1 and {�}

s

j=1 are taken to be strictly complex while {✓

j

}

q

j=r+1 and

{�}

p

j=s+1 are real. Let

M =
sX

j=1

2m
j

�

pX

j=s+1

m

j

and N =
rX

j=1

2n
j

�

qX

j=r+1

n

j

.

The parameters are constrained so the f

M,N

(�) is a valid spectral density. In partic-

ular M �N � 2. Figure 1 reproduces the shapes of some simple members.

In this section we show that the compatibility of members of this class are not

influenced by the values of {✓

j

}

q

j=1 and {�}

p

j=1. As it is not asymptotically important

to distinguish between compatible covariance functions a much smaller subset should

su�ce when the objective is prediction. It would also be di�cult to identify these

parameters that do not e↵ect compatibility of the members (Stein (1987a)).

This class is a subset of the rational spectral densities in two dimensions. The

corresponding covariance functions are linear combinations of modified Bessel func-

tions of the second kind and integral order. The class is intended for use as a general

model for two dimension fields. We need the following lemma, the necessity of which

is clear from (1.5.3).

Lemma 1.1:

Consider the spectral densities on IRd :

f

j

(�) ⇣
�

2
j

(1 + |�|

2)m

j

+d/2
m

j

> 0

for j = 1, 2. f1(�) is compatible with f2(�) if, and only if, �

2
1 = �

2
2 and m1 = m2.

Proof: We give a proof because such results are less obvious for n > 1. By Kras-

nitskii (1973), Corollary 3 it su�ces to show that
Z

IRd

Z

IRd

dY

j=1

sin2(�
j

� µ

j

)

(�
j

� µ

j

)2

✓
1�

f2(�)

f1(�)

◆✓
1�

f1(µ)

f2(µ)

◆
d�dµ

diverges. But
✓
1�

f2(�)

f1(�)

◆✓
1�

f1(µ)

f2(µ)

◆
= 2�

�

2
1

�

2
2

✓
1 + |µ|

2
◆

m2�m1

�

�

2
2

�

2
1

✓
1 + |�|

2
◆

m1�m2

so the integral diverges unless �

2
1 = �

2
2 and m1 = m2.
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Lemma 1.2:

The spectral density f

M,N

(�) is compatible with

f(�) =
�

2

(1 + |�|

2)M�N

(1.5.4)

This follows directly from an application of (1.5.3).

Result 1.1:

Two members of the Vecchia class, f

M1,N1(�) and f

M2,N2(�), are scale compat-

ible if, and only if, M1 �N1 = M2 �N2.

This follows directly from the two lemmas. This result indicates that the only

parameters that are asymptotically important for prediction are �

2 and the di↵erence

M �N. Thus the array of parameters {✓

j

, n

j

}

q

j=1 and {�

j

, m

j

}

p

j=1 may not provide

a broad range of covariance structures. The reduction to the class defined by (1.5.4)

would also reduce the number of free parameters to those that are important for both

the actual and perceived quality of prediction.

1.5.3 The Matérn class of covariance functions

In this section we describe a general class of covariance functions that we feel

provides a sound foundation for the parametric modeling of Gaussian random fields.

This class will be used extensively in the later chapters. The spectral density on IRd

has the general form:

f(�) = ↵

�(✓2 + d/2)

�(✓2)⇡d/2
·

✓1
d

(1 + (✓1�)2)✓2+d/2

The corresponding isotropic covariance functions have the form:

K

✓

(x) =
↵

2✓2�1�(✓2)

✓
x

✓1

◆
✓2

K

✓2

✓
x

✓1

◆

where ↵ > 0 is a variance parameter, ✓1 > 0 is a scale parameter controlling the

range of correlation and ✓2 > 0 is the parameter controlling the smoothness of the
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field. K

✓2 is the modified Bessel function of the second kind and order ✓2 discussed

in Abramowitz & Stegun (1964), §9.

The motivation for this class is the wide range of behaviors that arise from the

spectral density. A field with this covariance function is [✓2) times (mean-square)

di↵erentiable, corresponding to continuous [✓2) � 1 derivatives. The Exponential

class corresponds to the sub-class with smoothness parameter ✓2 = 1
2 . The sub-class

defined by ✓2 = 1 was introduced by Whittle (1954) as a model for two dimensional

fields. A general treatment is given in the seminal work by Matérn (1960).

The calculation of K

✓2 for non-integral ✓2 is quite di�cult. Fortunately there

exist stable, optimized and accurate algorithms to calculate them. One publicly

available version is Amos (1986). All calculations of K

✓2 in this thesis use the Amos

(1986) algorithm. While the calculation is expensive relative to the other forms of

covariance functions, this cost is negligible compared to the other computing costs

involved in the analysis.

Note that the covariance functions are always positive, so that the class is inap-

propriate for fields with negative correlations. This is quite rare in spatial settings.

The class captures a wide range of behaviors at the origin. Let

c(✓) =
1

(2✓1)2✓2�(✓2)�(✓2 + 1)
.

If ✓2 is an integer,

K

✓

(x) = 2↵(�1)✓2+1
c(✓) · x2✓2+2 log x + ↵{

1X

j=0

a

j

(✓)x2j

} + ↵x

2✓2+4 log x{

1X

j=0

b

j

(✓)x2j

}

where {a

j

(✓)}1
j=0 and {b

j

(✓)}1
j=0 are functions of ✓ alone. If ✓2 is not an integer

then,

K

✓

(x) =
⇡↵c(✓)

sin(⇡✓2)
· x

2✓2 + ↵{

1X

j=0

d

j

(✓)x2j

} + ↵x

2✓2+2
{

1X

j=0

f

j

(✓)x2j

}

where {d

j

(✓)}1
j=0 and {f

j

(✓)}1
j=0 are functions of ✓ alone.

Based on Lemma 1.1, two members of the Matérn class are scale compatible if,

and only if, they have the same smoothness parameter. While the range parameter
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does not a↵ect the compatibility of a member it provides an adjustment for the spatial

scale of the field.

If Z(x) is a Gaussian random field on IRd with covariance function K

✓

(x) then

it satisfies the stochastic partial di↵erential di↵erential equation (Whittle (1963)):

[ ✓

2
1

dX

j=1

(@2
/@

2
x

i

)� 1 ]✓2+d/4
· Z(x) = �dW (x)

where �

2 = ↵�(✓2 + d/2)(2
p

⇡✓1)d

/�(✓2) and W (·) is the d dimensional Wiener

random field. If ✓2 + d/4 is an integer then this gives a physical basis for the co-

variance. If ✓2 + d/4 is not an integer then the interpretation is more problematical.

This equation has motivated Jones (1989) to use the member with ✓2 = 1 to model

Aquifer Head data and is commonly used in Hydrology (Mej́ia & Rodŕiguez-Iturbe

(1974), Creutin & Obled (1982)).

1.6 Summary and conclusions

In this introductory chapter we present the motivation and statistical formula-

tion of the problem addressed by this thesis.

In §1.4 we review the concept of compatibility of covariance structures defined

by Stein (1988a). Our approach to statistical inference for the covariance structure

is influenced by this idea. In §1.5 we consider some conditions in the literature for

assessing the compatibility of covariance structures. There are currently few easily

verifiable conditions for compatibility for random fields in more than one dimension.

The final section defines the Matérn class of covariance functions for general use in

the modeling of Gaussian random fields. This class is used in the subsequent chapters.
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Fig. 1 Examples from Vecchia's correlation function class. The spectral densities cor-
responding to the correlation functions are: a) 1 I (1 + A2) 6, b) 
4(10 + A2)2 I (1 + A2)2(1 + 2A2)2, c) 1 I (1 + A2)4, d) 1 I (1 + A2)2, e) A4 I (1 + A2)4• 



CHAPTER 2

STATISTICAL INFERENCE FOR SPATIAL

COVARIANCE STRUCTURES

2.1 Introduction

The central concern in spatial prediction by Gaussian random fields is the iden-

tification of the covariance structure. If the covariance structure is known, then in

principle, the theory and practice of BLU prediction are straightforward.

In this chapter we will consider the various methods for inference for the covari-

ance structure and develop methods based on the likelihood statistic.

In §2.2 the likelihood approach is described and arguments are made for the use

of modified likelihoods. In §2.3, §2.4 and §2.5 we analyse two standard covariance

classes for one dimensional random fields. Attention is given to both the increasing

region and fixed region asymptotic approaches. The Exponential class is considered

in §2.4 and the Triangular class in §2.5.

The Spherical class on the plane is considered in §2.6, where the existence of

multiple modes is demonstrated and analyzed. Finally, §2.7 discusses the computa-

tional issues involved in maximum likelihood estimation for spatial random fields.

The bulk of this introduction is a critique of the traditional methods of inference

for the covariance structure of Gaussian random fields. The notation used is the same

as that defined in §1.2. We suppose Z(x) is a real–valued stationary Gaussian random

field on R with mean

IEZ(x) = �0f(x), (2.1.1)

20
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where f(x) = (f
1

(x), . . . , f
q

(x))0 is a known vector function, � is a vector of unknown

regression coe�cients, and covariance function

Cov(Z(x), Z(x0)) = ↵K
✓

(x, x0) for x, x0 2 R

where ↵ > 0 is a scale parameter, ✓ 2 ⇥ is a q ⇥ 1 vector of structural parameters

and ⇥ is an open set in IRp . The division is purely formal as ✓ may also determine

aspects of scale.

We observe, from a single realization, {Z(x
1

), . . . , Z(x
n

)} = Z 0 and, as usual,

will focus on the prediction of Z(x
0

) . Some of the traditional methods implicitly

take f(x) ⌘ 1 . It is possible to make adjustments to these methods if the mean of

the field is a general regression function, although this will not be described here.

In kriging the covariance structure is parameterized by the variogram,1 �(h) ,

defined by

�(h) = ↵{K
✓

(0)�K
✓

(h)}.

Some of the methods discussed were originally developed for �(h).

The motivations usually given for the nonparametric approach are those for the

empirical autocorrelation function in time-series. The major di↵erence is that the

spatial geometry of the observations plays a much more important role in random

fields than it does in time-series where the geometry is simple and fixed. As a non-

parametric estimator for �(h) Matheron (1963) considered the empirical variogram

function

b�(h) =
1

2N(h)

X

i,j2D(h)

{Z(x
i

)� Z(x
j

)}2

where D(h) = {(i, j) : |x
i

� x
j

| = h} and N(h) is the number of pairs in D(h).

Although the unbiasedness of this appealing estimator is often touted, it often has

1
In fact �(h) is the ‘semi’-variogram and 2�(h) is the variogram. This unfortunate notion will not be used

in this thesis.



22

poor statistical properties. It is sensitive to deviation from the Gaussian assumption

and the variability at di↵erent lags depends on the size of D(h) and the locations

of the observations. Alternative empirical estimators for �(h) have attempted to

address the lack of robustness. Cressie & Hawkins (1980) and Cressie & Horton (1987)

considered M-estimates, Armstrong & Delfiner (1980) suggest an estimator based on

quantile estimation while Omre (1984) suggested a spatially weighted version of �(h) .

Similar comments apply to the empirical covariance and correlation functions. The

major drawback of all these nonparametric estimators are the strong correlations

between estimates at di↵erent lags making interpretation di�cult.

The empirical estimate need not possess the essential properties expected in a

covariance structure such as positive definiteness. In addition, the direct substitution

of the empirical estimate for the true structure ignores the substantial sampling vari-

ability present in all but the largest sample sizes. The usual approach is to choose

a parametric class and estimate the parameters for that class. This choice is always

subjective. The traditional classes chosen are the Exponential, Spherical, Squared

Exponential and sometimes the Triangular. The last three have implicit properties

that would normally be considered physically unrealistic. The Exponential is a fine

class for some one dimensional fields, although a larger class is desirable especially

for multidimensional fields. The Exponential and Spherical classes are studied in this

chapter.

Clarke (1979) suggests a non-statistical approach to parametric estimation by

fitting the theoretical model to b�(h) by eye. Given the correlated nature and di↵ering

variances in the points this approach can be very misleading. A common alternative

is to use a least squares fit to b�(h) (Journel & Huijbregts (1978)) or a weighted least

squares method adjusting for the di↵ering variances (Feinerman et al. (1986)). These

methods have little statistical rationale.
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Bastin & Gevers (1985) and Cressie (1985) suggest using generalized least

squares to take into account the correlations between the lags. Let y
ij

= 1

2

(Z(x
i

) �

Z(x
j

))2 and d
ij

= |x
i

� x
j

| for i < j . Then Cov(y
ij

, y
jk

) = 2↵2

{K
✓

(d
ij

) + K
✓

(d
jk

)�

K
✓

(d
ik

) �K
✓

(d
jl

)}2 Hence, given ✓, we can calculate a minimum variance unbiased

estimate of ↵ by generalized least squares with respect to Cov(y
ij

, y
jk

). We can go

on to estimate ✓ by the value that produces the smallest value for the sum of squared

deviations. Note that the value of ✓ is not itself a minimum variance unbiased es-

timator. Nor is it clear that minimum variance unbiased estimation of ↵ and ✓

is preferable as the y
ij

are non-Gaussian and generalized least squares requires the

repeated inversion of an order n(n� 1)/2 matrix.

Recent work has focused on optimization of global criteria in the cross-validated

prediction errors. See for example Dowd (1984), Bastin & Gevers (1985) and Samper

& Neuman (1989).

2.2 Likelihood based methods of inference

In this section likelihood methods for the inference of spatial covariance func-

tions are developed. The approach was first applied in the Hydrological and Geological

fields following Kitanidis (1983), Kitanidis & Lane (1985) and Hoeksema & Kitanidis

(1985). Mardia & Marshall (1984) is a standard reference in the statistical literature.

Assume the “true” covariance structure is ↵
0

K
✓0(·, ·) . Initially we do not assume

anything about K
✓

(·, ·) beyond positive definiteness.

The log–likelihood of ↵ , ✓ and � having observed Z is, up to an additive

constant,

L(↵, ✓, �; Z) = �
n

2
ln(↵)�

1

2
ln(|K

✓

|)�
1

2↵
(Z � F�)0K�1

✓

(Z � F�) (2.2.1)

where K
✓

= {K
✓

(x
i

, x
j

)}
n⇥n

and the dependencies upon n have been suppressed.
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For fixed ✓ , this is maximized over � by the generalized least squares estimator

b�(✓) = (F 0K�1

✓

F )�1F 0K�1

✓

Z

where F = {f
j

(x
i

)}
n⇥q

. Given ✓ , the maximum likelihood estimate of ↵ is

b↵(✓) =
1

n
(Z � F b�(✓))0K�1

✓

(Z � F b�(✓))

and the profile log–likelihood

L
p

(✓; Z) ⌘ L(✓, b↵(✓), b�(✓); Z) (2.2.2)

is maximized by b✓ if and only if b✓ maximizes (2.2.1), and in this case the maximum

likelihood estimate of (↵, �) is (b↵(b✓), b�(b✓)) .

Define a contrast relative to F to be any linear combination of the data Z 0µ

such that F 0µ = 0 . The weights µ will be called an increment. If we assume

F is of full rank then clearly such contrasts exist. Let H
✓

be the hat–matrix from

the regression of Z on F assuming the covariance structure is given by ↵K
✓

(·, ·) .

That is, H
✓

= I � F (F 0K�1

✓

F )�1F 0K�1

✓

. Now H
✓

Z = Z � F b�(✓) is a particular set

of n contrasts relative to F , and the maximum likelihood estimate of ✓
0

depends

on the data only through these contrasts. Let H̄
✓

be derived from H
✓

by dropping

any q rows. As H
✓

has rank n � q , H̄
✓

will have linearly independent rows and,

F 0H̄
✓

= 0 as F 0H
✓

= 0 . Hence Zc = H̄
✓

Z is a particular set of n � q contrasts

relative to F . By definition a contrast is una↵ected by the addition of a mean to the

underlying field of the form �F for any � . Hence one might base inference about the

covariance structure on Zc instead of Z . This is the Modified Maximum Likelihood

of Patterson & Thompson (1974). They argue that, if � is unknown, then there is

no information loss in going from Z to Zc as Zc is marginally su�cient for ↵ and

✓ .
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The distribution of Zc is N(0, ↵H̄
✓

K
✓0H̄

0
✓

) . Hence, for the purposes of esti-

mation, it is no longer necessary to completely specify {↵K
✓

(·, ·)} , but it su�ces

to specify a class {G(·, ·; ✓0)} such that for each ✓ there exists a ✓0 such that

C(G
✓

0
�K

✓

)C 0 = 0 . This idea has taken form in the concept of generalized covariances

(Matheron (1973, 1974)). The theory is based on a particular case of the generalized

random functions with stationary increments of Gel’fand & Vilenkin (1964, §3.5). As

an example suppose that Z(x) is a random field on IR with f(x) = 1 and covari-

ance ↵K
✓

(x, y; ✓) = ↵(✓� |x�y|)+ where ✓ > 1 . We observe the field at 0, 1

n

, . . . , 1 .

It is easy to see that Y
i

= Z( i

n

) � Z( i�1

n

), i = 1, . . . , n is a set of contrasts and

Y ⇠ N(0, 2↵

n

I) , so that the covariance of the contrasts does not depend on ✓ . Hence

we can consider the class of functions ↵G(x, y) = �↵|x� y| instead of K
✓

(x, y) . In

fact G(x, y) is minus the variogram corresponding to K
✓

(x, y) .

Another method closely related to maximum likelihood is Minimum Norm

Quadratic Estimation. This is used when the covariance class is linear in its pa-

rameters and is discussed by Kitanidis (1986), Mardia & Marshall (1986) and Stein

(1987a). It will not be considered here.

There has been much written about maximum likelihood estimation in non–

regular settings. See, for example, Barnard (1967), Smith (1985), Cheng & Iles (1987)

and Smith & Naylor (1987). The focus of attention has been distributional classes

such as the three–parameter Weibull, gamma and lognormal. Often the numerical

and statistical issues are intermixed. The modified profile likelihood approach of

Barndor↵–Nielsen (1983) and Cox & Reid (1987) appears to be one avenue of attack

and the Bayesian approach another. There is little work evaluating the merits of

profile and modified likelihood approaches for spatial data. The Bayesian approach

is nagged by the choice of distributions prior to the data. The approaches di↵er in

the philosophical treatment of nuisance parameters. The marginal posterior density
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of the parameters of interest is obtained by integrating over the nuisance parameters,

while the profile likelihood function is obtained by maximizing with respect to the

nuisance parameters. In non–regular settings these two methods can lead to di↵erent

results. Smith & Naylor (1987) give examples and argue for the Bayesian approach.

A Bayesian approach to the estimation of covariance structure for spatial processes

is developed in Chapter 4.

In their recent article, Warnes & Ripley (1987) find that likelihood surfaces for

certain covariance functions have irregular behavior, including multiple modes. They

find local maxima far, in the euclidean sense, from values they regard as reasonable

and, on this basis, claim that maximum likelihood is a perilous method for inferring

the covariance structure of spatial random fields. The impetus for their claims are

two examples, one real and one simulated. Some irregularities are of a numerical

nature, others are due to the unrealistic nature of the models. We find that the

occurrence of these irregularities is consistent with the models chosen. The behavior

of the likelihood surfaces can be better understood if the compatibility classes of the

models are considered. This perspective is developed in Stein (1987a, 1987b, 1988).

While likelihood methods are not the complete solution to the problem, they are, in

the author’s view, one of the best methods available. In §2.6 the simulated example

from Warnes & Ripley (1987) is revisited and the irregular behavior is shown to be a

result of the model and not an artifact of the likelihood approach. The real example

using topological data from Davis (1973) is considered in Chapter 5.
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2.3 Two representative covariance classes in one dimension

In the next two sections we will analyze two common covariance models for

random fields in IR for the case where the observations are regularly spaced. The

Exponential and Triangular covariance classes on IR are,

K
E

(|x� y|; ✓
1

, ✓
2

) = ✓
1

✓
2

e�|x�y|/✓2 (2.3.1)

K
T

(|x� y|; ✓
1

, ✓
2

) = ✓
1

(✓
2

� |x� y|)+ (2.3.2)

where ✓
1

> 0 , ✓
2

> 0 , x, y 2 IR . This parameterization is chosen to emphasize

that we wish to estimate the behavior at the origin well. The “slope”, ✓
1

, is the slope

at the origin of the function, which controls the smoothness of the implied random

field. The “range”, ✓
2

, changes the rate of decrease of the correlation with distance.

For the Triangular class, points separated by distances greater than the range are

uncorrelated. See Figure 2. The Exponential is extensively used in practice.

Initially one might expect that given an Exponential covariance we should be

able to find a Triangular covariance leading to similar predictive properties. The

obvious candidates are those members with the value of ✓
1

. However, the “kink”

in the Triangular class makes every member of the Triangular class incompatible

with all members of the Exponential class on regions that include neighborhoods of

points ✓
2

apart. This leads to very di↵erent statistical properties. In fact, it can be

shown that each Triangular covariance is incompatible with every other Triangular

covariance on intervals longer than the minimum ✓
2

. Exponentials are compatible if

and only if they have the same slope parameter. The log spectral densities are given

in Figure 3, where the asymptotes of the Triangular are marked with vertical lines.

The discrete process created by observing a continuous process at the integers has

bounded symmetric log spectral density given in Figure 4. The e↵ect of the kink on

the Triangular spectral density is to create these asymptotes that lead to the irregular
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behavior. Looking at the covariance function itself one might initially believe it to be

a well behaved approximation to reality, much as linear relationships are in regression

context. However, one would be very wary of using this function based on the above

spectral density.

Let W (t) represent the location of Brownian motion at time t on IR with

the convention that W (0) = 0 . Both classes have a physical interpretation in terms

of W (t) . The interpretation for the Exponential class is given in §1.3, case C. Un-

der the Einstein-Smoluchowski theory of Brownian Motion, W (t) can be taken to

be a mean zero Gaussian process with covariance function Cov{W (t
1

), W (t
2

)} =

✓
1

✓
2

min(t
1

, t
2

) . The Triangular class is then the moving average of white noise, the

formal derivative of W (t) ,

Z(x) =
Z

x+1

x

dW (t) = W (x + 1)�W (x)

If the field has a mean of the form (2.1.1) then, in practice, one can consider

the likelihood profiled over � . That is

L
pm

(↵, ✓; Z) ⌘ L(↵, ✓, b�(✓); Z)

amounting to replacing Z in (2.2.1) by Z̃ = Z � F b�(✓) for each value of ✓ . While

IE(Z̃) = 0 , Z̃ does not have the covariance structure K
✓

. Unless the conditional

and marginal likelihoods over � are similar substantial information is lost in using

the profile likelihood as a surrogate for the full likelihood. This issue can be finessed

by basing inference on the modified likelihood. For simplicity the examples in the

next sections will have mean zero.
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2.4 Analysis of the Exponential covariance class in one dimension

In this section we derive explicit expressions for the unique maximum likelihood

estimates for the Exponential model (2.3.1) in one dimension. Both the increasing

and fixed region asymptotic situations are considered.

2.4.1 Observations regularly spaced in an increasing region

Suppose Z(x) is a random field with covariance function of the form (2.3.1) and

zero mean. Suppose we observe the random field at Z = (Z(1), Z(2), . . . , Z(n))0

and wish to infer the values of ✓
1

and ✓
2

. In this setting Z(x) may be viewed as a

zero mean AR(1) process with covariance function

Cov( Z(i), Z(j) ) = ✓
1

✓
2

e�|i�j|/✓2 = ✓
1

✓
2

⇢|i�j|

where ⇢ = e�1/✓2 , 0  ⇢ < 1 . Note that not every AR(1) process is of this form as

⇢ is restricted to be non-negative. The log-likelihood is of the form (2.2.1) where

K
✓

= {✓
1

✓
2

⇢|i�j|
}

n⇥n

and it is easy to show that the inverse of K
✓

is the tridiagonal symmetric matrix

K�1

✓

=
�ln⇢

✓
1

(1� ⇢2)

0

B

B

B

B

B

B

B

@

1 �⇢ 0 . . . 0
�⇢ 1 + ⇢2

�⇢ 0 . . .
0 �⇢ 1 + ⇢2

�⇢ . . .
...

...
. . . . . . 0

0 . . . �⇢ 1 + ⇢2

�⇢
0 . . . 0 �⇢ 1

1

C

C

C

C

C

C

C

A

and the determinant of K
✓

is |K
✓

| = |K�1

✓

|

�1 = (�1)n✓
1

n(1� ⇢2)n�1/lnn⇢ . Thus the

log–likelihood of ✓
1

and ⇢ given Z may be written

L(✓
1

, ⇢; Z) =
n

2
ln(�ln⇢)�

n

2
ln✓

1

�

n� 1

2
ln(1� ⇢2) +

g
Z

(⇢)ln⇢

✓
1

(1� ⇢2)
(2.4.1)

where 0  ⇢ < 1 , ✓
1

> 0 and,
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g
Z

(⇢) = a
2

⇢2 + a
1

⇢ + a
0

,

a
2

=
n�1

X

i=2

Z2(i), a
1

= �2
n�1

X

i=1

Z(i)Z(i + 1), a
0

=
n

X

i=1

Z2(i)

Note that the only dependence on Z is through g
Z

(⇢) , {a
2

, a
1

, a
0

} is a set of

minimal su�cient statistics and L(✓
1

, ⇢; Z) is twice continuously di↵erentiable. It is

straightforward to show that

b✓
1

(⇢) = �
g

Z

(⇢)ln⇢

n(1� ⇢2)
(2.4.2)

is the unique solution curve of @L(✓
1

, ⇢; Z)/@⇢ = 0 in 0  ⇢ < 1 , and that

@L(✓
1

, ⇢; Z)/@✓
1

= 0 and @L(✓
1

, ⇢; Z)/@⇢ = 0 ()

n(1� ⇢2)g
Z

0(⇢) + 2⇢g
Z

(⇢) = 0 (2.4.3)

These are just the roots of the cubic equation :

f(⇢) = �2a
2

(n� 1)⇢3

� a
1

(n� 2)⇢2 + 2(a
0

+ na
2

)⇢ + na
1

Hence to investigate the existence and uniqueness of maximum likelihood estimates

we can focus on (2.4.3). This equation was derived by Koopmans (1942) and discussed

in White (1961) and Anderson (1971).

If a
1

 0 then it is easy to show that f(⇢) has three real roots. Hence the

unique real root of f(⇢) in [0, 1] is

b⇢ =
q

3q sin(⌫)�
p

q cos(⌫)� s (2.4.4)

where

q =
na

2

+ a
0

3(n� 1)a
2

+ s2,

r =
(n� 2)a

0

a
1

� n(2n� 1)a
1

a
2

12(n� 1)2a
2

2

+ s3,

s =
(n� 2)a

1

6(n� 1)a
2

,

cos(3⌫) = �

s

r2

q3

, ⇡/2  3⌫  ⇡
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This explicit expression first appears in Beach & MacKinnon (1978) in the

Econometric literature. Hasza (1980) also considers this stationary AR(1) process

and proves (2.4.4) is the unique maximum. The material from here on appears to be

novel.

On the other hand, if a
1

> 0 and 0  ⇢ < 1

@L(✓
1

, ⇢; Z)

@✓
1

8

<

:

> 0 if ✓
1

< b✓
1

(⇢)

< 0 if ✓
1

> b✓
1

(⇢)

@L(✓
1

, ⇢; Z)

@⇢
< 0 if ✓

1

> 0

,

so the likelihood increases as ✓
1

!1 , ✓
2

! 0 . The maximum likelihood covariance

is

dCov(Z(x), Z(y)) =
⇢

a
0

/n if x = y
0 if x 6= y, (2.4.5)

that is, a stochastic process with independent observations and an appropriate vari-

ance, and that occurs on the edge of the parameter space. Figure 5 is an example of

a typical log–likelihood surface for this situation.

How often does this occur? Now a
1

 0 if and only if the sample first auto-

correlation coe�cient, b⇢(1) ⌘ �a
1

/2a
0

is negative. This event is una↵ected by the

true value of the slope, ✓
1

. The intuition is that ⇢ = e�1/✓2 only takes on positive

values, so when the natural sample quantity is negative the likelihood suggests the

best solution is to take ⇢ # 0 . The distribution of b⇢(1) has been extensively studied.

It is easy to show that

b⇢(1) ⇠ AN(⇢,
1� ⇢2

n
).

In fact b⇢(1) has close to a �2 shape for n small and ⇢ not close to 0 . Clearly,

when the mean is assumed zero, we can regard b⇢(1) as the empirical uncentered cor-

relation of {0, Z(1), . . . , Z(n)} and {Z(1), . . . , Z(n), 0} so a better distributional

approximation should be achieved by Fisher’s inverse hyperbolic tangent transform.



32

That is,

tanh�1(b⇢(1)) ⇠ AN
✓

tanh�1(⇢) +
⇢

2n
{1 +

5 + ⇢2

4n
},

(1 + ⇢2)2

n
{1 +

4� ⇢2

2n
}

◆

As Pr( M.L.E is on the boundary ) = Pr(b⇢(1)  0) = Pr( tanh�1(b⇢(1))  0) we

obtain the approximation

Pr( M.L.E is on the boundary ) ' 1��
✓

tanh�1(⇢)
p

n

1 + ⇢2

+
2⇢� tanh�1(⇢)(4� ⇢2)

4(1 + ⇢2)
p

n

◆

We can show empirically that this approximation is accurate to within 2%

uniformly over all values of ✓
2

for n as small as 5 . It is easy to calculate numerically

the exact values for any given n . The values for n = 5 are given in Figure 6. Each

4 represents an evaluation of the above approximation at a selected value of the

range.

What can be said about the statistical properties of the maximum likelihood

estimate? The information matrix for ✓ , I = {I
ij

}

2⇥2

, can be obtained directly as

I
ij

⌘ �IE
✓

@2L(✓; Z)

@✓
i

@✓
j

◆

=
1

2
tr
✓

K�1

✓

@K
✓

@✓
i

K�1

✓

@K
✓

@✓
j

◆

where the di↵erentiation is element-wise. The asymptotic variances can then be

directly computed from the inverse of the information matrix I�1 = {I ij

}

2⇥2

:

\V(b✓
1

) ⇠
✓2

1

{2⇢2(1 + ⇢2)ln2⇢ + 4⇢2(1� ⇢2)ln⇢ + (1� ⇢2)2

}

⇢2(1� ⇢2)ln2⇢
·

1

n
+ O(

1

n2

),

\V(b✓
2

) ⇠
(1� ⇢2)

⇢2ln4⇢
·

1

n
+

(1� 3⇢2)

⇢2ln4⇢
·

1

n2

+ O(
1

n3

),

Corr2(b✓
2

, b✓
1

) ⇠
(2⇢2ln⇢ + 1� ⇢2)2

(1� ⇢2)2(2⇢2ln⇢(2 + ln⇢) + 2⇢4(1� ln⇢)2 + (1� ⇢2)2)
+ O(

1

n
)

(2.4.6)

For our purposes one is better served by considering ln(b✓
1

) and ln(b✓
2

) , as it can

be empirically shown that the log–likelihood surface under this parameterization is

much closer to quadratic in the region of high density. Figure 7 is an example of a
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typical log–likelihood surface parameterized by slope and range with a
1

 0 , so the

maximum likelihood estimate is in the interior of the parameter space. The maxi-

mum likelihood estimate, b✓ = (1.32, 0.48) is marked with a cross. Figure 8 is the

corresponding surface using the parameterization ln(✓
1

) and ln(✓
2

) . Note that a

quadratic approximation to the surface near the maximum under this parameter-

ization will be much better. This behavior is typical for n as little as 5 . The

corresponding variances are just

\V( ln(b✓
1

) ) ⇠
2⇢2(1 + ⇢2)ln2⇢ + 4⇢2(1� ⇢2)ln⇢ + (1� ⇢2)2

⇢2(1� ⇢2)ln2⇢
·

1

n
+ O(

1

n2

),

\V( ln(b✓
2

) ) ⇠
(1� ⇢2)

⇢2ln2⇢
·

1

n
+

(1� 3⇢2)

⇢2ln2⇢
·

1

n2

+ O(
1

n3

),

(2.4.7)

Corr2

{ln(b✓
2

), ln(b✓
1

)} ⇠
(2⇢2ln⇢ + 1� ⇢2)2

(1� ⇢2)2(2⇢2ln⇢(2 + ln⇢) + 2⇢4(1� ln⇢)2 + (1� ⇢2)2)
+O(

1

n
)

Empirically, the bias of ln(b✓
1

) and ln(b✓
2

) is a significant part of the MSE for small

n .

To summarize, the above equations (2.4.6) or (2.4.7) can be used to construct

(joint) confidence intervals for b✓
1

and b✓
2

. The estimates are weakly consistent

and asymptotically (jointly) Gaussian with mean ✓ and covariance matrix given

by (2.4.6).

The statistical description in this section holds few surprises. Indeed we would

have been surprised by any odd occurrence from such a standard setting. We now

consider a small alteration that will produce a more interesting situation.

2.4.2 Observations evenly spaced in a fixed region

Suppose we observe the random field on some fixed interval instead of at

{1, 2, . . . , n} . That is we observe Z = (Z(0), Z(1/(n � 1)), . . ., Z(1))0 and again

wish to infer the values of ✓
1

and ✓
2

. Using the same notation as in 2.2 and a
0

, a
1

, a
2
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based on the above Z ,

K
✓

= {✓
1

✓
2

e�|i�j|/(n�1)✓2
}

n⇥n

= {✓0
1

✓0
2

e�|i�j|/✓

0
2
}

n⇥n

where ✓0
1

= ✓
1

/(n� 1) , ✓0
2

= (n� 1)✓
2

and ⇢0 = e�1/✓

0
2 = ⇢1/(n�1) . Hence the

problem of inferring ✓
1

and ✓
2

based on Z is equivalent to the problem of inferring

✓
1

and ✓
2

based on (Z(1), Z(2), . . . , Z(n)) from a random function with parameters

✓0
1

and ✓0
2

. Hence we can immediately state that if a
1

> 0 the maximum likelihood

solution is given by (2.4.5), and if a
1

 0 the maximum likelihood solution is given

by (2.4.6) and (2.4.2) which provide expressions for ✓0
1

and ✓0
2

. It is tempting to try

to estimate \V( ln(b✓
1

) ), \V( ln(b✓
2

) ) and Corr2(b✓
2

, b✓
1

) by substituting in ✓0
1

and ✓0
2

for ✓
1

and ✓
2

in (2.4.7), that is:

\V( ln(b✓
1

) ) ⇡
2

n
+ O(

1

n2

),

\V( ln(b✓
2

) ) ⇡
2✓

2

1 + ✓
2

+ +
2

n
+ O(

1

n2

),

Corr2

{ln(b✓
2

), ln(b✓
1

)} ⇡
1 + ✓

2

✓
2

·

1

n
+ +O(

1

n2

)

(2.4.8)

However, the basis of the asymptotic expansions is increasing information and in

the fixed region case we do not have increasing information for ✓
2

. Empirically the

above leading terms can be used as rough approximations to the actual variances for

n greater than 5 and ✓
2

not too much less than 1 . The approximations tend to

underestimate the variances for n small. The smaller ✓
2

the larger n needs to be

for the approximation to be good. For ✓
2

less than 0.1 , say, the approximation in

(2.4.8) is quite good for moderate n . The distributions of ln(b✓
2

) and the quality of

this approximation will be studied in §3.3.

For the fixed region situation the maximum likelihood estimate of the slope

parameter is
p

n –consistent, while the range can not be obtained consistently. This

is in sharp contrast to the growing region situation, in which both the slope and
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range are
p

n –consistent. The intuition is clear. In the growing region situation the

information content of the data for both the slope and range increases steadily as

the number of observations increases, while in the fixed region case the shrinking gap

between observations allows the slope to be obtained easily while information about

the range remains inaccessible, even under extensive sampling of the region. The

results of Mardia & Marshall (1984) on inference for spatial regression problems just

do not apply.

It is easy to show that K
E

(x; ✓
1

, ✓
2

) is compatible with K
E

(x; ✓0
1

, ✓0
2

) () ✓
1

=

✓0
1

. Hence, for the purposes of prediction, we only need to estimate well ✓
1

(which we

can), and not ✓
2

(which we can not). This result is an example of a meta-theorem:

“For the purposes of spatial interpolation you can only estimate well those functions

of the parameters that are important for the purposes of prediction”. This idea

has been explored by Stein (1987a) for covariances in which the parameters appear

linearly and by Dawid (1984) in the context of prequential forecasting.

The clear and comforting picture for the Exponential class will be contrasted

with that of the Triangular class in the next section.

2.5 Analysis of the Triangular covariance class in one dimension

In this section we derive expressions for the likelihood for covariance structure for

the Triangular model (2.3.2) in one dimension. Both the increasing and fixed region

asymptotic situations are considered. The likelihood is complex with the geometry

of observations determining the structure. Multiple modes are the norm, occurring

both on a network of curves defined by the geometry of the observations and between

these curves.
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2.5.1 Observations regularly spaced in an increasing region

Suppose Z(x) is a mean zero random field with covariance function of the form

(2.3.2). Suppose we observe the random field at Z = (Z(1), Z(2), . . . , Z(n))0 and

wish to infer the values of ✓
1

and ✓
2

. For instance, if we had three points in IR

at 0 , 9✓
2

/10 and 11✓
2

/10 then the first is uncorrelated with the last even though

it is correlated with the second and the second is strongly correlated with the third.

This “cut-o↵” e↵ect results in irregular and unrealistic behavior. The Triangular

log-likelihood is of the form (2.2.1) where

K
✓

= ✓
1

✓
2

110 � ✓
1

D
✓

where 1 = {1}
n⇥1

, D
✓

= {|i � j| · Ind(|i � j| < ✓
2

)}
n⇥n

and Ind(A) indicates

if the event A has occurred. Let [✓
2

) be the greatest integer less than ✓
2

and

⇣ = ✓
2

�[✓
2

) and then write the log–likelihood of ✓
1

and ✓
2

given Z as L
[✓2)

(✓
1

, ✓
2

; Z)

to emphasize that the likelihood changes character at each point where ✓
2

is an

integer. Consider L
[✓2)

(✓
1

, ✓
2

; Z) as a function of ✓
1

and ✓
2

for fixed [✓
2

) . It is not

di�cult to show that

(1) |K
✓

| is of the form ✓n

1

P
[✓2)

(⇣) where P
[✓2)

is a positive polynomial on [0, 1] and

P
[✓2)

(1) = P
[✓2)+1

(0) for [✓
2

) = 0, 1, . . . , n� 1

(2) Z 0K�1

✓

Z is a quadratic form of Z of the form

1

✓
1

n

X

i,j=1

Z(i)Z(j)
Qij

[✓2)

(⇣)

P
[✓2)

(⇣)

where Qij

[✓2)

is a polynomial of order n� 1 .

It is straightforward to show that

b✓
1

(✓
2

) =
1

n

n

X

i,j=1

Z(i)Z(j)
Qij

[✓2)

(⇣)

P
[✓2)

(⇣)
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is the unique solution curve of @L(✓
1

, ✓
2

; Z)/@✓
1

= 0 and that @L(✓
1

, ✓
2

; Z)/@✓
1

=

0 & @L(✓
1

, ✓
2

; Z)/@✓
2

= 0 ()

(n� 1)P
[✓2)

0(⇣)
n

X

i,j=1

Z(i)Z(j)Qij

[✓2)

(⇣)� nP
[✓2)

(⇣)
n

X

i,j=1

Z(i)Z(j)Qij

[✓2)

0(⇣) = 0

That is, to solve the likelihood equations one needs to find the roots of n polynomials

each possibly of order 2n�1 , as well as checking the points where ⇣ = 0 . In summary,

the log–likelihood is a piecewise infinitely di↵erentiable function with seams along the

lines ⇣ = 0 , where it is continuous. Figure 9 is an example of a log–likelihood profile

at ✓
1

= 1 for n = 5 . Figure 11 represents the probability of a unimodal likelihood for

n = 5 , ✓
1

= 1 and various values of ✓
2

. In Figure 11 and Figure 12 the � s demark

individual 95% confidence intervals based on 50, 000 simulations at each value. Note

that the di↵erent trends depend on [✓
2

) and that the probability is constant for ranges

less than 1 as the data points are independent. Figure 12 represents the probabilities

of modes occurring at the integers, which decreases from 70% under independence

to about 45% for a range of 6 . While multiple modes within a segment are possible

they comprise less than 0.1% of those that occur. Figures 13 and 14 represent a

profile log–likelihood at ✓
1

= 1 for data from ✓ = (1, 3) . It has three modes, two

of which fall in [1, 2), the first at ✓
2

= 1.228 and the second at ✓
2

= 1.998 As n

increases the likelihoods become smoother overall, but not at the local level. Figure

10 is an example of a log–likelihood profile at ✓
1

= 1 for n = 10 .

The problems occur at two levels. The primary concern is statistical. What

do such likelihoods tell us about the model? Is this behavior an artifact of the

likelihood approach to inference, or is it due to peculiarities in the particular model?

The likelihood reflects the fact that as the range crosses each integer value less than

n the model radically reassesses the importance of relationships among the data.

It should be noted that if [✓
2

) can be determined, then as the likelihood function

between [✓
2

) and [✓
2

) + 1 is well behaved the maximum likelihood estimate can be
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easily determined. Consider the closely related modified maximum likelihood problem

referred to in the introduction where we consider the likelihood of the contrasts Y
i

=

Z(i + 1)� Z(i), i = 1, . . . , n� 1 . The stationary covariance function of Y is

Cov(Y
i

, Y
j

) = ✓
1

8

>

<

>

:

2 if |i� j| = 0
�⇣ if |i� j| = [✓

2

)
⇣ � 1 if |i� j| = [✓

2

) + 1
0 other wise

That is very peculiar; an isosceles triangle with height �✓
2

and width 2 sliding

along the distance axis. Each Y
i

is independent of all but the 2 � 4 contrasts a

distance [✓
2

)+1 or [✓
2

) away from it. For instance, if ✓
2

> n� 1 then Y
1

, . . . , Y
n�1

are independent and distributed as N(0, 2✓
1

) so there is no additional information

about ✓
1

. If n� 1 > ✓
2

> n� 2 then Y
2

, . . . , Y
n�2

are independent and distributed

as N(0, 2✓
2

) and the only information about ✓
2

is in the bivariate Gaussian pair

{Y
1

, Y
n�1

} as Cov(Y
1

, Y
n�1

) = �✓
1

⇣ . This pattern continues as ✓
2

decreases through

each integer value.

In summary, the Triangular covariance class is truly peculiar and should be

avoided at all costs, especially because alternatives , such as the Exponential, exist.

2.5.2 Observations evenly spaced in a fixed region

Suppose we observe the random field at Z = (Z(0), Z( 1/(n� 1) ), . . . , Z(1))0

and again wish to infer the values of ✓
1

and ✓
2

. Using the same notation as in §2.5.1,

K
✓

=

(

✓
1

 

✓
2

�

|i� j|

n� 1

!

+

)

n⇥n

=
⇢

✓0
1

✓

✓0
2

� |i� j|
◆

+

�

n⇥n

where ✓0
1

= ✓
1

/(n� 1) , ✓0
2

= (n� 1)✓
2

Hence, as in §2.4.2, the problem of inferring

✓
1

and ✓
2

based on Z is equivalent to the problem of inferring ✓
1

and ✓
2

based on

(Z(1), Z(2), . . . , Z(n)) from a random function with parameters ✓0
1

and ✓0
2

. That

is, the behavior of the Triangular class observed in §2.5.1 carries over to the bounded

region case.
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Finally, consider the following example used in Stein & Handcock (1988) . Sup-

pose we wished to predict the random field at n/(n� 1) based on Z using the BLUP,

bZ
✓2(n/(n� 1)) , based on the Triangular with a range of 1 . In particular we have

bZ
1

✓

n

n� 1

◆

=
2n� 3

2(n� 1)
Z
⇣

1
⌘

�

1

2
Z
✓

1

n� 1

◆

+
n� 2

2(n� 1)
Z
⇣

0
⌘

,

so that no matter how densely we observe the field on [0, 1] , the weights on the two

observations furthermost from the point to be predicted remain substantial, while

values closer receive no weight whatsoever. In addition note that \V
n

Z
⇣

n

n�1

⌘

�

bZ
1

⇣

n

n�1

⌘o

= (7n � 9)✓
1

/2(n � 1)2 while \V
n

Z
⇣

n

n�1

⌘

� Z
⇣

1
⌘o

= 2✓
1

/(n � 1) , so

that the weights placed on on the two extreme points have a strong influence on the

predictor. Figures 15 and 16 give the weights on Z( i�1

n�1

) as a function of the range,

for n = 5, 20 .

2.6 The Spherical class on an square grid

In this section we will analyse a model commonly used for geological and hy-

drological applications in IR2 and IR3 , and the one considered in §2.0 of Warnes

& Ripley (1987) . The Spherical covariance class is the direct generalization of the

Triangular class to three dimensions. Let W (x) be three dimensional white noise,

and Z(x) be the random field obtained by integrating W (x) over a ball of radius

1

2

✓
2

centered at x . Then the isotropic covariance of Z(x) has the general form:

K
S

(x; ✓
1

, ✓
2

) =

(

✓
1

✓
2

{

2

3

�

|x|
✓2

+ 1

3

( |x|
✓2

)3

} if |x| < ✓
2

0 if |x| � ✓
2

Again, the parameterization is chosen so that ✓
1

is the slope at the origin and ✓
2

is the range. It can be shown that the Triangular is not an isotropic covariance

function in IR2 , the Spherical is not an isotropic covariance function in IR4 , and

the Exponential is an isotropic covariance function in any number of dimensions. A
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Triangular, Spherical or Exponential random field is mean-square continuous, but

not mean–square di↵erentiable. One might expect that the Spherical in IR3 might

have similar properties as the Triangular in IR , and in Stein & Handcock (1988) an

analogous example to the one given above suggests that the Spherical model exhibits

behavior that is physically unrealistic for most fields in IR3 . We shall see the likeli-

hoods based on a Spherical covariance exhibits irregularities similar to those of the

Triangular in one dimension. As K
S

(x) has a continuous derivative at x = ✓
2

it is

not hard to show that the corresponding Spherical likelihood exists and has a contin-

uous derivative. However, the second derivatives of the likelihood are discontinuous

and this leads to multiple modes. The behavior of the likelihood is best explained

through a typical case comparing it to the Exponential.

A mean zero Spherical random field with ✓ = (0.5, 3) was observed on a 6⇥ 6

grid with unit spacing. Figure 17 is the profile log–likelihood at ✓
1

set to its con-

ditional maximum likelihood estimate. The vertical lines represent distances that

separate the observations. For example, 2.236 =
p

12 + 22 . Figure 18 is the corre-

sponding log–likelihood for the Exponential. Figures 19 and 20 are the derivatives of

the log–likelihood with respect to ✓
2

for the Spherical and Exponential, respectively.

Figures 21 and 22 are the second derivatives of the log–likelihood with respect to ✓
2

for the Spherical and Exponential, respectively. Note the discontinuous nature of the

Spherical compared to that of the Exponential.

In summary, analysis of the Spherical likelihood on a regular grid in IR2 in-

dicates that the important parameter can be estimated well, while the unimportant

parameter is much more di�cult to tie down. The use of local smoothing of the

log–likelihood is not unreasonable in this setting, purely as a means of deemphasizing

the ripples. We believe that the likelihood surface is highly informative about the

structure of the Spherical model. These ripples are purely a consequence of using the
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Spherical model and are not an indication of a fault with the likelihood approach to

spatial data. The Spherical model should not be applied to a data set unless there is

a strong a priori belief that it is the correct model for the underlying process.

2.7 Computational issues in the calculation and maximization of

likelihoods

In this section we discuss computational issues in the calculation of likelihoods

using the Spherical model as an example of the pitfalls involved. After this section

was written, a paper by Mardia & Watkins (1989) that discussed likelihood estimation

for the Spherical model was brought to my attention. The material in this section

extends the material in their paper.

The usual technique used to maximize the likelihood is the simple Newton–

Raphson algorithm: If L : IRd

! IR is twice continuously di↵erentiable, and ✓
0

2 IRd

is a starting value then

(1) Solve r2L(✓
k

)s
k

= �rL(✓
k

) for s
k

.

(2) Set ✓
k+1

= ✓
k

+ s
k

.

(3) If convergence, stop; otherwise k ! k + 1 ; go to (1).

This algorithm has a great many advantages numerically and statistically. If ✓
0

is su�ciently close to a local maximizer ✓
m

of L(✓) with r2L(✓
m

) non-singular and

r

2L(✓) Lipschitz continuous at ✓
m

then ✓
1

, ✓
2

, . . . will converge q–quadratically

to ✓
m

. However, unless much stronger conditions, such as r2L(✓
k

) being negative

definite for k = 0, 1, . . . , are satisfied the algorithm may proceed to a saddlepoint or

even a minimum where rL(✓) is also zero. That is, the Newton–Raphson algorithm

at each step goes to the critical point of the current locally quadratic model, regardless

of whether this point is a minimizer, maximizer or a saddlepoint of the local model.

As the second derivative is not continuous for the Spherical likelihood, it is

not surprising that for some realizations problems occur. Indeed in about 50% of
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the cases tested the Newton–Raphson algorithm did not converge. Note that this

particular problem is purely numerical in nature and not statistical.

A useful enhancement is to use a simple step-length search in the direction

defined by the Newton–Raphson algorithm. A local cubic along this direction was

maximized using the first derivative information at the current point and the point

suggested by the Newton–Raphson algorithm. A simple check is included to ensure

the chosen point is not absurd, and if not the Newton–Raphson point is used. This

method is much less a↵ected by the discontinuous second derivative and has proved

very reliable for the Spherical log–likelihood. A mean zero Spherical random field

with ✓ = (0.5, 3) was observed on a 6 ⇥ 6 grid with unit spacings. Figure 23 is a

contour of a typical log–likelihood based on data from a mean zero Spherical ran-

dom field with ✓ = (0.5, 3) observed on a 6 ⇥ 6 grid with unit spacings. For this

data–set the Newton–Raphson algorithm moved in close to the maximum and then

was caught in a repeating oscillation from one side of the maximum to the other.

The same two oscillation points occur for almost all reasonable starting values. The

path of the Newton–Raphson algorithm for a particular starting value is marked by

⇥ . Although the Algorithm does not converge, it does settle down to a region quite

close to the maximum value. The cubic search method proceeds directly to the max-

imum. The path, using the same starting value as the Newton–Raphson algorithm,

is marked with + . Note that each step of the cubic search requires twice as many

function evaluations as the Newton–Raphson algorithm. Figure 24 shows the corre-

sponding profile log–likelihood. Figures 25 and 26 show the contours of the deriva-

tive with respect to ✓
1

and ✓
2

. We see that Newton–Raphson algorithm oscillating

along the zero contour for the derivative with respect to ✓
1

and across the zero

contour for the derivative with respect to ✓
2

. The heart of the reason Newton–

Raphson algorithm has di�culties can be seen in Figure 27, the second derivative of

the log–likelihood with respect to ✓
2

. The � ’s correspond to the oscillation points
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for Newton–Raphson algorithm, and the + is the actual maximum. This behavior is

repeatedly seen in situations where Newton–Raphson algorithm does not converge.

The cubic method overcomes this simple numerical complication, but is not relevant

to the statistical considerations.

2.7.1 The occurrence of multiple modes

Multiple modes do occur. For example for the mean zero Spherical random field

with ✓ = (0.5, 3) observed on a 6⇥ 6 grid with unit spacings the breakdown is:

Table 1

Modes for the Likelihood for a Spherical on 6⇥ 6 grid

✓ = (0.5, 3)

Number of Modes = 1 2 3 4 5

Percentage = 26% 51% 21% 2% 0%

These values are determined by direct simulation. The standard errors are all

less than 2% . As the range increases the proportion of unimodal likelihoods increases.

As the slope increases, for a fixed range, the proportion of unimodal likelihoods

decreases as the variance of the random field increases. As the number of observations

increases, with the same unit spacing, the number of unimodal likelihoods decreases.

Mardia & Watkins (1989) in their Table 1 provide an extension this table for other

values of ✓
2

and n. A typical example of a multiple modal likelihood is give in Figure

28. The true values are ✓ = (0.5, 3) , and the local maxima are marked. Figure 29 is

the log–likelihood profile when the slope is set to its conditional maximum likelihood

estimate.
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The existence of the multiple modes could naively be taken as a condemna-

tion of likelihood based methods of inference when the purpose is interpolation.

However, recall that in one or two dimensions, K
S

(x; ✓
1

, ✓
2

) is compatible with

K
S

(x; ✓0
1

, ✓0
2

) () ✓
1

= ✓0
1

, that is, the slopes are the same. Hence, ✓
1

is im-

portant, asymptotically, for predictive purposes, while ✓
2

is much less important.

The predictive distributions are insensitive to changes in ✓
2

, but not ✓
1

. Note that

while the perceived prediction variance is proportional to ✓
1

, the linear predictor

is unaltered by changes in ✓
1

. In Figure 28, the modes are all on a ridge with

✓
1

⇡ 0.53 . Moreover the likelihood along this ridge is quite flat over a wide span of

ranges, with small ripples causing the local maxima. The drop–o↵ across the ridge

is more marked. In contrast, the likelihood for the Exponential model has the same

general shape, but no ripples. The interpretation given to the ripples is the same as

those of the Triangular in one dimension: artifacts of the peculiar model placed on

the random field. Note that the behavior of the likelihood is not nearly as severe as

the Triangular likelihood.

2.7.2 Cross validation based on the likelihoods

The use of a parametric model for the covariance assumes that the actual co-

variance falls in that class. If the field is Gaussian and covariance class is correctly

specified then we have argued for inference based on the likelihood function. A ma-

jor concern is if the covariance class is misspecified. In this section we introduce a

diagnostic method to help detect if this assumption is incorrect.

Model validation for spatial random fields di↵ers from model validation from

time-series due to the influence of the geometry of locations. In time-series, and

to some extent regularly spaced spatial fields, the geometry is fixed and a known

quantity. This simplifies the analysis as attention can focus on the observed values of

the field. When the locations are irregularly spaced the observed geometry typically
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has a large impact on the inference. The motivation for our approach is that if

the model is correctly specified then the cross-validated likelihoods should provide

inference similar to the full data likelihood. The cross-validated likelihoods should

also be sensitive to outliers and influential values. Our approach appears to be novel

for random fields.

We consider a simple cross-validation comprising of fitting the covariance model

to the n data sets obtained by excluding successively just one location. In each case

we produce a ‘cross-validated’ likelihood function and summarize it by its maximum

likelihood value. We then calculate the full data likelihood of each of these cross-

validated maximum likelihood estimates and use this set of n statistics to check the

consistency of the model. This is but one of many approaches that can be taken.

Considering the cross-validated likelihoods themselves is not a good idea as these are

calculated using di↵erent data. An unexplored alternative is to look at the maximum

likelihood estimates under the data set with the excluded value replaced by the value

predicted under a model based on the other n� 1 values.

To observe how the likelihoods surfaces change under covariance models corre-

sponding to di↵erent smoothnesses we consider the Exponential class and the Matérn

class with ✓
2

= 3

2

. We then generate realizations from the mean-zero Gaussian ran-

dom fields on 7 ⇥ 7 grids under both these models. Our objective is to discover

features that will enable us to distinguish between the correct model and a misspec-

ified model. Figure 30 represents the spatial distribution of the full log-likelihoods

under the Exponential model at the cross-validated maximum likelihood estimates

for an Exponential realization with range parameter 3. The eye is drawn to the

location (5, 6) with likelihood substantially less, 0.12 , than the other values. It

corresponds to an estimate for the range much higher than for the other values. Fig-

ure 31 represents the plot when the Matérn model with ✓
2

= 3

2

is applied to the

same data. The location (5, 6) again corresponds to an inflated value for the range,
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although a couple of other values are also low.

This pattern is typical of the realizations: a single location usually had sub-

stantially lower likelihood than the others, and the likelihoods plots are similar for

the two models. Similar behavior was observed when the realizations were generated

under the Matérn model with ✓
2

= 3

2

. A single location usually had substantially

lower likelihood than the rest. It typically was on the edge of the region, and in a

corner. We have also investigated plotting the likelihood against the cross-validated

maximum likelihood estimates, again not finding features to discriminate between

the covariance classes. As we might expect from the data geometry, the pattern of

likelihoods is not substantially altered by the addition of a planar mean to the model.

In summary, this simple approach used for two dimensional random fields ob-

served on grids indicate that changes in the smoothness of the field will be di�cult to

detect. This is partly due to the regular geometry of the observations. We will study

irregularly spaced data in §5.5.1.

2.8 Summary and conclusions

In this chapter we analyse likelihood based methods of inference for three co-

variance classes when the random filed has been observed regularly in one and two

dimensions.

Our findings indicate that the likelihood is telling us as much about the model

chosen as the data we are analyzing. If we use a peculiar model the likelihood statistic

will indicate this by exhibiting peculiar behavior. If we have di�culty accepting a

peculiar likelihood, we should choose a di↵erent model. Choosing to ignore the likeli-

hood and using an alternative estimation procedure for the same peculiar model will

not make the peculiar behavior exhibited by the likelihoods go away. A second issue

is practical estimation. If you accept the likelihood and wish to use it for inference

then the unusual behavior will be an obstacle. In §2.7 we address the numerical issues
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involved in the determination of the maximum likelihood estimate. It is essential to

consider the entire likelihood function as a basis for inference. Reference to the max-

imum likelihood estimate in isolation is analogous to summarizing a distribution by

its modal value alone. Often this is expedient, but only under particular asymptotic

scenarios is it adequate. Inference for the models in §2.5 and §2.6 are prime exam-

ples. To what extent can a single value, maximum likelihood or otherwise, serve as

a surrogate for the information in the likelihood about the covariance structure? In

spatial problems it is unwise to use a single point value without an analysis of the

likelihood surface to see if it is appropriate. One approach is to look at the likelihoods

produced from data simulated under the assumed model to check if the maximum

likelihood estimate is an appropriate summary. The shape of the likelihood for the

observed data can then be compared to that of simulated likelihoods.

Many of Ripley’s (1987, 1988) arguments against likelihood analysis of spatial

random fields are based on the fallacy that likelihood and maximum likelihood infer-

ence are synonymous. The optimal properties of the maximum likelihood estimate are

based on asymptotic arguments, which are descriptions of how the likelihood surface

degenerates as the information about each of the parameters grows unboundedly. In

this case the maximum likelihood estimate is a good surrogate for the entire likeli-

hood surface. Our interest is in the sample sizes that occur in practice and under the

asymptotic scheme(s) that is most appropriate.

If there is unbounded growth of the information in all the parameters it is nat-

ural to write down theorems confirming the maximum likelihood estimate is weakly

consistent and uniformly asymptotically Gaussian. Mardia & Marshall (1984) pro-

vide theorems based on conditions from Sweeting (1980). The theorems also require

the covariance function to be smooth and that the observed information satisfy an

appropriate convergence property. These results do not apply to many asymptotic

situations of interest, in particular to fixed region asymptotics where information for
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some parameters is not increasing. In particular, their results do not apply to the

asymptotic situations in §2.4.2 and §2.5.2 because the information is bounded for the

range parameter, ✓
2

. They also do not apply to the Spherical class in §2.6 because

the smoothness condition is not satisfied.

The Exponential model indicates the pivotal nature of the asymptotic frame-

work. It easy to fall in a trap of taking ‘ n ! 1 ’ instead of thinking about the

relationship of future observations to those presently available. For time–series situa-

tions the increasing region, unbounded information approach is usually appropriate.

For spatial random fields observed in a fixed region, the increasing density perspective

is often more appropriate. Of course asymptotic results are themselves reductions,

and are only as interesting in as much as they tell us about behavior in the sample

sizes we have in practice.

Another issue is the relative usefulness of the conditional, marginal and profile

likelihoods. Experience indicates that profiling over the mean parameters � is rea-

sonable. Profiling with respect to the scale parameter ↵ is appropriate under the

well behaved models such as those in the Matérn class. For eccentric models it does

hide some of the features, as in Figures 28 and 29. If we profile over both ↵ and �

then typically only one or two structural parameters remain.

If we misspecify ↵ we will misspecify the prediction variance proportionately.

However the prediction weights, (1.2.2) will not be a↵ected. If we misspecify ✓ then,

in general, this will e↵ect both the prediction weights and the perceived prediction

variance. The perspective taken in this thesis is that a predictor is incomplete without

an associated measure of uncertainty. That is, obtaining a good estimate of the

prediction variance is as much of a concern as obtaining a good prediction.
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CHAPTER 3

ALTERNATIVE APPROACHES TO INFERENCE BASED

ON OBSERVING A FINITE SEGMENT

3.1 Introduction

Suppose Z(x) is a real–valued stationary Gaussian random field on R with

mean

IEZ(x) = 0

and covariance function,

Cov(Z(x), Z(x0)) = R(|x� x0|) for x, x0 2 R

In practice we observe Z(x) at a finite number of points in [0, T ] T > 0 , and

wish to make inference about R(x) . It is usual to assume that Z(x) is mean–square

continuous, so that R(x) is continuous and we have the representation,

R(x) =
Z 1

�1
eix�dF (�),

where F (�) , the spectrum, is a nonnegative nondecreasing function with F (1) <1 .

For ease of exposition we will assume that R(x) falls o↵ rapidly enough at infinity

to be Lebesgue integrable,
R1
�1 |R(x)| dx < 1 , a condition that is almost certainly

satisfied in practice. In this case F (x) is absolutely continuous with continuous and

bounded derivative f(x) , the spectral density, satisfying

R(x) =
Z 1

�1
eix�f(�)d�. (3.1.1)
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When the data are regularly spaced, standard texts on stochastic processes such

as Bartlett (1978) and Yaglom (1987a) present the (discrete) empirical covariance

function

B
n

(k) =
1

n

n�kX

i=0

Z(x
i

)Z(x
k+i

) 0  k  n

as the workhorse for inference about R(x) . Under the classical time-series asymp-

totics and the above conditions on R(x) it is a consistent estimator of R(k) as

n!1 . The explicit mathematics hides the implicit assumption that R(x) dies out

over a distance small with respect to the typical length of observation.

As we have discussed in §2.1 and observe in §5.3 it is very di�cult to extract

information about R(k) from B
n

(k) for some spatial processes. The reason for this

is that the range of correlation of R(x) is comparable to the length of observation so

that the information in the data about R(x) is obscured by B
n

(k). The ‘second order’

e↵ects, negligible from the information rich standpoint now play an important role.

We now quantify our use of the terms “information rich” and “strongly dependent”.

Consider the so called “correlation length”,

T
c

⌘

2

R(0)

Z 1

0

R(x)dx =
⇡f(0)

R1
0

f(�)d�
<1,

which is a length scale characterizing the strength of correlation between Z(x) and

Z(x + h) as h increases. As an example of the relevance of T
c

, consider estimating

the constant unknown mean of Z(x) . We can then interpret T/T
c

as the e↵ective

number of independent observations in the sense that the variance of the sample mean

is approximately T
c

R(0)/T (See Yaglom(1987a), §16). The conventional wisdom

from time-series is that unless T � T
c

, unknown parameters will be di�cult to

determine and the estimates would have little value. T
c

provides a scale to calibrate

the oft used term “for large T”. When T ⇣ T
c

,1we find that the conventional wisdom

1
Recall that f(T ) ⇣ g(T ) means 9c1, c2 s.t. 0 < c1  f(T )/g(T )  c2 < 1 for relevant values of T . As

a rule-of-thumb we envision 0.2 < c1 < c2 < 5 , say.



81

is not final because the usual objective in spatial prediction is interpolation and not

extrapolation. This di↵erence in objective allows a spatial statistician to operate when

T is of the same order as T
c

. This theme is developed in Stein(1988, 1987b) and will

be explored further in this chapter. It is important to note that T ⇣ T
c

does not mean

that we have little information about all characteristics of the covariance structure.

In fact, as we shall see in the next section some characteristics can be determined

with probability one for any T . Understandably this situation has received little

research focus because of its reduced importance to time-series.

Much of the work in this chapter was motivated by its close relationship with

nearly non-stationary time-series. They have received considerable attention in the

Economics and Statistics literature (Phillips (1987a,b), Solo (1984), Dickey & Fuller

(1979)). The maximum likelihood and least squares estimates derived in section §3.3

are in fact the asymptotic limits of the corresponding parameters from the nearly non-

stationary AR(1) process. In fact the triangular array discussed in §3.2 represents

such a series. The results of this chapter should be of interest to researchers in this

area.

In the first half of this chapter we investigate maximum likelihood estimation of

the covariance structure of the Ornstein–Uhlenbeck process on the basis of observing

a single realization continuously on [0, T ] . This has received considerable attention

in the literature, especially Arató (1964a,b). We extend and apply this work to obtain

the distribution of the maximum likelihood estimates.

When T ⇣ T
c

, the information about certain parameters obtained by discrete

observation on [0, T ] is bounded. This bound is the information available from a

continuously observed record over [0, T ] . In §3.4 we compare the continuous max-

imum likelihood estimate to the maximum likelihood estimate based on the usual

discrete measurement when T ⇣ T
c

. The analysis of the entire segment provides
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independence from particular sampling schemes as well as providing mathematical

tractability at the cost of direct applicability. We shall see that properties of estima-

tors based on continuous observation serve as a useful guide to the properties of their

discrete counterparts.

In the second half of this chapter we investigate the use of the spectral density

as an alternative estimator for the covariance structure when T ⇣ T
c

. Exact formulas

for the covariance of the empirical spectral density process are derived. The behavior

of the Ornstein–Uhlenbeck process is studied under both fixed and increasing region

asymptotic schemes.

3.2 Some aspects of likelihood estimation for the Ornstein–Uhlenbeck

process

Let Z(x) be the Ornstein–Uhlenbeck process with mean � and covariance

structure defined by the Exponential covariance function,

R(x) = ✓
1

✓
2

e
� x

✓2 ,

or equivalently the spectral density,

f(�) =
✓
1

✓2

2

⇡(1 + ✓2

2

�2)
(3.2.1)

This process is the Exponential Gaussian process studied in previous chapters.

In this section we review the maximum likelihood estimation of the parameters

�, ✓
1

, ✓
2

on the basis of observing a single realization continuously on [0, T ] . Let

{⇡
n

}

1
n=1

be a sequence of interval partitions on [0, T ] , ⇡
n

= {0 = t
(n)

0

< · · · < t
(n)

n+1

=

T} . Consider the statistic

S
n

=
1

2

nX

k=0

{Z(t(n)

k+1

)� Z(t(n)

k

)}2 (3.2.2)
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Let m
n

be the mesh size of ⇡
n

, that is, m
n

= max
0kn

{t
(n)

k+1

� t
(n)

k

} . If m
n

! 0

then S
n

P

! ✓
1

as n ! 1 . Further if m
n

log(n) ! 0 then S
n

as

! ✓
1

as n ! 1

(Klein & Giné (1975) ). In practice this means that on the basis of observing Z(x)

on any dense sequence in [0, T ] we can determine ✓
1

exactly. Hence we need only

consider the estimation of � and ✓
2

. Note also that Ornstein–Uhlenbeck processes

with di↵erent slope parameters are incompatible, in the sense of Stein (1988a), on

any dense sequence of observations in [0, T ] .

Let P
W

be the product of one-dimensional Lebesgue measure and the standard

conditional Wiener measure on the space of functions on [0, T ] . Let P
✓2,�

be the

measure generated by Z(x) on the product of the real line Z(0) and the space of

realizations of Z(x)�Z(0) , that is continuous functions on [0, T ] . Then the Radon–

Nikodym derivative of P
✓2,�

with respect to P
W

is, Striebel (1959),

dP
✓2,�

dP
W

(Z(x)) =
1

2⇡✓
1

✓
2

exp{�
1

2✓
1

✓
2

[s2

1

� ✓
1

T +
1

2✓
2

s2

2

]} (3.2.3)

where

s2

1

=
1

2
{(Z(0)� �)2 + (Z(T )� �)2

},

s2

2

=
Z

T

0

(Z(x)� �)2dx

This result is easy to derive directly from measure–theoretic considerations.

However, insight may be gained by considering the triangular arrays of random vari-

ables defined by

Zn

k

= Z(T (k � 1)/n), W n

k

= W (T (k � 1)/n) k = 1, 2, . . . n. (3.2.4)

For each fixed n , the sequence Zn

k

satisfy the di↵erence equation

Zn

k+1

= �
n

Zn

k

+ "n

k+1

k = 1, 2, . . . n

where "n

k

are independent and Gaussian with mean zero and variance ✓
1

✓
2

(1 �

�2

n

), �
n

= e�T/n✓2 .
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Let f
n

(Z) and f
n

(W ) be the probability densities of the sequences Zn

1

, . . . Zn

n

and W n

1

, . . . W n

n

, respectively. One can then derive the result (3.2.3) using a functional

Central Limit Theorem (Billingsley (1968), §10) on the likelihood ratio f
n

(Z)/f
n

(W ) .

The functional Central Limit Theorem and the continuous mapping theorem (Billings-

ley (1968), §5) are the basis of the bonds between discrete time-series and continuous

time-series, and will appear again and again.

To simplify the exposition we will initially focus on the situation where the mean

is known. We will take � = 0 . From (3.2.3) the maximum likelihood estimator of b✓
2

satisfies

✓
1

b✓2

2

�

b✓
2

(s2

1

� ✓
1

T )� Ts2

2

= 0,

so that,

b✓
2

=
(s2

1

� ✓
1

T ) +
q

(s2

1

� ✓
1

T )2 + 4T✓
1

s2

2

2✓
1

(3.2.5)

This result was first derived by Striebel (1959). The development given here

follows Arató (1964a). Under the assumption that Z(0) = z
0

, we can show using

a triangular array of random variables similar to (3.2.4) that the Radon–Nikodym

derivative for this case is

dP c

✓2

dP
W

(Z(x)) = exp{�
1

2✓
2

2

[s2

1

+ 2✓
2

s
3

]}

where s
3

=
R

T

0

Z(x)dZ(x) = 1

2

{Z(T )2

�z2

0

�T} . The conditional maximum likelihood

estimator of b✓
2

is then

b✓c

2

= �
s2

1

s
3

= �
2
R

T

0

Z(x)2dx

Z(T )2

� z2

0

� T
(3.2.6)

which is also the well known least–squares estimator, Bartlett (1978). We will focus

on z
0

= 0 .
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3.3 The distributions of the MLE, b✓
2

, and the conditional MLE, b✓c

2

In the previous section we gave expressions for the maximum likelihood esti-

mates b✓
2

and b✓c

2

in (3.2.5) and (3.2.6), respectively. In this section we express their

distributions in terms of characteristic functions and use the method of Davies (1973)

to determine them numerically. Our approach follows that of Arató (1964b) who

proved Theorem 3.3.1 and used the inverse Laplace transform to create a table of

quantiles for the distribution of b✓
2

. The determination of the distribution of b✓c

2

and

the graphical comparison between b✓
2

and b✓c

2

appear to be new.

Let �
2

(z
1

, z
2

) denote the joint characteristic function of s2

1

and s2

2

. For fixed

x , let ⌘
1

(x) = xs2

1

+ s2

2

then as

2✓
1

x� (s2

1

� ✓
1

T ) � 2✓
1

x�
q

(s2

1

� ✓
1

T )2 + 4✓
1

s2

2

� �

q
(s2

1

� ✓
1

T )2 + 4✓
1

s2

2

we have,

P (b✓
2

 x) = P ((s2

1

� ✓
1

T )2 + 4✓
1

s2

2

 {2✓
1

x� (s2

1

� ✓
1

T )}2)

= P (⌘
1

(x)  ✓
1

x(x + T ))

Now the characteristic function of ⌘
1

(x) is �
3

(z) = �
2

(xz, z) , so that we can deter-

mine the distribution of b✓
2

at x by inverting �
3

(z) at ✓
1

x(x + T ) . Similarly, if we

let �
1

(z
1

, z
2

) denote the joint conditional characteristic function of s
3

and s2

2

and

⌘
2

(x) ⌘ s2

2

� xs
3

then

P (b✓c

2

 x) = P (s2

2

� xs
3

 0|Z(0) = 0)

= P (⌘
2

(x)  0|Z(0) = 0)

The conditional characteristic function of ⌘
2

(x) is �
4

(z) = �
1

(�xz, z) .

Based on the Gil–Pelaes (1961) formula

P (X  x) =
1

2
�

1

2⇡

Z 1

�1
Im

⇢
�(t)eitx

t

�
dt
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we can express the distributions in terms of the characteristic functions:

P (b✓
2

 x) =
1

2
�

1

2⇡

Z 1

�1
Im

⇢
�

1

(�xt, t)

t

�
dt (3.3.1)

and

P (b✓c

2

 x) =
1

2
�

1

2⇡

Z 1

�1
Im

⇢
�

2

(xt, t)eit✓1x(x+T)

t

�
dt (3.3.2)

The unidentified components are �
1

(z
1

, z
2

) and �
2

(z
1

, z
2

) . Arató (1964a) de-

rives an explicit formula for �
2

(z
1

, z
2

) by considering a di↵erential equation in the

conditional characteristic function of s2

1

and s2

2

. His result is:

Theorem 3.3.1 (Arató(1964a), §2):

The joint characteristic function of s2

1

and s2

2

is

�
2

(z
1

, z
2

) ⌘ IE(exp(iz
1

s2

1

+ iz
2

s2

2

))

=
2
p

✓
2

�1/2e
T

2✓2

{e�/✓2(�� 2z
2

✓
2

+ T )2

� e��/✓2(� + 2z
2

✓
2

� T )2

}

1
2

(3.3.3)

where � = (T 2

� 2z
2

✓2

2

)
1
2 .

A similar result holds for the characteristic function �
1

(z
1

, z
2

) :

Theorem 3.3.2:

The joint conditional characteristic function of s
3

and s2

2

is

�
1

(z
1

, z
2

) ⌘ IE(exp(iz
1

s
3

+ iz
2

s2

2

| Z(0) = 0))

=

p

2�
1
2 e

2z1✓2+T

2✓2

{e��/✓2(� + 2z
1

✓
2

� T ) + e�/✓2(�� 2z
1

✓
2

+ T )}
1
2

(3.3.4)

where � = (T 2

� 2z
2

✓2

2

)
1
2 .

Proof :

The most instructive proof uses the triangular array of random variables (3.2.4).

The least–squares estimate of the serial correlation for a discrete time-series under

increasing region asymptotics is considered by White (1958). For fixed n , he shows

that the characteristic function of

1

n

nX

k=1

Zn

k

Zn

k�1

�

e�T/n✓2

n

nX

k=1

(Zn

k�1

)2 and
1

n2

nX

k=1

(Zn

k�1

)2
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is D�1/2

n

(White (1958), §2) where D
n

(z
1

, z
2

) satisfies

D
n

=
(1� s

n

)rn

n

� (1� r
n

)sn

n

r
n

� s
n

D
1

= 1

D
2

= p
n

� q2

n

and s
n

, r
n

are the solutions to x2

� p
n

x + q2

n

= 0 for

p
n

= 1 + �2

n

�

2z
2

n2

+
2�

n

z
1

n

q
n

= �b
n

�

z
1

n

�
n

= e�T/n✓2

as before. Of course, White considered �
n

constant in his construction. As n!1 ,

r
n

= 1 + (T✓
2

z
1

� T 2 + ✓
2

�) ·
1

n✓
2

T
+ o(

1

n
)

s
n

= 1 + (T✓
2

z
1

� T 2

� ✓
2

�) ·
1

n✓
2

T
+ o(

1

n
)

where � = (T 2

� 2T✓
2

z
1

� 2✓2

2

z
2

)1/2 , so that

D(z
1

, z
2

) ⌘ lim
n!1

D
n

(z
1

, z
2

)

=
e(��+✓2z1�T)/✓2(� + ✓

2

z
1

� T ) + e(�+✓2z1�T)/✓2(�� ✓
2

z
1

+ T )

2�

We now apply the functional central limit theorem to D
n

to find that the joint

conditional characteristic function of
R

T

0

Z(x)dZ(x) + T

✓2

R
T

0

Z(x)2dx and
R

T

0

Z(x)2dx

is D . Finally,

�
1

(z
1

, z
2

) = IE(exp(iz
1

s
3

+ iz
2

s2

2

|Z(0) = 0)

= IE(exp(iz
1

(s
3

+ Ts2

2

/✓
2

) + is2

2

(z
2

� Tz
1

/✓
2

) |Z(0) = 0)

= D(z
1

, z
2

� Tz
1

/✓
2

)

which evaluates to (3.3.4).
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3.3.1 Computation of the distributions of b✓
2

and b✓c

2

Using the expressions (3.3.1) and (3.3.2) we are now in a position to determine

the distributions of b✓
2

and b✓c

2

numerically. Davies(1973) presents a method for

determining the distribution function of a random variable based on the use of the

trapezoidal rule to numerically evaluate the integral in the Gil–Pelaes (1961) formula.

The advantage of this method is the direct calculation of the distribution function

and the possibility of bounding the calculation error.

The number of terms necessary for convergence is huge, of the order of 20, 000

for 5 significant figures accuracy. Clearly, if one wished to invert a large number

of these characteristic functions the method used should exploit the structure of the

characteristic function to a greater extent, especially in the slowly wavering tails.

Both �
1

(z
1

, z
2

) and �
1

(z
1

, z
2

) involve complex roots, only one path of which gives

the correct characteristic function. Theoretically, this path is defined by continuity,

but in practice the path is di�cult to follow as the arguments in the characteristic

functions change.

One drawback of b✓c

2

is that it can produce negative estimates for ✓
2

. As T
c

/T

increases the probability of a negative values increases. These values are unacceptable,

and meaningless within the definition of the Ornstein–Uhlenbeck process.

Consider first the situation where the length of observation is the same as the

correlation length, that is, T
c

= T .

Figure 32 compares the distribution of the conditional maximum likelihood es-

timate for ✓
2

, b✓c

2

to the distribution of the full maximum likelihood estimate, b✓
2

.

Although it is obscured in the graph, 3% of the values for b✓c

2

are negative. The

conditional maximum likelihood estimate is also extremely heavy right tailed, with

values for ✓
2

of 50 or more arising occasionally.
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If we truncate the conditional maximum likelihood estimate at zero, we can com-

pare the two estimates for log(✓
2

) , and so reduce the skewness. Figure 33 compares

the distribution of the truncated conditional maximum likelihood estimate for log(✓
2

),

log(b✓c

2

) to the distribution of the full maximum likelihood estimate, log(b✓
2

) . The

truncated values could be represented by a point mass of 3% at negative infinity. It

is clear that log(b✓
2

) is very well approximated by the Gaussian distribution and that

it is slightly biased downward. The conditional maximum likelihood estimate is still

slightly right skewed, although it is reasonably close to the full maximum likelihood

estimate.

Consider next the situation where the dependence between the observations is

increased to T
c

= 2T . In this case 10% of the values of the conditional maxi-

mum likelihood estimate are negative. Figure 34 compares the distribution of the

truncated conditional maximum likelihood estimate for log(✓
2

), log(b✓c

2

) to the dis-

tribution of the full maximum likelihood estimate, log(b✓
2

) . The truncated values

could be represented by a point mass of 10% at negative infinity. Again the log(b✓
2

)

is very well approximated by the Gaussian distribution. The right skewness of the

conditional maximum likelihood estimate has increased and there is greater di↵erence

between distributions.

In summary, the maximum likelihood estimate of log(✓
2

) is well approximated

by a Gaussian distribution, while the conditional maximum likelihood estimate is

slightly skewed right. The non-negligible probability of obtaining a negative estimate

from the conditional maximum likelihood estimate is reason enough for preferring

the full maximum likelihood estimate. As the dependence among the observations in-

creases the conditional maximum likelihood estimate deteriorates, tending to produce

occasional large estimates.
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3.4 Approximation of the discrete observation MLE by the MLE based

on a finite segment of a single realization

In this section we compare the maximum likelihood estimate based on observing

the segment [0, T ] of a realization to the maximum likelihood estimate based on the

usual discrete measurement in [0, T ] when T ⇣ T
c

. When T ⇣ T
c

, the information

about certain parameters obtained by discrete observation on [0, T ] is bounded. This

bound is the information available from a continuously observed record over [0, T ] .

The continuous version is in fact an asymptotic limit of the discrete version in a

sense that can be made precise. We shall see that properties of estimators based

on continuous observation serve as a useful guide to the properties of their discrete

counterparts.

As indicated the slope parameter, ✓
1

, for the Ornstein–Uhlenbeck process can

be determined with arbitrary precision based on a continuous record. For regular

discrete observation the natural estimator S
n

from (3.2.2) has variance 2✓2

1

/n +

O(1/n2) as n ! 1 . Hence interest focuses on the maximum likelihood estimate

of the range parameter, ✓
2

. As in §3.2 we can consider the situation where ✓
1

=

T = 1 and re-parameterize to recover the general situation. The distribution of the

continuous version has been studied in §3.3. The properties of the discrete version has

been studied in §2.4 . These distributions do not have closed form representations.

The correlation length for the Ornstein–Uhlenbeck process is T
c

= 2⇡f(0)/R(0) =

2✓
2

.

Consider first the situation where the length of observation is the same as the

correlation length, that is, T
c

= T . Figure 35 compares the distribution of the dis-

crete maximum likelihood estimate, b✓n

2

for n = 10, 25, 50 to the distribution of

the continuous version, b✓
2

. We see that for n as small as 10 the distributions are

similar. For n = 50 the distributions are almost identical. As n increases the dis-
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tributions become less right-skewed and, as expected, the variance decreases. Figure

36 represents the theoretical (rotated) quantile plot for log(b✓
2

) . This is the usual

quantile plot where the 45� reference line has been rotated to the horizontal. The

log-transform removes the right-skewedness so that log(b✓
2

) is very well approximated

by a Gaussian distribution.

Consider next the situation where the length of observation is the half the corre-

lation length, T
c

= 2T , so that the dependence between the observations is increased.

Figure 38 compares the distribution of the discrete maximum likelihood estimate, b✓n

2

for n = 5, 10, 25 to the distribution of the continuous version, b✓
2

. We see faster

convergence of the discrete maximum likelihood estimate to the continuous version.

For n = 25 the distributions are almost identical. The path of convergence is similar

to the previous situation. Figure 37 represents the theoretical (rotated) quantile plot

for log(b✓
2

) . The log-transform removes the right-skewedness, but shortens the tails

a little too much. Still log(b✓
2

) is well approximated by a Gaussian distribution.

As T
c

/T increases, the continuous approximation becomes suitable for smaller

sample sizes. In addition the skewness of the distribution itself increases. As T
c

/T

decreases the sample size required for a good approximation increases. Of course,

under the fixed region sampling scheme, the distribution of the limiting form is always

the continuous version. If T
c

/T < 5% the approximation will be poor for all but the

largest sample sizes.

We are now in a position to check the adequacy of the approximation (2.4.8) to

the variance of the maximum likelihood estimate of log(b✓
2

) calculated in §2.4.2.

Figure 39 plots the variance of log(b✓n

2

) as a function of n , the density of the

observations. The true range is ✓
2

= 1

2

, that is T
c

= T . Under this transformation

the distribution is approximately Gaussian. Also plotted is the mean-squared error of

log(b✓n

2

) . The values are calculated based on 20000 simulations. The dither in the plot
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is due to the residual sample variation from the simulation. For n < 40 the function

decreases like 1/n2 and levels o↵ completely for n greater than 60 . The dashed

line is the approximation of (2.4.8), 2T

c

2T+T

c

= 0.667 . We see that the approximation

overestimates the true values by about 10% , but provides a better indication to the

mean-squared error. The approximation is surprisingly good.

Note that the bias of the maximum likelihood estimate does not vanish as n

increases, and in fact increases as n increases, leveling o↵ for n > 30 at the bias of

the continuous maximum likelihood estimate.

Figure 40 plots the variance of log(b✓n

2

) when the dependence is increased to

T
c

= 2T . For n < 60 the function decreases like 1

n

2 and levels o↵ completely for

n greater than 60 . The approximation of (2.4.8) is 2T

c

2T+T

c

= 1.0 . We see that the

approximation again overestimates the true values by about 10% and underestimates

the mean-squared error by about 5% .

In summary, if T
c

⇣ T, the continuous approximation to discrete sampling is

quite good for small to moderate values of n . The distribution of the maximum

likelihood estimate of the range parameter is approximately log-Gaussian. Both b✓
2

and log(b✓
2

) su↵er from moderate bias.

3.5 On the determination of the spectrum based on a finite segment

of a single realization

In this section we study the empirical spectral density as a guide to the covari-

ance structure when T
c

⇣ T . We consider the empirical spectral density with the

objective of inferring the covariance structure of Z(x) . It is hoped that the spectral

domain will yield information that the time domain obscures. In particular the objec-

tive is to derive a graphical tool by which the covariance structure can be surmised.

It is motivated by the success of the empirical spectral density in time-series when
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T
c

⌧ T .

3.5.1 The empirical spectral density, I
T

(�)

Suppose we observe one realization of Z(x) completely on [0, T ], T > 0 . Define

the empirical spectral density, I
T

(�) on [0, T ] to be the random process,

I
T

(�) =
1

2⇡T

����
Z

T

0

eix�Z(x)dx

����
2

This is the periodogram from the time-series literature. We call it the empirical

spectral density to emphasize its relation to the empirical covariance function and the

theoretical spectral density. Consider the Fourier transform of I
T

(�)

B
T

(x) =
Z 1

�1
e�ix!I

T

(!)d!

=
1

T

Z
T�x

0

Z(t)Z(t + x)dt 0  x  T

We see that B
T

(x) is the empirical covariance function and I
T

(�) is the empirical

spectral density. More importantly, they are a Fourier transform pair, so that the

information in the empirical spectral density is the same as in the empirical covariance

function. This relationship is not as well known as it should be. The above mentioned

convergence properties of B
T

(x) to R(x) are consequences of a result of Bartlett

(1946):

Result 3.5.1:

The non-Gaussian process {B
T

(x) : 0  x  T} has mean function

IEB
T

(x) =
T � x

T
R(x)

and (non-stationary) covariance function

Cov(B
T

(x
1

), B
T

(x
2

)) =
1

T 2

Z
T�x2

�(T�x1)

�(x){R(x)R(x+x
2

�x
1

)+R(x+x
2

)R(x�x
2

)} dx
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where 0  x
1

 x
2

and,

�(x) =

8
<

:

T � x
1

+ x� (T � x
1

)  x  �(x
2

� x
1

)
T � x

2

� (x
2

� x
1

)  x  0
T � x

2

� x 0  x  T � x
2

Proof : Both equations can be obtained by direct calculation. See, for example,

Bartlett (1946) or Jenkins & Watts (1968),§5.3. One can show that this covariance

function is strictly positive.

Our primary objective is to use the observed values of I
T

(�) for � > 0 to

determine R(x) or equivalently estimate the characteristics of the spectrum and the

spectral density. It is clear that for fixed T it is impossible, without additional

restrictions on the form of R(x) , to completely determine R(x) at distances greater

than T . Hence we expect that the behavior of f(�) for small frequencies will be

di�cult to determine, but hope that the behavior at high frequencies will provide

useful information.

3.5.2 The frequency domain process, J
T

(!)

In this section we consider the properties of the a stochastic process closely

related to I
T

(�) . The results will be used in later sections of this chapter.

Consider the stochastic process {J
T

(!) : ! > 0} defined by

J
T

(!) =
1

p

2⇡T

Z
T

0

eix!Z(x)dx

= J
R

(!) + iJ
I

(!)

where

J
R

(!) =
1

p

2⇡T

Z
T

0

cos(x!) Z(x)dx, J
I

(!) =
1

p

2⇡T

Z
T

0

sin(x!) Z(x)dx

For fixed T , this process is the Fourier transform of Z(x) on [0, T ] and

represents a spectral version of the information in Z(x) on [0, T ] . It is natural

to use J
T

(!) when exploring the spectral properties of Z(x) . This process, and
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its discrete analogue, are used implicitly in text books such as Jenkins & Watts

(1968), Yaglom (1987a), Brillinger (1975), Priestley (1981), etc. We can summarize

the statistical characteristics in:

Result 3.5.2:

The complex Gaussian process {J
T

(!) : ! > 0} has zero mean and real (non-

stationary) covariance function

C
f

(!
1

, !
2

) ⌘ Cov(J
T

(!
1

), J
T

(!
2

)) =
T

2⇡

Z 1

�1
h

T

(�� !
1

) · h
T

(�� !
2

) f(�) d� (3.5.1)

where h
T

(!) = sin(T!/2)

T!/2

.

In particular

Cov(J
R

(!
1

), J
R

(!
2

)) =
1

2
{C

f

(!
1

, !
2

) + C
f

(!
1

,�!
2

)}

Cov(J
I

(!
1

), J
I

(!
2

)) =
1

2
{C

f

(!
1

, !
2

)� C
f

(!
1

,�!
2

)}

Cov(J
R

(!
1

), J
I

(!
2

)) = 0

Proof : We note that J
T

(�!) = J
T

(!) This proof is derived from Yaglom (1987a),

Ch.3, footnote 37. Using the spectral representation (3.1.1) for R(x) and a little

algebra we can show that

C
f

(!
1

, !
2

) =
1

2⇡T

Z
T/2

�T/2

Z
T/2

�T/2

cos(!
1

t� !
2

s)R(t� s) dtds

and hence, for example, Cov(J
R

(!
1

), J
R

(!
2

)) = 1

2

{C
f

(!
1

, !
2

)+C
f

(!
1

,�!
2

)} . Finally,

Cov(J
T

(!
1

), J
T

(!
2

)) = Cov(J
R

(!
1

), J
R

(!
2

)) + Cov(J
I

(!
1

), J
I

(!
2

)) = C
f

(!
1

, !
2

).

The empirical spectral density process,

I
T

(�) = |J
T

(!)|2 = J2

R

(!) + J2

I

(!),

is just the magnitude squared of J
T

(!) , so by considering the empirical spectral

density process alone we are ignoring any information in the phase of J
T

(!) .
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3.6 The covariance structure of the empirical spectral density process

In this section we derive expressions for the mean and covariance for the stochas-

tic process I
T

(�) . These expressions are the basis for the analysis of I
T

(�) in the

subsequent sections. From Result 3.5.2 we have:

IEI
T

(�) =
T

2⇡

Z 1

�1
h2

T

(! � �)f(!) d! = C
f

(�, �),

Cov( I
T

(!
1

), I
T

(!
2

) ) = C2

f

(!
1

, !
2

) + C2

f

(!
1

,�!
2

),

(3.6.1)

where !
1

, !
2

> 0 .

The following identity is essential:

Lemma 3.6.1:

T

2⇡

Z 1

�1
h

T

(�� !
1

) · h
T

(�� !
2

) d� = h
T

(!
2

� !
1

) 8!
1

, !
2

> 0

Proof : First note that

T 2

4⇡2

|

Z 1

�1
h

T

(�� !
1

) · h
T

(�� !
2

) d� |

2



T 2

4⇡2

Z 1

�1
h2

T

(�� !
1

)d� ·

Z 1

�1
h2

T

(�� !
2

)d�

= 1 <1,

as T

2⇡

R1
�1 h2

T

(�) d� = 1 and using the Cauchy-Schwarz inequality, so the integral

exists. Let ! = T(!2�!1)

4

then

T

2⇡

Z 1

�1
h

T

(�� !
1

) · h
T

(�� !
2

) d� =
1

⇡

Z 1

�1

sin(x + !) sin(x� !) dx

(x + !)(x� !)
.

In order to evaluate this last integral we can consider the result of integrating the

function

f(z) =
e2i!

� e2iz

2⇡(z + !)(z � !)
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around the following closed contour:

�R 0
!�⇢
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.

.

.

.

. . . . .
. . . . . .

. . . . .
. . . . . .

. . . . .
. . . . . .

. . . . .
. . . . .

. . . .
. . . . .

. . . .
. . . .

. . .
. . .

. .
. .

.
.

where we can take 0 < ! < R . We note that

lim
z!!

(z � !)f(z) =
e�2i!

� e2i!

4⇡!
and lim

z!�!

f(z) =
ie�2i!

2⇡!
,

so that f(z) has the single simple pole on the real axis at z = ! . As f(z) is analytic

inside the contour, Cauchy’s residue theorem gives
Z

!�⇢

�R

f(x) dx +
Z

C

⇢

f(z) dz +
Z

R

!+⇢

f(x) dx +
Z

C

R

f(z) dz = 0 (3.6.2)

By Jordan’s Lemma,

lim
R!1

Z

C

R

f(z) dz = 0.

As C
⇢

is traveled in the negative sense, by Cauchy’s residue theorem, we have

lim
⇢!0

Z

C

⇢

f(z) dz = �⇡iRes(!)

=
�i(e�2i!

� e2i!)

4!
= �

sin(2!)

2!
Thus, proceeding to the limit as ⇢! 0 and R!1 , we have

I 1

�1

e2i!

� e2ix

2⇡(x2

� !2)
dx =

sin(2!)

2!

Equating real and imaginary parts of both sides we obtain

1

⇡

Z 1

�1

sin(x + !) sin(x� !) dx

(x2

� !2)
=

sin(2!)

2!

1

⇡

I 1

�1

sin(x + !) cos(x� !) dx

(x2

� !2)
= 0

where the principal value sign is omitted on the first integral as we have shown it

converges, the integrand being finite at all x .
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We now rewrite the expression for the covariance of I
T

(!
1

) and I
T

(!
2

) in (3.6.1)

in a form better suited for calculations when T is fixed and !
2

� !
1

!1 . Let

� =
T (!

2

+ !
1

)

2
, � =

T (!
2

� !
1

)

2
(3.6.3)

then from equation (3.5.1),

h
T

(�/T � !
1

) · h
T

(�/T � !
2

) = 2 ·

cos(T(!2�!1)

2

)� cos(�� T(!2+!1)

2

)

(�� T!
1

)(�� T!
2

)

= 2 ·

cos(�)� cos(�� �)

(�� � + �)(�� � � �)

Then

C
f

(!
1

, !
2

) =
1

2⇡

Z 1

�1
h

T

(�/T � !
1

) · h
T

(�/T � !
2

) f(�/T ) d�

=
T

4⇡

Z 1

�1

(cos(�)� cos(�� �)) · f(�/T )

(�� � + �)(�� � � �)
d�

=
T

4⇡

Z 1

�1

(cos(�)� cos(�)) · f(�+�

T

)

(�2

� �2)
d�

⌘ Q
f

(�, �)

Finally, we have:

Result 3.6.1:

IEI
T

(�) = Q
f

(0, T�),

\V(I
T

(�)) = Q2

f

(0, T�) + Q2

f

(T�, 0)

Cov
f

( I
T

(!
1

), I
T

(!
2

) ) = Q2

f

(�, �) + Q2

f

(�, �)

(3.6.4)

where � and � are given in (3.6.3). The last equality follows because f(�) is

symmetric about zero. � represents the di↵erence between frequencies and � the

average frequency.
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3.7 The behavior of I
T

(�) for the Ornstein–Uhlenbeck process

If f(�) is arbitrary and T fixed, (3.6.4) results in intractable expressions for

the covariance structure of I
T

(�) . In this section we consider the behavior of I
T

(�)

for the Ornstein–Uhlenbeck process defined in §3.2. For the spectral density (3.2.1),

Q(�, �) becomes
✓
1

T 2

⇡2

Z 1

�1

cos(�)� cos(�)

(�2

� �2)(↵2 + (� + �)2)
d�

where ↵ = T/✓
2

. The following algebraic identity can be easily checked by multipli-

cation:

1

(�2

� �2)(↵2 + (� + �)2)
=

1

⌘(↵, �, �)
·

(
2�� + 2�2

� �

↵2 + (� + �)2

�

2��� 2�2

� �

�2

� �2

)

where ⌘(↵, �, �) = (↵2 +(�+�)2)(↵2 +(���)2) and � = �2

��2 +↵2 . The following

integrals are useful below:
Z 1

0

cos(�)

↵2 + �2

d� =
⇡

2↵
e�↵

Z 1

0

d�

↵2 + �2

=
⇡

2↵

Z 1

0

� sin(�)

↵2 + �2

d� =
⇡

2
e�↵

We can then write
⇡2

✓
1

T 2

· Q(�, �) · ⌘(↵, �, �) =

Z 1

�1

(cos(�)� cos(�� �)) · (2��� �)

↵2 + �2

d� + (2�2 + �)
Z 1

0

cos(�)� cos(�)

�2

� �2

d�

= 2� cos(�)
Z 1

0

cos(�)

↵2 + �2

d� � 2� cos(�)
Z 1

0

d�

↵2 + �2

+ (2�2 + �)
Z 1

0

cos(�)� cos(�)

�2

� �2

d� � 4� sin(�)
Z 1

0

� sin(�)

↵2 + �2

d�

=
⇡

↵
{� cos(�)e�↵

� � cos(�) + ↵(2�2 + �) sin(�)/� � 2↵� sin(�)e�↵

}

=
⇡

↵
{(�2

� �2

�↵2)[cos(�)� e�↵ cos(�)]� 2↵e�↵� sin(�) + ↵(↵2 + �2 + �2) sin(�)/�}

where we have used Lemma 3.6.1 in the second to the last line. Finally, we have

Q(�, �) =

✓1T 2
�
(�2
� �2

� ↵2
)[cos(�)� e�↵

cos(�)]� 2↵e�↵� sin(�) + ↵(↵2
+ �2

+ �2
) sin(�)/�

 

⇡↵[↵2
+ (� + �)

2
][↵2

+ (� � �)

2
]

Q(�, �) =

✓1T 2
�
(�2

� �2
� ↵2

)[cos(�)� e�↵
cos(�)]� 2↵e�↵� sin(�) + ↵(↵2

+ �2
+ �2

) sin(�)/�
 

⇡↵[↵2
+ (� + �)

2
][↵2

+ (� � �)

2
]
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and

Q(0, �) =
✓
1

T 2

⇢
(�2

� ↵2)[1� e�↵ cos(�)]� 2↵e�↵� sin(�) + ↵(↵2 + �2)
�

⇡↵(↵2 + �2)2

Q(�, 0) =
✓
1

T 2

⇢
↵ sin(�)/� � cos(�) + e�↵

�

⇡↵(↵2 + �2)

From (3.6.4) we have,

IEI
T

(�) = Q(0, T�)

=
✓
1

T 2

⇢
(T 2�2

� ↵2)[1� e�↵ cos(T�)]� 2↵e�↵T� sin(T�) + ↵(↵2 + T 2�2)
�

⇡↵(↵2 + T 2�2)2

(3.7.1)

Similarly,

Q(T�, 0) =
✓
1

✓2

2

⇡T (1 + ✓2

2

�2)

(

✓
2

e�T/✓2
� ✓

2

cos(T�) +
sin(T�)

�

)

so we can fully express \V(I
T

(�)) = Q2(T�, 0)+Q2(0, T�) and Cov( I
T

(!
1

), I
T

(!
2

) ) .

These expressions describe the mean and covariance structure of I
T

(�) for any

T . Even with f(�) of such a simple form these expressions are very complex. For

alternative interesting f(�) the analogous expressions become rapidly intractable.

3.8 Using I
T

(�) to determine the local behaviour of a stochastic process

In this section we consider using I
T

(�) , or equivalently B
T

(x) , to estimate the

local behavior of the random field when T ⇣ T
c

. In addition to the assumption that

R(x) be Lebesgue integrable we will insist that R(x) has uniformly bounded second

derivative on (0, T ] , so that the left and right derivatives of R(x) exist and are finite.

We define the variogram of Z(x) by

2�(h) ⌘ IE{(Z(x + h)� Z(x))2

}
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so that we have

lim
h!0

+

�(h)

h
= �

1

2
R

0
(0+) ⌘ ✓ � 0. (3.8.1)

If Z(x) is mean-square di↵erentiable then necessarily ✓ = 0. We will consider only

those random fields for which ✓ > 0. If Z(x) is n � 1 times di↵erentiable then the

nth mean-square derivative of Z(x) is non-di↵erentiable with covariance function

R(2n)(x) . Thus we consider a class of stochastic processes that are mean–square

continuous but not mean–square di↵erentiable. Furthermore, the realizations of Z(x)

are a.s. continuous and, in fact, satisfy a Lipschitz condition of order up to 1

2

. For

this class of processes, ✓ determines the behavior at the origin of R(x) and hence the

local behavior of the process. On the basis of observing Z(x) on any dense sequence

in [0, T ] we can use S
n

from (3.2.2) to determine ✓ with arbitrary precision.

It is possible to express (3.8.1) in terms of the spectral density,

�(h) = 2
Z 1

�1
sin2 (h�/2)f(�)d�

or conversely

⇡�
⇢
1� F (�)

�
=

Z 1

�1
sin (h�)

�(h)

h
dh

Using approximation theory for this singular integral it is possible to confirm that

lim
�!1

⇡�
Z 1

�

f(!)d! = ✓ (3.8.2)

This equation reflects the relationship between the behavior of R(x) at the origin

and the behavior of the spectral density at infinity.

It is clear that based on observing one realization of Z(x) completely on [0, T ]

the covariance R(x) can not be determined completely.

Our primary objective, then, is to use the observed values of the empirical

spectral density process {I
T

(�) : � > 0} to determine ✓ . In the following sub-

sections we will argue that this is not possible and that ✓ can not be recovered from

I
T

(�) or B
T

(x) alone.
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3.8.1 Determination of the local behavior by weighting I
T

(�)

In this section we investigate the estimation of ✓ by weighted integrals of I
T

(�) .

Based on (3.8.2) we might expect

⇡�
Z 1

�

I
T

(!)d!
as

! ✓ as �!1

and we would be surprised if a suitable weight function g(!) cannot be found so that

⇡�
Z 1

�

g(!)I
T

(!)d!
as

! ✓ as �!1

Hence it is natural to consider the statistics ⌧
n

=
P

n

i=1

a
i

I
T

(!
i

) where !
i

are arbitrary

frequencies and a
i

are arbitrary weights. Our intent is to estimate ✓ by ⌧
n

.

We should choose the weights and frequencies so that

\V(⌧
n

)

IE2(⌧
n

)
! 0,

as n!1 . If we define

⌃
n

=

(

Corr( I
T

(!
i

), I
T

(!
j

) )

)

n⇥n

⌫
n

=

(
IE(I

T

(!
i

))
q
\V(I

T

(!
i

))

)

n⇥1

then we can show we must choose the sequence of frequencies, !
1

, !
2

, . . . so that

⌫ 0
n

⌃�1

n

⌫
n

is unbounded. Unfortunately it is does not appear possible to divine from

(3.6.1) and (3.5.1) the structure of ⌃
n

for general f(�) . Because of this we return

again to the Ornstein–Uhlenbeck process for which we do have an exact expression

for ⌃
n

.
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Result 3.8.1:

For the Ornstein–Uhlenbeck process of (3.2.1) we have:

IE(I
T

(!)) =
✓
1

(1 + ↵� e�↵ cos(T!))

⇡↵!2

+ O(
1

!3

)

Corr( I
T

(!
1

), I
T

(!
2

) ) =
1

q
d(!

1

) · d(!
2

)
[ a2(�, �) + a2(�, �)] + O(1/!

1

) + O(1/!
2

)

as !
1

, !
2

!1 , where

� =
T (!

2

+ !
1

)

2
, � =

T (!
2

� !
1

)

2
, ↵ = T/✓

2

= 2T/T
c

and
d(!) = (1 + ↵� e�↵ cos T!)2 + (e�↵

� cos T!)2

a(�, �) = cos � � e�↵ cos � +
↵ sin �

�

Proof : The parameter ↵ is a measure of the amount of information for ✓ in the

sense that T
c

= 2T/↵. The expressions are derived from the expressions in §3.7 by

careful and tedious calculations. They have been reformulated in terms of � and �

to emphasize the periodic structure of the covariance. Note that the correlation is

always positive.

We see that IE(I
T

(!)) decreases to zero like f(!) . More importantly the corre-

lation structure does not die out as � or � increases. In fact Corr( I
T

(!
1

), I
T

(!
2

) )

approaches a periodic function as !
1

and !
2

increase. This is in sharp contrast to

the behavior for increasing region asymptotics, described in Result 3.9.1e, where the

correlation drops to zero as the di↵erence between frequencies increases. Viewed as a

function of !
1

and !
2

, Corr( I
T

(!
1

), I
T

(!
2

) ) looks like an upside down egg carton

stretching out to infinity. The dips almost go down to zero and the hills raise up to

values depending on T
c

/T.

We must choose the frequencies in ⌧
n

so that the successive components are

as weakly dependent as possible, so that the total information in them about ✓
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grows. To minimize the correlation we need to minimize a(�, �) as � ! 1 . For a

given frequency, !
1

, we can show that the sequence of frequencies, !
2

, with I
T

(!
1

)

approximately uncorrelated with I
T

(!
2

) satisfy,

T (!
2

� !
1

) = (2n + 1)⇡ +
2(1� e�2↵)

↵⇡(n + 1

2

)
+ O(

1

n2

) n = 1, 2, . . .

However, if we choose a third frequency, !
3

, so that I
T

(!
3

) is approximately uncor-

related with I
T

(!
2

) then it will di↵er from !
1

by approximately a multiple of 2⇡/T.

From Result 3.8.1,

Corr( I
T

(!
1

), I
T

(!
3

) ) �
(1� e�↵ cos(T!

1

))2 + (cos(T!
1

)� e�↵)2

(1 + ↵� e�↵ cos(T!
1

))2 + (cos(T!
1

)� e�↵)2

> 0 (3.8.3)

That is, we can choose two frequencies at which I
T

(·) has arbitrarily small correlation,

but I
T

(·) at any third frequency will necessarily have a non-trivial correlation with

one of the first two. Hence it is impossible to choose a sequence of frequencies so that

the components are approximately uncorrelated. A consequence of this result is that

any estimate based on solely non-negative weights will not be consistent because the

correlation between I
T

(�) at any three frequencies is bounded away from zero.

To see that this inherent dependence is enough to ruin ⌧
n

, consider a sequence

w
i

consisting of large even multiples of ⇡/T . We can show that

⌫
n

⇣ ⌫
1
2
0

1

⌃
n

⇣(1� ⇢)I
n

+ ⇢1n1n
0

where from (3.8.3),

⇢ =
2(1� e�↵)2

(1 + ↵� e�↵)2 + (1� e�↵)2

⌫
0

=
(1 + ↵� e�↵)2

(1 + ↵� e�↵)2 + (1� e�↵)2

1n ={1}
n⇥1

A little work shows that ⌫ 0
n

⌃�1

n

⌫
n

= n⌫
0

/(1 + (n� 1)⇢) and so

inf
a

\V(⌧
n

)

IE2(⌧
n

)
=

⇢

⌫
0

+
1� ⇢

n⌫
0

.
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Hence the best weighted linear estimator based on frequencies that are multiples of

⇡/T will not do better than ⇢/⌫
0

, no matter the number of frequencies used.

3.8.2 Determination of the local behavior by smoothing B
T

(x)

In the previous sub-section it was shown that ✓ could not be estimated using a

natural linear weighted statistic of I
T

(�) at large frequencies. This objective can be

stated in terms of B
T

(x) : Is it possible to determine ✓ exactly based on observing

one realization of {B
T

(x) : 0  x  T} by smoothing B
T

(x) at the origin?

Explicitly we will consider weighted versions of B
T

(x) ,

B(a)

T

(x) = a
T

(x)B
T

(x) 0  x  T

where the weight function a
T

(x) smooths B
T

(x) at the origin so that estimates for

✓ of the form

S(a)

T

(x) =
B

(a)

T

(0)�B
(a)

T

(x)

x
(3.8.4)

can be considered.

It is important to note that the class of smoothed empirical spectral density

estimators is equivalent to the class of smoothed empirical covariance function esti-

mators. Their relationship is expressed by

�A

T

(!) =
Z 1

�1
A

T

(! � �)I
T

(�)d�

=F{B(a)

T

(x)}

where A
T

(�) = F{a
T

(x)} and F denotes the Fourier transformation. This relation-

ship is seldom exploited in the literature.

We choose a
T

(x) to be continuous and non-negative definite so that B
(a)

T

(x) will

have the same properties. In fact a
T

(x) is a lag-window from time-series literature.

Suppose a
T

(x) has continuous first derivative and its second derivative is finite in
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some neighbourhood of the origin. Then we can write a
T

(x) = 1 + sx + ⌫x2 + o(x2)

as x! 0.

The quality of S
(a)

T

(x) as an estimator for ✓ can be gauged by its mean-squared

error. After some careful algebra based on the expression for the covariance in Result

3.5.1 we can show that

MSE[S(a)

T

(x)] =
✓2

↵4

⇢
1� 2↵s + ↵2(1� 2s + 2↵s2 + e�2↵(1 + s)2)

�
+ O(x)

as x! 0. The value of s that minimizes the mean-squared error is

s =
1 + ↵ + ↵e�2↵

↵(2↵ + e�2↵)

corresponding to a mean-squared error we hesitate to write down. Figure 41 is a plot

of this mean-squared error as a function of s when ↵ = 1 . The natural unsmoothed

estimator based on a
T

(x) ⌘ 1 has mean-squared error ✓2

{1 + ↵2(1 + e�2↵)}/↵4.

In summary, the smooth estimators based on B
T

(x) have mean-squared error

that is bounded above zero, independently of the smoothing function used.

It is interesting to note the existence of a closely related process motivated by

(3.8.1),

�
T

(x) =
1

2T

Z
T�x

0

{Z(t)� Z(t + x)}2dt 0  x  T

=B
T

(0)�B
T

(x)�
1

2T

Z
x

0

Z2(t)dt�
1

2T

Z
T

T�x

Z2(t)dt

The estimate �
T

(x)/x appears superficially close to the form of S
(a)

T

(x) given in

(3.8.4). We can show using some more careful algebra based on Result 3.5.1 that

IE(�
T

(x)/x) =
T � x

T
·

R(0)�R(x)

x

=✓ + O(x)

\V(�
T

(x)/x) =
4✓2x

3↵2T 3

+ O(x2)

as x ! 0 . Hence by taking x small enough we can approximate ✓ with arbitrary

precision using �
T

(x)/x .
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The rationale for the failure of the empirical covariance function can be seen from

the plot of Corr( B
T

(x
1

), B
T

(x
2

) ) given in Figure 42 where T
c

= 2T. The correlation

is bounded below by 0.85. It is straightforward to derive this lower bound from the

exact expressions. It is always the limit of Corr( I
T

(0), I
T

(T � x) ) as x ! 0. As

T
c

/T increases the bound increases.

In summary, on the basis of observing Z on [0, T ] it is well known that it is

possible to estimate the local behavior of the random field arbitrarily well. However

we find that we apparently can not determine the local behavior based on the empir-

ical spectral density alone. Thus the empirical spectral density, or equivalently the

empirical covariance, appears to throw out much of the information available in the

data, in contrast to the increasing region asymptotic setting.

3.9 Asymptotic behaviour of I
T

(!) as T !1

In this section we consider the asymptotic properties of the empirical spectral

density as the region of observation grows, so that the information about I
T

(�) is

unbounded. Our objective is to provide a foundation to which our results for T
c

⇣ T

can be compared. Many authors have described the behavior of I
T

(!) asymptotically

as T !1 , usually for discrete–time processes. We re-prove the major results using

approximation theory for singular integrals. Let C be the set of uniformly continuous

functions that are bounded on IR , and as usual let L
p

denote the set of functions

which are Lebesgue integrable to the p th power over IR , where 1  p  1 . C is

endowed with the norm kfk
C

= sup
x2IR |f(x)| , and

kfk
p

=
⇢

1
p

2⇡

Z 1

�1
|f(x)|pdx

�
1/p

for 1  p <1

while L1 has norm kfk1 = ess sup
x2IR|f(x)| . The symbol X will be used to

denote one of the spaces C or L
p

, 1  p < 1 . Finally, if we let C
0

be {f 2 C :
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lim|x|!1 f(x) = 0} , then as f(!) is the Fourier transform of R(x) 2 L
1

we clearly

have R(x), f(!) 2 L
1

\ C
0

and in particular R(x), f(!) 2 L
p

, 1  p  1 .

Result 3.9.1:

a) kIEI
T

(!)� f(!)k
X

= O( 1

T

) () kf(·+h)� f(·)k
X

= O(h) as h! 0+

In particular, if
R1
�1 |xR(x)| dx < 1 then,

IEI
T

(!) = f(!) + O( 1

T

)

where the O(1/T ) term is uniform with respect to ! , as T !1 .

b) kIEI
T

(!)� f(!)k
X

= o( 1

T

)) kIEI
T

(!)� f(!)k
X

= 0 8T

That is, the rate of convergence of I
T

(!) to f(!) is never faster than

O( 1

T

) .

c) If
R1
�1 |xR(x)| dx < 1 then,

\V(I
T

(!)) = f 2(!) + O( 1

T

)

uniformly on any set of ! bounded away from zero, as T !1 .

d) If
R1
�1 |xR(x)| dx < 1 then,

IE{[ I
T

(!)� f(!) ]2} = f 2(!) + O( 1

T

)

uniformly on any set of ! bounded away from zero, as T !1 .

e) If
R1
�1 |xR(x)| dx < 1 then,

Cov( I
T

(!
1

), I
T

(!
2

) ) =
⇢
h2

T

(!
1

�!
2

)+h2

T

(!
1

+!
2

)
�
·f(!

1

)f(!
2

) + O( 1

T

)

for !
1

, !
2

> 0 . Note that Cov( I
T

(!
1

), I
T

(!
2

) ) is O( 1

T

2 ) unless !
1

= !
2

and that the O( 1

T

) term is uniform on any set of !
1

, !
2

bounded away

from zero.

f) I
T

(!)
D
!

1

2

f(!) · �2

2

for ! > 0 .

Proof : In the terminology of approximation theory (Butzer & Nessel (1971), §3)

the set of functions {�
T

(x) : T > 0} is called a kernel on IR if �
T

(x) 2 L
1

for each T

and
R1
�1 �

T

(x) dx =
p

2⇡. A kernel is called an approximate identity on IR if there
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is some constant M > 0 with k�
T

(·)k
1

< M for T > 0 and
R
|x|��

|�
T

(x)| dx! 0 as

T !1 for each � > 0.

It is easy to show that the function

F(x) =
1
p

2⇡
h2

T

(x/T ) (3.9.1)

defines the approximate identity {TF(Tx) : T > 0} on IR. F(x) is usually referred

to as the Fejér kernel. Further,

IE(I
T

(!)) =
T
p

2⇡

Z 1

�1
F(Tx)f(x� �)dx

=�(f ; �; T ),

that is IE(I
T

(!)) , as a function of f(·), � and T , is the singular integral of Fejér

(Butzer & Nessel (1971), §3.1.2). We can then apply the results of Corollary 3.5.4 ,

Proposition 12.4.1 and Proposition 13.2.5 to deduce a). Similarly b) follows from

Proposition 12.4.1(a) and Proposition 13.2.1(a).

From (3.6.1), \V(I
T

(!)) = C2

f

(!,!) + C2

f

(!,�!). Using the definition,

C
f

(!,�!) =
T

2⇡

Z 1

�1
h

T

(�� !) · h
T

(� + !) f(�) d�,

and Lemma 3.6.1 one can easily show that C
f

(!,�!) = O( 1

T

) uniformly on any set of

! bounded away from zero. c) then follows from (3.6.1) . As IE{[ I
T

(!)� f(!) ]2} =

{IEI
T

(!)� f(!)}2 + \V(I
T

(!)) , d) follows from a) and c). A direct derivation of e) is

possible using the arguments in §6 of Jenkins & Watts (1968), or altering the discrete

time arguments of Brillinger (1975), §5.2. Note also the comments of Yaglom (1987b),

p86. As an alternative one can work with the kernels,

�
T

(x) =
T
p

2⇡

h
T

(x� !/T ) · h
T

(x + !/T )

h
T

(2!/T )
for each fixed !

From a), c) and Result 3.5.2, \V(J
R

(!)) = 1

2

f(!) + O( 1

T

) and \V(J
I

(!)) = 1

2

f(!) +

O( 1

T

) so that I
T

(!) = J2

R

(!) + J2

I

(!) is asymptotically the sum of two independent

1

2

f(!)�2

1

random variables, and f) follows.
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Note that a) and b) are indicative that additional local smoothness conditions

on f(x) , for example f (r)(x) 2 Lip(↵) , or equivalently global conditions on B(x) ,

for example xrB(x) 2 L1 , will not improve the order of approximation.

It is possible to produce most of these results directly from the proofs of the

analogous statements in discrete time-series as given in, for example, Brillinger (1975),

Theorems 5.2.2, 5.2.4 & 5.2.5 or Priestley (1981), §6.3.2.

The implications of these results are usually stated as:

• I
T

(!) is asymptotically unbiased for f(!) .

• Asymptotically, I
T

(!) behaves like an independent process in the continuous

parameter ! , because e) and f) say that, asymptotically, I
T

(!) forms an un-

correlated process with each member distributed as a multiple of a �2

2

.

• From results d) and f), asymptotically, the random fluctuations of I
T

(!) about

a mean near f(!) have about the same magnitude as f(!) itself, even for large

values of T .

Hence I
T

(!) itself is a poor estimate for f(!) . The standard method of im-

proving the performance of I
T

(!) is to exploit the approximate independence and

use a smoothed version:

cf
T

(!) =
Z 1

�1
W

T

(! � �) · I
T

(�) d�

where W
T

(!) is a weight function emphasizing values of � near zero. The asymptotic

properties of such estimates have been extensively studied and it has been shown that

they provide adequate estimates of f(!) as T ! 1 . See for example the excellent

review paper Dzhaparidze & Yaglom (1983), Bentkus & Rudzkis (1982) and the

references therein.

As we have see in the previous sections, the situation for T ⇣ T
c

is much less

satisfactory.
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3.9.1 The behavior of I
T

(�) for the Ornstein–Uhlenbeck process as T !1

In this section we compare the exact expressions (3.7.1) as T ! 1 to the

general results in the previous section. It is interesting to see that the Ornstein–

Uhlenbeck process achieves the bounds in the results. We can write

IEI
T

(�) = f(�)·

(

1 +
✓
2

T
(1�

2

(1 + ✓2

2

�2)
)(1� e�T/✓2 cos(T�))�

2✓2

2

e�T/✓2� sin(T�)

T (1 + ✓2

2

�2)

)

= f(�)·

(

1 +
✓
2

T
(1�

2

(1 + ✓2

2

�2)
)

)

+ O(e�T/✓2)

as T !1 . This verifies Result 3.9.1 a). Now the variance,

\V(I
T

(�)) = f 2(�)·

(

1 +
2✓

2

T
(1�

2

(1 + ✓2

2

�2)
)

)

+ O(
1

T 2

)

as T !1 . This verifies c) and d). We can also easily verify b) and e) based on the

Result 3.8.1.

3.10 Summary and conclusions

In this chapter we consider inference for the covariance structure of a stochastic

process on the basis of observing the process continuously on a finite segment of

a single realization. The objective is to approximate the inference based on discrete

observation on the same segment. It is shown that under the condition that the range

of correlation is comparable to the length of the segment, in a sense made precise, the

approximation is appropriate. In the early sections maximum likelihood estimation

for the Ornstein–Uhlenbeck process is used to illustrate the point. In §3.5 through

§3.6 the empirical spectral density process is considered and exact expressions for

the covariance structure are given. In §3.7 an explicit expression is given for the

Ornstein–Uhlenbeck process.

In the §3.8 the focus is on the estimation of the local behavior of the random

field based on the empirical spectral density alone. It is shown that the local behavior
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apparently can not be recovered on the basis of either the empirical spectral density

or the empirical covariance function alone.

In §3.9 we derive some results describing the behavior of the empirical spectral

density process as T !1. This behavior is contrasted to the behavior when T ⇣ T
c

.



CHAPTER 4

A BAYESIAN ANALYSIS OF KRIGING

4.1 Introduction

In this chapter we will view the kriging procedure for the prediction of Gaussian

random fields within the Bayesian framework. The objective is to monitor the per-

formance of kriging when the underlying model is misspecified. Particular attention

is paid to the treatment of parameters in the covariance structure and their e↵ect on

the quality, both actual and perceived, of the prediction.

The use of the notion of subjective probability can be viewed as a convenient

formal platform for inference. Indeed, if the random field arises as a manifestation of

the statistician’s uncertainty, this approach is most natural.

Bayesian analyses of kriging procedures are relatively new. Except for the work

of Omre (1987), Omre & Halvarsen (1989) and Woodbury (1989) there appears to be

no work from within the Geostatistical community using the Bayesian perspective.

Omre & Halvarsen (1989) describe a Bayesian approach to predicting the depth of

geologic horizons based on seismic reflection times. They utilize prior information

about the mean function to bridge the gap between simple kriging, that is assuming

the mean function is known, and universal kriging, that is assuming only that the

mean is of the regression type1. Of course, the situation is a direct extension of stan-

dard Bayesian work in linear models where, for example, Box & Tiao (1973) §2.7 and

1See §1.2

124
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Zellner (1971) §7 are textbook references. Both sketch results using natural vague

prior distributions for the parameters. Much of the work in Bayesian Time–series fo-

cuses on the estimation of the parameters of particular ARMA models. Zellner (1971)

§5 derives the predictive distribution of a future observation from a not necessarily

stationary AR(1) process. Broemeling (1985) gives a discussion of standard regres-

sion and mixed models. His §5 extends Zellner’s (1971) work by using the proper

conjugate prior distributions for autoregressive series. He does not extend the work

on prediction. All these analyses assume that the ARMA orders are known. Lahi↵

(1984) considers prediction and estimation for the AR(1) model with known mean

and variance. Her §1.3 provides a convenient summary of previous work. Also of

interest is the work of Harrison & Stevens (1976) and West & Harrison (1986) on

forecasting using dynamic fully Bayesian models. The last few years have seen an

explosion of work in Bayesian time–series, especially on state space approaches using

the Kalman filter. For a summary consider Geol & Zellner (1986). What is novel

about this chapter is the general treatment of parameters in the covariance structure

other than location and scale.

A related non–Bayesian approach to prediction is that of Hinkley (1979) and

Butler (1986) based on “predictive” likelihoods. Their approach looks at a component

of the full likelihood that can be used to infer a value to be predicted without prior

knowledge of the parameters. The inference tends to be close to that produced using

Je↵reys’s non-informative prior for the parameters.

Note that the underlying kriging procedure is motivated by sampling consider-

ations, producing point predictions and associated measures of uncertainty for those

predictions both based on sampling distributions. However, kriging, when the mean

is of known regression form, can be given a Bayesian interpretation. This will be

commented on in the next section.
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4.2 Traditional kriging: covariance parameters assumed known

The notation defined here will be used throughout the chapter and is consistent

with the notation in §1.2. Suppose Z(x) is a real–valued stationary Gaussian random

field on R with mean

IEZ(x) = �0f(x), (4.2.1)

where f(x) = (f1(x), . . . , f
q

(x))0 is a known vector function, � is a vector of unknown

regression coe�cients, and covariance function

Cov(Z(x), Z(x0)) = ↵K
✓

(x, x0) for x, x0 2 R

where ↵ > 0 is a scale parameter, ✓ 2 ⇥ is a q⇥1 vector of structural parameters and

⇥ is an open set in IRp . The division is purely formal as ✓ may also determine aspects

of scale. We observe, from a single realization, {Z(x1), . . . , Z(x
n

)} = Z 0 and, as usual,

will focus on the prediction of Z(x0) . As defined in §1.2, the kriging predictor is the

best linear unbiased predictor (BLUP) of the form bZ
✓

(x0) =
P

N

i=1 �
i

(✓)Z(x
i

) , that

is, the unbiased linear combination of the observations that minimizes the variance

of the prediction error. It is straightforward to show that the corresponding weight

vector �(✓) defining bZ
✓

(x0) is given by

�(✓) = K
✓

�1k0 + K
✓

�1F (F 0K
✓

�1F )�1b
✓

, (4.2.2)

where
F = {f

j

(x
i

)}
n⇥q

,

k0 = {K
✓

(x0, xi

)}
n⇥1,

K
✓

= {K
✓

(x
i

, x
j

)}
n⇥n

,

b
✓

= f(x0)� F 0K
✓

�1k0.

The quality of the prediction is determined by the distribution of the prediction

error, e(x0) = Z(x0)� bZ
✓

(x0) . Note that the prediction error does not depend on ↵
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or � . Under our Gaussian model, the conditional distribution of e(x0) given ↵, �, ✓

and Z is

P (e(x0) | ↵, �, ✓, Z) ⇠ N( b0
✓

(� � �̂(✓)), ↵{K
✓

(x0, x0)� k0
✓

K�1
✓

k
✓

} )

where �̂(✓) = (F 0K
✓

�1F )�1F 0K
✓

�1Z and N(·, ·) denotes the Gaussian distribution.

The usual sampling distribution for e(x0) follows if we condition on ↵ , ✓ and Z

alone:

P (e(x0) | ↵, ✓, Z) ⇠ N( 0, ↵V
✓

) (4.2.3)

where V
✓

= K(x0, x0)�k0
✓

K�1
✓

k
✓

+b0
✓

(F 0K
✓

�1F )�1b
✓

and ↵V
✓

is the usual prediction

variance.

If � were known we would do better to use the conditional expectation of Z(x0)

given Z and under our model

IE(Z(x0) | ↵, �, ✓, Z) = k0
✓

K�1
✓

Z + b0
✓

�

with prediction error distribution

P (Z(x0)� IE(Z(x0) | ↵, �, ✓, Z) | ↵, �, ✓, Z) ⇠ N( 0, ↵{K
✓

(x0, x0)� k0
✓

K�1
✓

k
✓

} )

(4.2.4)

This is also the approach taken by simple kriging. From this perspective, the loss

due to uncertainty about � is the conditional bias, determined by the deviation of

�̂(✓) from � . The optimal predictor corrects for this bias by subtracting b0
✓

(�� �̂(✓))

from the kriging predictor, a term clearly dependent on � .

The log–likelihood of ✓,↵ and � having observed Z is, up to an additive

constant,

L(↵, �, ✓; Z) = �

n

2
ln(↵)�

1

2
ln(|K

✓

|)�
1

2↵
(Z � F�)0K�1

✓

(Z � F�)

= �

n

2
ln(↵)�

1

2
ln(|K

✓

|)�
1

2↵
{⌫S2

✓

+ (� � �̂(✓))0(F 0K
✓

�1F )(� � �̂(✓)}

(4.2.5)
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where S2
✓

= 1
⌫

(Z�F �̂(✓))0K�1
✓

(Z�F �̂(✓)), ⌫ = n� q and the dependencies upon n

have been suppressed. For fixed ✓ , this is maximized over � by b�(✓) , the generalized

least squares estimator and the profile log–likelihood

L
pm

(↵, ✓; Z) ⌘ L(↵, ✓, b�(✓); Z)

is maximized by b✓ if and only if b✓ maximizes (4.2.5), and in this case the maximum

likelihood estimate of � is b�(b✓) . For fixed ✓ , S2
✓

is the natural estimate of ↵ and

⌫ represents the degrees of freedom.

Traditionally it is assumed that the covariance function is known exactly and

the investigator has little knowledge about � prior to analyzing the data. The under-

lying kriging approach usually presumes ignorance about � and the unrelatedness

of � to the behavior of the covariance function. This philosophy will be followed

throughout the chapter. Under these assumptions, the likelihood is data–translated

and an appropriate prior distribution has P (� | ↵, ✓) locally uniform. Using (4.2.5)

the posterior distribution of � is

P (� | ↵, ✓, Z) ⇠ N
q

( b�(✓), ↵(F 0K
✓

�1F )�1) (4.2.6)

The posterior distribution of the prediction error is then

P (e(x0) | ↵, ✓, Z) /
Z

�

P (e(x0) | ↵, �, ✓, Z)P (� | ↵, ✓, Z)d�

that is, by direct calculation,

P (e(x0) | ↵, ✓, Z) ⇠ N( 0, ↵V
✓

) (4.2.7)

the same as the sampling distribution (4.2.3). This distribution forms the basis for

all inferential statements about the prediction error. Hence, except for the usual

di↵erences in interpretation, we end up with the same analysis as the traditional
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approach. This comparison may be loosely stated as: ordinary kriging is ‘Bayesian’

with the non-informative prior for the mean parameter. We note that even if (↵, ✓)

are known there is still vestigial uncertainty about Z(x0).

In practice, one does not know ↵ and ✓ and estimates them by either likelihood

methods or various ad hoc methods. Usually the predictor and the prediction error

are themselves estimated by “plugging–in” the estimates into (4.2.2) and (4.2.3). The

statistical properties of such estimates are considered in §4.6 and in §3.7.

4.3 Kriging when the scale parameter is unknown

In the section the assumption that the covariance function is known exactly

is relaxed slightly by assuming that the scale factor ↵ is unknown, as well as the

regression parameter � . As � is a location parameter we expect that our prior

opinions about � bear no relationship to those about ↵ and a priori might expect

↵ and � to be independent, leading to the use of Je↵reys’s prior,

P (↵, � | ✓) / 1/↵

Their joint posterior distribution is then

P (↵, � | ✓, Z) /

exp
⇢
�

n + 1

2
ln↵�

1

2
ln(|K

✓

|)�
1

2↵
{⌫S2

✓

+ (� � �̂(✓))0(F 0K
✓

�1F )(� � �̂(✓))}
�

(4.3.1)

This can be factored as

P (↵, � | ✓, Z) / P (� | ↵, �, Z) · P (↵ | ✓, Z)

where from (4.3.1), P (↵ | ✓, Z) is ⌫S2
✓

��2
⌫

, a scaled inverted chi-squared distribution

and,

P (� | ↵, ✓, Z) ⇠ N
q

( b�(✓), ↵(F 0K
✓

�1F )�1) (4.3.2)
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from (4.2.6). The posterior distribution of the prediction error is then

P (e(x0) | ✓, Z) /
Z
1

0
P (e(x0) | ↵, ✓, Z)P (↵ | ✓, Z)d↵,

which is well known to be a univariate t distribution on ⌫ degrees of freedom. That

is,

P (e(x0) | ✓, Z) ⇠ t1( 0, S2
✓

V
✓

; ⌫) (4.3.3)

Comparing (4.3.3) with (4.2.7) we see that the ignorance about the scale parameter

↵ expresses it self as the di↵erence between a t distribution on ⌫ degrees of freedom

using the natural estimate of ↵V
✓

, S2
✓

V
✓

and a Gaussian distribution with variance

↵V
✓

. The ratio of variances is approximately ⌫

⌫�2 , a small di↵erence if ⌫ is moderately

large. This indicates that ignorance about the scale parameter alone will not change

the posterior distribution of the prediction error very much.

4.4 Real kriging: covariance parameters are unknown

In this section we allow the covariance function to be unknown, but still a

member of the parametric class ⇥ . This situation is much more realistic than both

the traditional and scale cases dealt with above. If ✓ is known so that only the

location parameter � and the scale parameter ↵ are uncertain then we are in a

standard regression setting. The distinction between the regression setting and the

spatial random field setting is the uncertainty in the structural parameter ✓. While

the restriction to a parametric class is a significant assumption, it still allows great

latitude. In general it will no longer be possible to write down meaningful closed

form expressions for the posterior distributions, and the use of numerical methods is

required.

Consider the covariance function on IR ,

K
E

(|x� y|; ↵, ✓) = ↵✓e�|x�y|/✓
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where ↵ > 0 , ✓ > 0 , x, y 2 IR . This parameterization is chosen to emphasize that

we wish to estimate the behavior at the origin well. The “slope”, ↵ , is the slope at

the origin of the function, and controls the smoothness of the implied random field.

The “range”, ✓ , changes the rate of decrease of the correlation with distance. The

variance of the random field is ↵✓ . For this example one might a priori expect ✓ to

be independent of ↵ and � . In general, it is helpful to choose the parameterization

so that it is appropriate to assume independence between ↵ and ✓ . Additional

comments on the choice of distributions prior to the data are made in §4.8.

If we had specific information on the form of K
✓

then we could determine

Je↵reys’s prior based on I . The emphasis here is on situations where the information

for each component of ✓ is not necessarily increasing to infinity, so that the use of

Je↵reys’s prior is less appropriate. Partly for convenience, the form of the prior used

here will be

P (↵, �, ✓) / P (✓)/↵

Using (4.2.5) the marginal posterior distribution of ✓ can be shown to be

P (✓ | Z) / P (✓) · |K
✓

|

�

1
2
|F 0K

✓

�1F |

�

1
2 (⌫S2

✓

)�⌫/2 (4.4.1)

Note that P (✓ | � = �̂, Z) / P (✓) · |K
✓

|

�

1
2 (⌫S2

✓

)�n/2 . Note also from (4.3.2) that

P (� | ✓, Z) is the appropriate multivariate t distribution while P (� | Z) will in

general not have a simple form.

The posterior distribution of the prediction error is

P (e(x0) | Z) /
Z

⇥
P (e(x0) | ✓, Z) · P (✓ | Z)d✓ (4.4.2)

where the integrand is given by (4.3.3) and (4.4.1). As the dependence of K
✓

on ✓ is

not specified this expression can not be further simplified and further exploration will

in general require numerical computation. If prior information is available it can be
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directly incorporated into (4.4.1), although additional numerical integration maybe

necessary if prior dependencies among (↵, �, ✓) are envisaged.

4.5 Making multiple predictions

Within this paradigm the extension to multiple predictions is straightforward.

Suppose we wish to predict at y1, . . . , ym

2 R . Let Z0 = {Z(y1), . . . , Z(y
m

)}0 and

e0 = {e(y1), . . . , e(ym

)}0 then

0

@
Z
�

Z0

1

A
⇠ N

n+m

0

@
F�
�

F̃�

1

A , ↵

0

@
K

✓

| H
✓

� · �

H 0

✓

| J
✓

1

A
�

Based on the distribution it is possible to derive the following distributions:

P (e0 | ↵, ✓, Z) ⇠ N
m

✓
0, ↵{J

✓

�H 0

✓

K
✓

�1H
✓

+ B0

✓

(F 0K
✓

�1F )�1B
✓

}

◆

P (e0 | ✓, Z) ⇠ t
m

✓
0, S2

✓

{J
✓

�H 0

✓

K
✓

�1H
✓

+ B0

✓

(F 0K
✓

�1F )�1B
✓

}

◆

P (e0 | Z) =
Z

⇥
P (e0) | ✓, Z)P (✓ | Z)d✓

where B
✓

= F̃ 0

�H 0

✓

K
✓

�1H
✓

For the first two distributions, both the marginal and conditional posterior dis-

tributions of subsets are multivariate Gaussian or t with the appropriate covariance

matrices. This behavior is extremely useful in practice where the prediction locations

are usually many and of a systematic nature. If, for example, we construct a predictor

of the form WZ0 for, say, a set of m area means, where W is an m ⇥ p matrix

(m  p), then the posterior distribution of WZ0 is again multivariate Gaussian (or

t ) with the natural location and scale parameters. An additional practical advantage

is the direct availability of posterior probability regions. No such convenient analytic

results exist for the case where the structural covariance parameters are unknown.
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4.6 Actual performance of plug–in estimates

The results given in §4.2 are with respect to the perceived distributions; that is

the distributions assuming the plug-in model is the true model. Of greater relevance is

the posterior distributions of the predictor from the plug-in model under the Bayesian

model.

Suppose we assume that the parameters of the covariance structure are (↵̃, ✓̃).

These may be arrived at by any procedure, although the usual methods are maximum

likelihood, weighted least squares or derived from empirical correlation functions. The

perceived posterior distribution of the prediction error, ẽ(x0) = Z(x0) � bZ
✓̃

(x0) , is

then

P (ẽ(x0) | ↵̃, ✓̃, Z) ⇠ N( 0, ↵̃V
✓̃

) (4.6.1)

By perceived posterior distribution we mean the distribution that an investigator

would use as a basis for inference if she had a degenerate prior for (↵, ✓) at (↵̃, ✓̃).

Now, for a given ✓, ẽ(x0) is independent of ↵̃ so that,

P (ẽ(x0) | ✓, Z) ⇠ t1( bZ
✓

(x0)� bZ
✓̃

(x0), S2
✓

V
✓̃

; ⌫ ) (4.6.2)

Observe that the specification of ↵̃ acts only as a multiplier on the variance of the

perceived distribution, and that the actual distribution of the predictor is indepen-

dent of this choice. By actual posterior distribution we mean the posterior distribution

of the quantity Z(x0) � bZ
✓̃

(x0) given Z and with respect to the full posterior for

(↵, �, ✓). We note that bZ
✓̃

(x0) is a constant. Under the assumption that the covari-

ance class is correctly specified, this posterior provides a basis for valid inference for

the plug-in prediction error ẽ(x0).

Thus the actual posterior distribution is

P (ẽ(x0) | Z) =
Z

⇥
P (ẽ(x0) | ✓, Z)P (✓ | Z)d✓ (4.6.3)
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where P (✓ | Z) is the full posterior for ✓ and given is in (4.4.1). This expression

is a clear expression of the e↵ect of the plug–in estimates. The uncertainty in ↵

manifests itself in the conversion from a Gaussian to a t distribution. The uncertainty

in ✓ manifests itself through the weighting of each of these t distributions by the

posterior for ✓. Depending on the influence of ✓ on the spread and location of the

t distribution, the actual posterior might be wider or narrower than the perceived

posterior. Misspecification leads also to bias. Typically the actual distribution will

have no simple analytic form and must be determined numerically.

It should be noted that in practice the actual posterior would not be used as a

basis for inference. The Bayesian approach would be to use the complete posterior

of the prediction error. The traditional kriging approach would be to use the per-

ceived posterior of the prediction error. The actual posterior of the prediction error

is used to evaluate the adequacy of the perceived posterior for inference when the

plug-in predictor is used. We would like the perceived posterior to be closer to the

actual posterior than to the complete posterior. The di↵erence between the perceived

and complete posteriors represents the di↵erence in inference between the traditional

kriging approach and the fully Bayesian approach. For this reason it is inappropriate

to compare the actual posterior to the complete posterior.

4.7 Application to two dimensional random fields on a grid

In this section the theory of the previous sections is applied to kriging where the

continuous field is observed on a planar grid set over the unit square. Three covariance

classes are investigated, the Squared Exponential, Spherical and Matérn. The first

two are chosen because they have been shown to exhibit unusual behavior both in

terms of prediction and the estimation of the covariance structure. The Bayesian

paradigm provides an additional perspective on this behavior. The rich Matérn class
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is introduced for comparison and as a surrogate for the Spherical class when the

underlying field is a member of the Spherical class.

For focus the fields in this section are mean-zero, isotropic and Gaussian. In our

examples 36 observations will be taken on the 6⇥ 6 grid on the unit square. Larger

8⇥ 8 grids were also used, providing results substantially similar to those reported.

4.7.1 The Spherical covariance structure

The Spherical covariance class has been consider in §2.6. It is commonly used

for geological and hydrological applications in IR2 . The isotropic covariance has the

general form:

K
✓

(x) =

(
2
3 �

|x|

✓

+ 1
3{

|x|

✓

}

3 if |x| < ✓
0 if |x| � ✓

where ✓ is a range parameter defining the limit of direct correlation. It corresponds

to a field that is mean-square continuous, but not mean–square di↵erentiable. As

we have seen in §2.6 the corresponding likelihood surface exists and has a continuous

derivative. However, the second derivatives of the likelihood are discontinuous leading

to multiple modes.

Parameter values were chosen to be both realistic and interesting. The range

was set to ✓ = 0.6 and ↵ , proportional to the variance, was set to 1.5. If the range is

set below 1
5 or above 1 multiple modes will not occur. Realizations were generated

from this model and the profile likelihood surfaces over (↵, ✓) were constructed. If

the likelihood surfaces exhibit multiple modes then the question arises about how

both estimation and prediction should be done.

Consider first unimodal likelihoods, so that b✓, the maximum likelihood estimate

for ✓ can be defined by standard numerical techniques.

Traditional kriging uses b✓ as a surrogate for ✓ and expresses the uncertainty

in the prediction by the perceived posterior error distribution (4.6.1) with (↵̃, ✓̃) =
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(b↵, b✓). Of course any alternative plug-in estimation procedure could be used. The

actual posterior predictive distribution of this predictor is given by (4.6.3) and the

complete posterior predictive distribution is given by (4.4.2).

An example is given in Figure 43. The location the field is predicted at was

arbitrarily chosen within the central grid square to be (0.53, 0.58) . The maximum

likelihood estimate is (b↵, b✓) = (1.32, 0.5) . The above three posterior densities are

represented. As can be seen they are very similar in shape with a standard deviation

of about 0.6 . The perceived posterior is always a centered Gaussian while the ac-

tual and complete posteriors are mixtures of non-central and central t-distributions

respectively. The complete posterior reflects the full uncertainty in the covariance

structure and will be regarded here as the correct reference for inference. It is always

symmetric about zero. The perceived posterior is based on an incorrect model, and

can be wider or narrower than the complete posterior depending on the plug-in esti-

mates used. In general it tends to underestimate the uncertainty by a small amount.

The actual posterior of the plug-in predictor is in general symmetric about a non-

centered value, indicating that the plug-in predictor is slightly biased and slightly

underestimates the uncertainty. Figure 43 is a good representation of the absolute

shapes of the posteriors, but does allow accurate relative comparisons of the densities.

Figure 44 represents the ratios of the perceived and actual posteriors to the complete

posterior. The vertical axis has a logarithmic scale. Notice that the 99% probability

interval has a width of about 3 units, and that values outside of 2 have negligible

weight. Over this interval the ratio is close to one for both posteriors. In the tails

the perceived posterior thins rapidly. Probability regions based on these posteriors

will be very similar.

Another realization of this random field is given in Figure 45. This was chosen

as the worst case of 10 . The actual posterior indicates that the plug-in predictor has
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a bias of about 0.2 units and is slightly thicker in the tails.

Consider now realizations that have likelihoods with multiple modes, so that

the determination of the maxima is problematical. An example of such a likelihood

is given in Figure 46. The natural slope parameterization used is that of §2.6 so

that Slope is ↵/✓ . Note that the global maximum likelihood estimate of (2.75, 0.5)

corresponding to (b↵, b✓) = (1.44, 0.5) is close to the generating value (1.5, 0.6) , while

a substantial local maximum exists with an inflated range. This behavior in the

likelihood is typical. There can be 3 or more local maxima each with a larger range

and similar slopes. A search routine starting with a long range might converge to

the local maxima instead of the global maxima. Hence the estimate of slope is about

right, while the range could easily be far from the global maxima.

The behavior of the kriging predictor based on the global maxima will be similar

to that of the unimodal likelihood discussed above. We will focus on the local maxima

at (2.75, 1) corresponding to (b↵, b✓) = (2.75, 1). Figure 47 presents the perceived,

actual and complete posteriors. We see that the plug-in predictor does not have

appreciable bias, but the perceived posterior under-represents its uncertainty. This

can be seen better in Figure 48 representing the relative comparisons. We see that

this choice of the range parameter does not hurt performance very much. As an

extreme example consider Figure 49 reporting the posteriors when the range is set to

3 corresponding to (b↵, b✓) = (8.28, 3) . The perceived and actual posteriors are almost

identical to those based on a range of 1 . Hence even if an extreme mode exists it

will not alter the inference very much.

In summary, the actual and perceived performance of the plug-in kriging pre-

dictor is insensitive to the specification of the range as long as the slope parameter is

reasonable. Poor specification of the slope will have little e↵ect on the actual poste-

rior, but will have a multiplicative e↵ect on the variance of the perceived posterior.
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This is nice because it is the slope parameter that can be determined well while the

range parameter is di�cult to determine.

4.7.2 The Squared Exponential covariance structure

In this section the analysis of the previous section is repeated using random

fields based on the Squared Exponential covariance class. This class is often used in

applications although the rationale for it is weak. The isotropic covariance has the

general form:

K
✓

(x) = e�(x/✓)2

where ✓ is a range parameter. Unfortunately this class has also acquired the designa-

tion “Gaussian covariance class”, which is neither historically correct nor appropriate.

It corresponds to a field with analytic realizations, a very severe restriction. The cor-

responding likelihood surface exists and has a continuous second derivative.

The random field used in the examples has variance ↵ = 0.75 and range ✓ = 0.3

in line with the values chosen for the Spherical example. Realizations were generated

from this model and the profile likelihood surfaces over (↵, ✓) were constructed. All

the likelihood surfaces observed were unimodal and the maximum likelihood esti-

mate was found by a numerical search routine. The location to be predicted at was

arbitrarily perturbed to (0.44, 0.43) . Posteriors for a typical realization are given in

Figure 50. The maximum likelihood estimate was (b↵, b✓) = (0.62, 0.31). Their shapes

are similar with the perceived having much narrower tails than the complete pos-

terior. In general the perceived posterior varies and often has tails longer than the

complete posterior. The actual posterior of the predictor indicates that the plug-in

predictor based on the maximum likelihood estimates has a small bias and the per-

ceived posterior is too thin in the tails. Figure 51 represents a relative comparison

for the same realization.
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Another realization of this random field is given in Figure 52. This was chosen

as the worst case of 10 . The actual posterior indicates that the plug-in predictor has

a bias of 0.02 units, while the perceived is again much thinner in the tails.

In general the perceived posterior from the Squared Exponential covariance

class is close to the complete posterior, while the actual posterior indicates that the

predictor is slightly biased. The predictions themselves tend to be much sharper

than for the Spherical model because this model assumes that the realizations are

very smooth.

4.7.3 The e↵ect of misspecifying the Spherical class by the Matérn class

Suppose we are given data on a grid from a random field with a covariance from

the Spherical class. The Spherical model is atypical and unless we had good reason

to believe that the data came from this class we might try a model from an omnibus

class such as the Matérn class of §1.5.4. We would then proceed to krige based on

this incorrect model. What is the e↵ect of misspecifying the Spherical class by the

Matérn or the Squared Exponential class?

Under the alternative class we will consider the plug-in predictor using param-

eters estimated using maximum likelihood. We can then construct the perceived

posterior distribution of the prediction error under the alternative model and the

posterior distribution under the correct Spherical model. We will compare these dis-

tributions to the posteriors using the correct Spherical model for both estimation and

prediction.

Figure 53 is a representative example of a realization from the same field as used

above. The perceived, actual and complete posteriors under the Spherical model are

reported. Each represents di↵erent stages of enlightenment about the underlying

field. The perceived and complete posteriors under the Matérn model have been
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added. We see that the complete posterior under the Matérn model is close to the

complete model under the Spherical model. That is, the e↵ect of misspecification is

small if a fully Bayesian procedure is followed.

The perceived posterior based on the Matérn maximum likelihood estimates

plugged in to the kriging equation is substantially narrower than the complete pos-

terior, and in particular provides much worse inference than the perceived posterior

under the Spherical model. In this example the perceived posterior leads to a non-

conservative inference, while in others the perceived posterior leads to a conservative

inference. The marginal posterior distribution for the smoothness parameter of the

Matérn covariance is extremely right skewed, indicating the smoothness parameter

itself is not well determined from the 36 values. Given that the generating Spherical

field is not di↵erentiable we might expect that the bulk of the posterior weight for the

smoothness parameter on values less than two while in practice values greater than

two receive non-negligible weight. As the number of values in the field increases this

deviation decreases slowly. The actual performance of the Matérn plug-in predictor

is similar to the actual performance of the Spherical plug-in predictor, although it

indicates that the Matérn predictor has a bias of about 0.2 units.

If the maximum likelihood estimate of the smoothness parameter of the Matérn

model is large, then the quality of prediction can be quite bad. An example is given

in Figure 53, where the maximum likelihood estimate of the smoothness parameter

is 5.05 . The predictor is optimal under a model with four times di↵erentiable real-

izations while the data is generated from a model with non-di↵erentiable realizations.

Hence the perceived posterior under this smooth model tends to be narrower than

the posterior under the correct Spherical model. The complete posterior makes an

adjustment towards the correct posterior, but is still inadequate.

The Matérn class covers a wide range of behaviors, and so we might expect it
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will do well in approximating the Spherical. An alternative model that can be tested

is the squared Exponential. The above procedure can be repeated with the Squared

Exponential class replacing the Matérn class. The posteriors are given in Figure 54.

The same realization from the Spherical random field is analyzed. The perceived

posterior is even more non-conservative than for the Matérn class. In addition the

complete posterior under the Squared Exponential model is very non-conservative,

so that under the Squared Exponential model we believe the predictions to be much

better than they really are. This is a general pattern where the perceived posterior

is extremely non-conservative and the complete posterior only goes part way toward

the complete posterior under the Spherical model. The reason would seem to be that

the Squared Exponential model can only view predictors as being very precise. The

Matérn class can view predictors as having a wide range of precision. The particular

estimated Matérn predictor is viewed as very narrow because it is optimal under a

very smooth model. However the complete posterior under the Matérn model takes

into account a wide range of smoothness and is usually able to compensate.

4.8 Issues in the choice of distributions prior to the data

The expression of prior knowledge about the covariance structures is a fun-

damental issue that requires a balance between generality and practicality. In this

section we make some guidelines on how prior distributions should be chosen for

spatial random fields. The covariance structures are almost exclusively viewed from

within a parametric framework.

If the investigator has real prior knowledge about the parameters individually

and their relationships then the issue is the expression of that knowledge in terms of

distributions. Given a joint prior distribution for (↵, �, ✓) one would use (4.2.5) and

(4.2.4) to derive the posterior distributions in the same fashion as in §4.4.
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It is di�cult to incorporate geological knowledge directly into kriging studies

as this knowledge usually takes the form of location of fault lines, changes in the

composition of rock or consistency of mineralization. The parameters in the covari-

ance model should correspond to easily interpretable quantities. For example one way

to incorporate the location of fault lines and rock composition measurements is to

use regression covariates and have prior distributions for their coe�cients. Similarly

the extent of dependence (range of the covariance model), existence of measurement

error and micro-structures (size of the nugget e↵ect term) and smoothness of the

random field (degree of di↵erentiability implied by the covariance function) can all

be included. This incorporation is very situation dependent.

For spatial random fields it is usual to regard the mean parameter � indepen-

dently of the covariance parameters ↵ and ✓ . In the spirit of kriging the usual

marginal prior for � can be taken as non-informative, which almost always means

uniform and improper. If the covariance structure has ✓ degenerate then one could

reasonably express a prior knowledge about (�, ↵) via the usual Gaussian-Gamma

conjugate prior from generalized least squares.

Fisher’s Information matrix for these parameters is I = diag{I
�

, I
↵✓

} where
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In the general case one should choose a parameterization in which ↵ and ✓

can a priori be regarded as approximately independent, so that one could use the

conjugate prior for (�, ↵) and a marginal prior for ✓ dependent on the particular co-

variance structure. Consider, for example, the Matérn class where ✓ is the parameter

controlling the smoothness of the random field. One might believe the random field is

smoother than Brownian motion, but not smoother than twice integrated Brownian
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motion and so consider a prior for ✓ with support from 0.5 to 2.5 .

In the vast majority of situations the choice of prior distributions is extremely

di�cult because the investigator is unskilled in translating his knowledge into statis-

tically meaningful distributions. It is therefore most important to check the inference

for sensitivity to the prior distributions chosen. If the inference is sensitive to the

particular prior distributions chosen then unless the investigator is confident that the

prior is correctly calibrated the value of the final inference itself should be discounted.

If one has previous data then by exploring the shape of the likelihood surfaces under

reparameterizations one can develop prior distributions for the current data.

One di�culty in specifying a prior distribution for (�, ↵, ✓) is that it is unob-

servable. However we can observe the random field, in principle, even at the location

to be predicted, x0 . We are more comfortable expressing prior knowledge directly

in terms of the potentially observable Z(x0) than the parameters themselves. An

intriguing approach to the selection of prior distributions is the so called “device of

imaginary results” considered in Good(1965), Winkler(1980) and Stigler (1982). The

distribution of Z(x0) given (�, ↵, ✓) is

P (Z(x0)) =
Z

⇥

Z
1

0

Z

R

q

P (Z(x0) | �, ↵, ✓)P (�, ↵, ✓) d�d↵d✓

Hence given that our prior knowledge about Z(x0) can be expressed as P (Z(x0))

we can then indirectly evaluate priors for (�, ↵, ✓), P (�, ↵, ✓), by solving this integral

equation. This will be di�cult to achieve in practice, but analysis might suggest

families of priors to be explored by other methods. Interestingly, Stigler (1982,§5)

suggests that this is the approach that Thomas Bayes would have applied rather than

a direct appeal to the principle of “insu�cient reason” as previous commentators had

inferred.
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4.9 Summary and conclusion

The kriging procedure is motivated because it produces optimal predictions

when the covariance structure of the random field is known. If the covariance structure

is not known and needs to be estimated then the primary motivation for kriging is in

doubt. In this chapter we have seen that the Bayesian paradigm provides a framework

in which to analyse the performance of the estimated kriging predictor.

As important as the quality of the predictor itself is the quality of the mea-

sure of uncertainty attached to that predictor. Many prediction procedures provide

reasonable predictions, but supply dubious estimates of uncertainty if they provide

estimates at all. In this chapter comparisons between perceived and actual measures

of uncertainty were made.

The results of §4.7.1 indicate that the use of kriging predictors based on maxi-

mum likelihood covariance structures for the Spherical class usually produces accurate

inferences, both actual and perceived. The perceived posterior is insensitive to the

specification of the range parameter, but not to the slope parameter. The e↵ect of

inadequate specification manifests itself by bias in the plug-in predictor that is not

reflected in the perceived posterior.

The results of §4.7.3 indicate that the Matérn class provides adequate infer-

ence when used as a surrogate for the Spherical class, while the Squared Exponential

class produces inference with unwarranted precision. For both surrogates the per-

ceived inference was much too precise. The maximum likelihood estimate, under the

Matérn model, tended to choose a model that was much smoother than the under-

lying Spherical field. The marginal posterior for the smoothness parameter was very

flat and the complete predictive posterior produces close to the correct inference.
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The Squared Exponential model was excessively smooth and tended to overstate

the precision of the predictors.



CHAPTER 5

A LIKELIHOOD APPROACH TO THE ANALYSIS

OF DAVIS’ TOPOGRAPHIC DATA

5.1 Introduction

In this chapter we analyse data originally from Davis (1973) that has recently

attracted a lot of interest. The data are topological elevations over a small area on

the northern side of a hill. The data were measure by a surveying class, using a plane

table and alidade. Davis was interested in the analysis of maps and used the survey to

produce contours of the region. Our purpose is to demonstrate the value of likelihood

based methods in the analysis of spatial data when the objective is prediction.

The data are reproduced from Davis’ book in Figure 55. This is a view looking

slightly West of South. The region is about 300 yards by 300 yards. The 52 surveyed

locations are marked by the drop lines and the symbols represent their elevations in

feet above sea level. An important feature is the small streams running northward

down the hill and joining together at the base of the region. They are indicated on the

map by solid lines. The procedure used by Davis for contouring did not incorporate

the information about the topography in the streams, although he recognized their

importance. A map manually contoured by hand, given in his Figure 6.10, clearly

attempted to use the information in the streams.

The data have been studied by Ripley (1981, pp. 58–72), and subsequently by

Warnes (1986), Warnes & Ripley (1987) and Ripley(1988, pp. 15–21). The original

data were scaled so that 50 yards in location corresponds to one map unit. This

158
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scaling has been carried through the later studies and for this reason will also be used

here, even though a scaling in yards is more desirable. All locations are referenced as

(Easting, Northing) measured from the South-West corner of the region. The survey

locations are recorded to two significant figures and the elevations to three significant

figures.

One should note that in Ripley(1981) there are two errors in transcribing the

data. The elevation at (315, 110) should be 875 , not 855; the former elevation

appears in both the 1973 and 1978 editions of Davis’ book. On p. 58, the author

states that there are 51 observations, although the original data have 52 and they

all appear in his diagrams. All the analysis in this chapter has been repeated using

the data as reported in Ripley (1981) with no change in the substantive results. Also,

Davis (1973) originally refers to the location scale in feet, although it is actually yards.

Ripley (1981) suggests both the Exponential and the Squared Exponential

classes as models for the covariance structure. The former class was introduced in

§2.3 as a basic model for one-dimensional processes. The later class was proposed

by Thompson (1956) as a general model for two dimensional fields. The isotropic

covariance has the general form:

K
G

(x; ✓
1

, ✓
2

) = ✓
1

✓
2

e�x

2
/✓

2
2

where ✓
1

is the slope at the origin of the correlation function and ✓
2

is is a range

parameter. At that time the class became known as the “Gaussian covariance” based

on its mathematical form. However this association is not historically accurate and

can lead to confusion with the distribution of the field. Perhaps partially based on

its familiar name and classical shape it has received extensive use in Meteorology,

Hydrology and Geology. Unfortunately it corresponds to a field with analytic realiza-

tions, a very severe restriction. The corresponding likelihood surface exists and has
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a continuous second derivative.

In these previous studies the mean function is based on powers of the Northing

and Easting for each location. The information available in the streams was not

exploited.

In Ripley(1981) covariance functions are investigated based on fitting by eye the

empirical correlation function. The model suggested in Warnes & Ripley (1987) and

Ripley(1988), again based on empirical correlation plots, is Exponential with

(✓
1

, ✓
2

) = (2112, 2) and flat mean.

In Warnes(1986) the focus is the e↵ect of perturbations in the covariance struc-

ture on the prediction surface. He uses a flat mean and ✓
2

= 2 . He finds that the

predictions under the Exponential class are insensitive to perturbations in the range

parameter and that the reverse is true for the Squared Exponential class. It is argued

in Stein & Handcock (1989) that this behavior can be understood in terms of the

compatibility of the models in the respective classes. This issue will be returned to

in §5.3.

Warnes & Ripley (1987) and Ripley (1988) return to the question of parame-

ter estimation. Their focus is likelihood estimation and they argue that use of the

likelihood statistic can lead to misleading inference.

The bulk of this chapter uses this topological data as a forum for the issues raised

in Warnes & Ripley (1987) and Ripley(1988). The focus is on the applicability of

likelihood methods to the analysis of spatial data.

5.2 Choosing a modeling approach

How should we analyse the data if our objective is to predict the elevations

within the region surveyed?
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The major assumptions implicit in the model are stationarity of the Gaussian

random field, isotropy of the correlations and the correct specification of the mean.

These are interdependent so that checking them individually is usually not the best

approach.

In general it is di�cult to determine if the field is Gaussian because the observa-

tions are spatially dependent and the correlation structure is unknown. In particular

the marginal distribution of the observations is little guide to the joint distribution.

The realizations of the random field can be assumed to be smooth, at least continuous

and maybe even di↵erentiable. Two potential models for the covariance structure are

mentioned above. In §5.4 a third general model will be investigated. Given the nature

of the data and the measurement procedure it will be assumed that the measurement

error is small so that the (observed) field is continuous.

The mean function should clearly include the Northing and Easting of the survey

locations. In addition, there is information in the locations of the streams that should

be taken into account. One crude way is to use the horizontal distance of the survey

point to the closest stream as a covariate. This can be measured from Figure 55. We

can investigate di↵erent approximations to the mean function by using polynomials

of Northing, Easting and “Distance to Stream”. An informal way of discriminating

between nested models for the mean function is to look at di↵erences in log–likelihood.

The approach used here is to check the assumptions in the context of particular

models. Conditional on the correctness of a particular model there are verifiable

properties that can be checked. For example, cross validation is used in the next

section. As a preliminary check the data were screened for obvious deviations from

the assumptions. Some corrected errors are mentioned in §5.1. Initial exploration of

univariate data transformations such as square-root and log indicate similar results.

The analysis presented in the following sections is based on the untransformed data.
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5.3 Model selection and evaluation within the Exponential class

One of the most common methods for fitting a covariance model to data is to

match “by eye” a theoretical curve to the empirical correlation plot of the de-trended

observations. This guide to intuition is very dubious for three reasons. Firstly, the

values in the plot are very highly correlated so that the additional information in the

latter points is very small. Secondly, each point is based on the average of greatly

di↵ering numbers of pairs of points. Thirdly, misspecification of the mean function

will have a big e↵ect upon the points at medium to large lags. As much of the

information in the latter points is problematical, one good approach is to draw a line

through the first few points so as to gauge the slope at the origin. For the same

reasons direct curve fitting by optimization should be avoided.

Ripley (1981), Warnes & Ripley (1987) and Ripley (1988) suggest a value for

the range, ✓
1

, of about 2 , based on the empirical correlation plot in Figure 56. Two

theoretical models have been superimposed for comparison. An Exponential with

✓
2

= 2 is below the points for the first few lags, but is a better ‘overall’ fit to the

positive empirical correlations. Some researchers regard fitting ‘by eye’ to be a better

guide to the correlation structure than the maximum likelihood estimate. However,

it is based on a regression mind-set that is inappropriate. We will see in §5.5 that

fitting ‘by eye’ is a estimation procedure substantially inferior to maximum likelihood

estimate. The maximum likelihood correlation function, ✓
2

= 6.12 , matches only at

the first few lags. The vast di↵erences at larger lags can be indicative of a misspecified

mean function. This hypothesis is borne out later when models are compared.

Table 2 summarizes the results of fitting a number of di↵erent regression func-

tions using the Exponential model. In this and later summaries of the likelihood we

resist the temptation to give standard errors based on the curvature of the likelihood.
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Figure 57 is the empirical correlation plot for Model 6, on which the maximum like-

lihood estimate of the correlation function has been superimposed. Again note the

closeness of the maximum likelihood estimate to the empirical values at small lags.

5.3.1 Cross validation based on the prediction errors

How can we discriminate between di↵erent models given that the “truth” is

unlikely to be represented by one of the models considered? A simple cross validation

in this situation comprises of fitting the model to the n data sets obtained by exclud-

ing successively just one location. In each case predict the elevation at the excluded

location from the fitted model, and use these values to check the consistency of the

model.

Cross validation is often used to check the consistency of models using the

prediction errors,

Z(x
i

)� Ẑ(x
i

), (5.3.1)

or the standardized prediction errors,

Z(x
i

)� Ẑ(x
i

)
q

c\V
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{Z(x
i

)� Ẑ(x
i

)}
, (5.3.2)

or the prediction errors standardized by the prediction standard deviations of the

largest reasonable model,

Z(x
i

)� Ẑ(x
i

)
q
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Model 6

{Z(x
i

)� Ẑ(x
i

)}
, (5.3.3)

as a guide. Figures 58 are plots of the relative prediction error (5.3.3) against the

elevation. Note the tendency of the errors to increase with elevation. The models

struggle with the value at (205, 40) with elevation 960 , which is isolated on a high

ridge between two branches of the stream. Figures 59 are plots of the standardized

prediction error (5.3.2) against the elevation. Conditional on the fitted model being
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the truth, these values should be mean zero Gaussian with unit variance. However

they are still correlated.

It is tempting to define overall measures of fit and the quality of the error pre-

cision. One such measure is the average sum of squares of the errors in (5.3.2) where

values near 1 are healthy and values much larger than 1 indicate that the model

tends to underpredict the true errors. However this measure favors the overprediction

of standard errors. Another measure is the average sum of squares of errors in (5.3.1),

which measures straight fit, but may be dominated by a few hard to predict survey

locations. A better measure standardizes by the prediction standard deviations of the

largest reasonable mode. Dividing by the degrees of freedom of the model, instead

of n , is a rough adjustment for the complexity of the model. All these measures are

reported in Table 2. Model 3, using only Northing and Stream as regressors is very

competitive by all these measures, which are influenced by the value at (205, 40) .

Model 3 represents this value best, both absolutely and relatively to its predicted

variance. These measures are tied to the observed locations, and represent the entire

area only as much as the observations themselves do. In general, the measure should

be tuned for the purpose of prediction and in practice we will not be predicting at the

observed locations. The Generalized Cross–validation developed by Craven & Wahba

(1979) is an interesting approach that adjusts for the “equivalent degrees of freedom”

of the model, but is not considered here.

Another model check is possible using the fact that, conditional on the estimated

model, the whitened residuals K
�1

2
ˆ

✓

{Z�F b�} are independent and standard Gaussian.

Figures 60 are plots of the whitened residuals against the elevation, where again the

more complicated models are overdispersed. The �2 values are given in Table 2. It

should be noted that this vector is not unique and we could just as well consider any

orthogonal transformation of K
�1

2
ˆ

✓

{Z � F b�}. The weakness of this check is that the
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whitened residuals no longer reflect the spatial information.

Overall, there is a weight of evidence for Model 3, although predictions from

Model 6 should also be consulted. Clearly this analysis is not the last word on this

data; much more can be achieved via models outside the structural confines that have

been set. A more honest to earth model would use topographic subject knowledge to

involve the stream patterns structurally.

5.4 Model selection and evaluation within the Matérn class

The analysis of the previous chapter indicated that there is room for improve-

ment in the choice of covariance structure. The Exponential, while providing a reason-

able initial covariance class, does not allow the field to have di↵erentiable realizations.

It is a natural class for one dimensional fields, but does not have special significance

for random fields on the plane (Whittle (1954)). Given that a priori the form of

the covariance is unknown it is unreasonable to exclude the possibility of smoother

random fields. The Matérn class, introduced in §1.5.3, is a much richer candidate

class. It covers a wide range of random fields, provides smooth transitions between

dimensions and has stable numerical properties.

In this section we consider the Matérn class using the same regression model for

the mean as for the Exponential. The results of model selection are compared to the

Exponential subclass. The corresponding likelihood surfaces exist and are smooth.

No evidence of multiple modal behavior has been observed, although there is no proof

of unimodality.

Figure 61 reports the log-likelihood for (✓
1

, ✓
2

) profiled over the variance pa-

rameter, ↵ and a flat mean. The contours are approximately elliptical and indicate

a strong correlation between the estimates ✓
1

and ✓
2

. The smoothness parameter at

the maximum is about 1 indicating an almost di↵erentiable field. Note that values for
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the smoothness parameter between 0.75 and 1.5 and ranges between 1 and 4 have

strong likelihoods. Given this strong dependence a re-parameterization is desirable.

Figure 62 reports the log-likelihood for (↵, ✓
2

) profiled over the range parameter, ✓
1

and a flat mean. The axes of the elliptical contours are now closely aligned with the

coordinate axes, indicating that the dependence between the parameters has been re-

duced. This parameterization will be used from now on. The best Exponential model

has a range of 6.12 and a a log-likelihood of �244.60 while the best Exponential

model with a range of 2 has a log-likelihood of �239.15 .

Figure 63 reports the log-likelihood for (↵, ✓
2

) profiled over the range parame-

ter, ✓
1

and a mean based on Northing and distance to closest stream as regressors.

The striking feature is the flat ridge over a wide range of the smoothness parameter.

The Orders between 2 and 30 have strong likelihood. The additional regressors

have accounted for most of the variation, so that the smoothness of the covariance

model is di�cult to identify. As the smoothness increases the range decreases. We

will comment on this lack of identifiability shortly.

Table 3 summarizes the results of fitting a number of di↵erent regression func-

tions using the Matérn class. Model 0 is the model suggested by Ripley (1988) and

has a log-likelihood of �254.92 . As the model becomes more complex the maximum

likelihood estimate of the smoothness parameter tends to increase and the range of

the covariance function tends to decrease. Under the more complex regression model

the covariance structure is essentially non-existent with a range of 0.20 map units

and an Order of 11 . The closest survey points are 10 yards or 0.2 map units apart.

At the same time the likelihood is very flat over the smoothness parameter.

Table 4 summarizes the results of fitting using modified log-likelihoods over a

number of di↵erent regression models. The likelihood surfaces are similar in shape

to the corresponding profiled likelihood surfaces. The modified maximum likelihood
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estimates tend to be less smooth and have longer ranges than the profile maximum

likelihood estimates. The modified likelihood surfaces tend to be very flat over a range

of smoothnesses. For example, the maximum likelihood estimates for the range at

✓
2

= 1

2

are 6.12 under the profile likelihood and 25.6 under the modified likelihood,

but the modified likelihood for 6.12 is only 0.3 units less than that at the maximum.

By comparison with Table 2 we see that the di↵erences in log-likelihoods for the

Matérn class over the Exponential subclass is at least 2 . In addition we see that the

range parameter has been greatly reduced.

The flatness of the likelihood surfaces for the more complex mean functions

requires more comment. These surfaces are very sensitive to the precise geometric

location of observations that are close. For example, suppose we perturb the location

of the observation at (125, 225) by 5 yards towards the point (115, 240) . This

shift represents the precision at which the locations were recorded. We then recal-

culated the maximum likelihood estimates for each of the models. The maximum

likelihood estimate for the covariance structure for the model with a mean based on

Northing and distance to closest stream as regressors is (b↵, b✓) = (2181, 0.48, 2.82) .

The original maximum likelihood estimate, reported as Model 4 in Table 3, has

(b↵, b✓) = (4817, 0.20, 11.12). This illustrates the extreme sensitivity of the smooth-

ness parameter to the geometry of the locations. The likelihood of this point under

the original data likelihood is 0.89 less than the maximum value. The maximum

likelihood estimates of the Matérn model with flat mean and the Exponential Model

with each mean change only slightly with this perturbed value. These surfaces are

also sensitive to the precise elevations of observations that are close. For example,

suppose we perturb the elevation of the observation at (125, 225) down by 1 foot

towards the elevation at (115, 240) . This shift represents the precision at which the

elevations were recorded. The maximum likelihood estimate for the covariance struc-
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ture for the model with a mean based on Northing and distance to closest stream as

regressors is (b↵, b✓) = (4091, 0.23, 8.28) . Thus the smoothness parameter has dropped

by 3 with a negligible drop in likelihood. Again the maximum likelihood estimates of

the Matérn model with flat mean and the Exponential Model with each mean change

only slightly. To understand this a little more consider Figure 64, the residual ele-

vations after subtracting o↵ the mean function at the maximum likelihood estimate.

The pair of observations perturbed are marked with a ⇥. As one point is on the

stream, the perturbation strongly alters the contribution to the mean function of the

distance to stream variable.

Should we choose between these models? While the maximum likelihood es-

timate is a good representative value the overall flatness of the likelihoods would

suggest against choosing a particular member as the “truth”. Clearly we need ad-

ditional information before we can choose between member of the same class. The

same comments apply to the choice of regression model. It is tempting to base the

decisions on the changes in log-likelihood. It is still an open question as to the validity

of this decision rule in the face of the interdependence of the mean and covariance

structures.

In summary, the Matérn class appears to be an appropriate model for this topo-

graphical data because of the wide range of random fields it covers. As the generality

of the model for the mean increases the level of identifiability of the smoothness pa-

rameter decreases. This suggests against using the maximum likelihood covariance

structure alone as a surrogate for the information in the data about the covariance

structure. As the log-likelihood is not close to elliptical, the usual measures of un-

certainty based on curvature will be e↵ected. Unless the inference is insensitive to

the particular choice of model, inference based on the maximum likelihood estimate

alone may be inadequate.
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5.4.1 Cross validation based on the likelihoods

In this section we consider checking the consistency of the Matérn model for the

topographical data using cross-validation of likelihoods. If the field is Gaussian and

covariance class correctly specified then inference based on the likelihood function, we

have argued, is sensible. Our concern is the possible misspecification of the covariance

class and the identification of influential observations. In §4.7.3 we investigated the

e↵ect on the prediction error of misspecifying the Spherical class by the Matérn class.

In §5.3.1 we considered cross–validation based on the prediction errors. We have

introduced the topic in §2.7.2, where regularly spaced random fields in two dimensions

are considered.

We have seen in §5.4 that the maximum likelihood estimates under the Matérn

model with complex mean are sensitive to perturbations in the geometry and el-

evations of the data. Figure 65 represents the spatial distribution of the full log-

likelihoods at the cross-validated maximum likelihood estimates for this model. In

general the values are within 0.2 units of the maximum. The feature that stands out

are the six very low values. Each of these corresponded to a smoothness parameter

estimate above 70. This indicates that dropping out each of these points leads to

a great change in the estimate of the smoothness parameter. Each of these values

is located on a branch of the stream. This plot provides additional evidence for the

sensitivity of the model to the data geometry. We believe that this sensitivity is a

strike against using the model as a basis for prediction, as the less complex models

are less sensitive.

For comparison we can consider the Matérn model with flat mean. The spa-

tial distribution of the full log-likelihoods is given in Figure 66. We no longer see

an extreme set of points, although our eyes are drawn to the location (205, 40)
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with elevation 960. This value was also sighted as hard to predict when we consid-

ered cross-validation based on the prediction error. Another influential point is at

(15, 305) probably because it is on the edge of the region and is thus influential on

the mean function.

The results for the Matérn model with flat mean and the particular members

with ✓
2

= 1 and ✓
2

= 1

2

show less sensitivity, although the observation located at

(205, 40) is influential. We have also considered the log-likelihood plotted against

the cross-validated maximum likelihood estimates, although it is unclear what they

say about the misspecification of the modeling class.

5.5 Bayesian analysis of the topographic data

In this section the Bayesian viewpoint of Chapter 4 will be applied to the

topological data. The main question is the quality of prediction, both actual and per-

ceived, achieved by using maximum likelihood estimates of the covariance structure in

place of the correct structure. The Matérn modeling class will be the reference class.

It is implicitly assumed that the true model is an unknown member of this class. The

constant model for the mean is used. This section is conceptually an extension of the

discussion in §5.4.

The prior distribution used for the smoothness parameter, ✓
2

, is uniform from

0.25 to 2.5, the rationale being that we do not expect the realizations to be discon-

tinuous or much smoother than once di↵erentiable. An informative prior for ✓
2

is

given in Figure 67. Values between 1

2

and 1 are regarded highly. Values rougher

than 0.25 are excluded. The tails on either side of 1

2

and 1 drop o↵ like an inverse

square. This prior will be used later in this section. One could consider placing point

masses at the ‘knots’ 1

2

, 3

2

or favoring the smoother structures. The joint prior for

(�, ↵) is inversely proportional to ↵. This is consistent with the lack of information
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about � . The issue of choice of distributions prior to the data is also considered in

§4.8.

Marginal posteriors for the smoothness parameter are given in Figure 68. Con-

sider the posterior based on the convenience prior. The mode is near ✓
2

= 1

sometimes called Whittle’s covariance function after Whittle (1954, 1962). Inter-

estingly, Whittle regarded this model as the natural extension of the Exponential

model (✓
2

= 1

2

) from one to two dimensions. It corresponds to a random field with

continuous realizations that are on the margin of mean-square di↵erentiability. For

✓
2

> 1 the field is mean-square di↵erentiable. The distribution fades out near 0.25

and 2.5 , compatible with the prior specification. It is interesting to note that the

ratio of the density at the mode to the density at the Exponential model is about

85 : 1 , so that the Exponential appears too rough for this field. The distribution

is right skewed, so that the density for ✓
2

= 1

2

is more than that at ✓
2

= 3

2

. The

posterior based on the informative data places less emphasis on the larger values of

the smoothness parameter. It is also centered about ✓
2

= 1 .

Clearly these posterior densities are a useful tool for understanding the data.

The location chosen to be predicted is marked on Figure 55 in the center of the

region. It was chosen to be reasonably distant from the survey locations. A second

location was chosen on the branch of the stream because it would be potentially useful

to a surveyor and because of the close proximity of survey locations.

The traditional kriging approach estimates the covariance parameters and pro-

ceeds as if the estimated covariance structure is known to be the correct covariance

for the field. In this section we will use the maximum likelihood estimate of the co-

variance parameters. Measures of uncertainty for the distribution are then based on

the perceived error distribution (7.6.1). The actual posterior predictive distribution

of this predictor is, under the full model, given by (7.6.3) and the complete poste-
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rior predictive distribution is given by (7.4.2). The complete posterior weighs each

covariance structure by the posterior density for the covariance structure under the

Matérn model.

Figure 69 presents the posterior predictive densities for the model with con-

stant mean function. The perceived posterior is a centered Gaussian with a stan-

dard deviation of about 25 feet. The maximum likelihood estimate is (b↵, b✓) =

(3881, 1.95, 0.97) . The actual and complete posteriors are mixtures of non-central

and central t-distributions respectively. The complete posterior is a better reflection

of the uncertainty in the covariance structure and should be regarded as a superior

reference for inference. It is always symmetric about zero. The perceived posterior is

based on an incorrect model, and can be wider or narrower than the complete pos-

terior depending on the plug-in estimates used. In general it tends to underestimate

the uncertainty. The actual posterior of the plug-in predictor indicates that it has

a downward bias of about �3 feet. It also indicates that the perceived posterior

slightly underestimates the uncertainty of the plug-in predictor. Figure 70 provides

relative comparisons of the densities. The vertical axis has a logarithmic scale. The

perceived posterior has lighter tails than the complete posterior and the actual poste-

rior of the estimated predictor. Notice that values outside of 75 feet have negligible

weight. Hence probability regions based on the perceived and complete posteriors

will be similar.

The estimate for the covariance structure proposed in Warnes & Ripley (1987)

and Ripley (1988) was (↵̃, ✓̃) = (2112, 2, 1

2

) . There they claimed that the maximum

likelihood estimate is “nonsensical” and that the “posterior density will have its mass

concentrated on unrealistic values”. We can evaluate this claim within the Bayesian

framework.

Figure 71 compares the perceived and actual performance of kriging predictor
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based on the parameters suggested by Warnes & Ripley (1987) to the complete pos-

terior under the Matérn model. The perceived posterior is much broader than the

actual posterior providing conservative inference. The actual posterior of this pre-

dictor indicates that it has a bias of about 5 feet. Figure 72 provides a relative

comparison. Probability intervals based on the perceived posterior will be markedly

wrong under the Bayesian model and will di↵er substantially from those based on the

complete posterior.

If we base the parameter estimates on values suggested by the empirical correla-

tion curves, as Warnes & Ripley (1987) have, then we will tend to obtain a misleading

perceived performance and a diminished actual performance compared to the point

predictor based on the maximum likelihood estimate. Given agreement on the model

and prior distributions for the parameters it is absurd to suggest that the posterior

will have its mass concentrated on unrealistic values.

How sensitive is our inference to the choice of prior distributions? In these ex-

amples a flat prior distribution for the smoothness parameter is used. Figure 73 is

the analogue of Figure 69 using the informative prior in Figure 68. This prior places

greater emphasis on values between 1

2

and 1. The posteriors in Figure 73 and Fig-

ure 69 are quite similar. The actual distribution of the prediction error indicates

that some of the bias has been removed from the predictor. Figure 74 represents a

relative comparison of the complete posteriors using informative priors to the com-

plete posterior using the convenience prior. The inference appears to be insensitive to

moderate changes in the prior for ✓
2

. In general the posterior distribution of the pre-

diction error will be less sensitive to alternative prior distributions than the posterior

distribution of the smoothness parameter. The dotted line in Figure 74 represents

a relative comparison of the complete posterior using a flat prior for ↵ instead of

the usual 1/↵. The resulting posterior has slightly thinner tails. The posterior is
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insensitive to changes in the prior for �.

The likelihood values in Table 4 suggest that the model with a flat mean may be

inadequate as compared to the models including the survey locations and distance to

streams as regressors. Figure 75 summarizes the performance of Model 4 in Table 3.

The posterior standard deviation is about 12 feet. The perceived posterior using the

maximum likelihood estimates is again narrower than the complete posterior. The

actual posterior of the plug-in predictor indicates that it has a bias of about 5 feet

and that the perceived posterior substantially underestimates the true uncertainty

of the predictor. Overall the plug-in predictor has greater deviation from the com-

plete posterior than in the situation of a flat mean. However the performance of all

predictors is better, that is, the posteriors are tighter. Figure 76 provides a relative

comparison.

Figure 77 is the analogue of Figure 72 using a more complex model for the mean

and analyzing the performance of the plug-in predictor based on the values suggested

in Ripley (1988). The perceived posterior has a standard deviation of about 25 feet.

This is an unacceptable di↵erence. The actual posterior indicates that the plug-in

predictor also has a bias of about 10 feet. The perceived performance of this predictor

is very misleading and the overall quality of the plug-in predictor is poor compared

to the complete Bayesian approach.

This analysis provides insight into the performance of the kriging procedure and

the e↵ect of misspecification of the covariance structure.

5.6 Numerical accuracy considerations in the calculation of

likelihoods

In this section we consider some accuracy issues in the computation of the like-

lihood for spatial random fields. The log-likelihood based on observing the random
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field at n locations was given in (2.2.1). It involves the inverse and determinant of the

n⇥n matrix K
✓

. As K
✓

is a covariance matrix it is positive definite and so, in prin-

ciple, these operations present no di�culties. As the number of observations increases

K
✓

approaches numerical singularity so that numerical stability becomes important.

In addition the computational e↵ort required for these operations increases like n3.

In calculating the log-likelihood it is unnecessary to invert K
✓

directly. All that is

needed is the log determinant of K
✓

and a quadratic form. These may be determined

from the Cholesky factorization and solving linear systems in the Cholesky triangle

using back-substitution. This is more e�cient and numerically stable than calculating

the inverse directly. However the Cholesky factorization still requires n3/6 + O(n2)

operations.

We can monitor how close K
✓

is to singular by, , the condition number for the

inversion problem. It can be defined using the matrix 2-norm, k K
✓

k= sup|x|=1

|K
✓

x|

where |x| =
p

x0x , so that  =k K
✓

k · k K�1

✓

k . The condition number measures

the closeness of K
✓

to singularity in the sense that �1 =k E k / k K
✓

k , where E

is the smallest matrix (in the k · k sense) for which K
✓

+ E is singular. The error

in the finite-precision arithmetic of linear systems in K
✓

is bounded by a constant

times (· machine precision ). The usual rule of thumb is to keep  < (machine

precision) �1
2 . All our calculations were done on a Sun 3/60 using double precision

arithmetic corresponding to a machine precision of 10�19. The issue of accuracy of

calculation is usually ignored by practitioners.

We now consider the accuracy of the calculation of the log-likelihood for the

topological data using a Exponential model with flat mean. Our interest is sparked

by a finding of Warnes & Ripley (1987) . They model the data by a Gaussian random

field with covariance from the Exponential class using the scale parameterization

(�, ✓
2

) where � =
p

✓
1

✓
2

. We can calculate the log-likelihood for (✓
1

, ✓
2

) profiled
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over a flat mean. For the covariance matrices considered the condition number is

about 2⇥ 103 . As a comparison the n x n matrix with n + 1 on the diagonal and

n elsewhere has condition number 2.7⇥ 103 for n = 52 and 104 for n = 100 . We

note that that the condition  < (machine precision) �1
2 is easily satisfied. Hence we

should not run into numerical accuracy problems in calculation the log-likelihood.

Warnes & Ripley (1987) claim the log–likelihood surface is given by Figure 78.

We have made exhaustive e↵orts to reproduce this figure with no success. The actual

log–likelihood appears to be Figure 79, with the unique maximum marked with a

⇥ . No ripples were found even going to an additional two decimal places than the

ripples in Warnes & Ripley (1987) . Figure 80 is a close up of the central region that

should show in detail two local maxima. All contour plots are based on independent

evaluations on a 40 x 40 grid of points. We note that as the log-likelihood is unimodal

in ✓
1

it su�ces to consider the log-likelihood (2.2.2) also profiled over ✓
1

. This is

given in Figure 81. There is no sign of multiple modes. After this section was written

a paper by Mardia & Watkins (1989) addressing the issue of ripples in the likelihood

was brought to our attention. Their investigation arrives at the same conclusions as

we do.

The condition number of K
✓

is sensitive to the geometry of the sites. Typically

the condition number increases as the minimum distance between locations decreases.

We now investigate the e↵ect of perturbations in the locations of the 52 sites on

the condition number of K
✓

. As the survey locations are recorded to 2 significant

digits, one approach is to randomly move the last digit up or down one and look at

the log–likelihood surface produced. The e↵ect is to move the surface around, while

retaining the basic shape. The maximum is perturbed about on the line approximately

joining (640,7) to (800,4). The condition number of K
✓

is approximately inversely

proportional to the smallest distance between sites. Hence, unless sites coincide, the
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condition number is still of the order 103 and is of little numerical concern. When

the sites were perturbed in a random direction a distance of 5 yards similar results

occurred. This indicates that the numerical e↵ects are not sensitive to the exact

definition of the observations.

Using the natural slope parameterization of §2.3, the log–likelihood contour is

given in Figure 82. Under this parameterization the eccentricity of the contours is

greatly reduced. This has obvious advantages for estimation and inference.

In conclusion, we have has found no evidence of ripples in the likelihood surface

for the topological data. All attempts to numerically produce them have failed and

the computation, while di�cult, appears to be numerically stable. Quite apart from

the numerical evidence their is no substantive rationale for ripples of this kind. Unlike

the situations studied in §2.5 and §2.6 the form of the covariance structure and the

geometry of the sites provide no hint that irregular behavior could arise.

5.7 Summary and conclusions

In this chapter topological data from Davis (1973) is used as a forum for the

analysis of spatial data when the objective is prediction. Our focus is likelihood

methods including Bayesian analysis.

The results of §5.3 indicate that the Exponential class, while adequate, leaves

room for improvement. The model selection is by maximum likelihood and evaluation

is by cross validation.

The results of §5.4 indicate that the Matérn class leads to improved modelling

of the data. The Exponential class is a sub-class of the Matérn class. As the model

for the mean became more sophisticated the estimated covariance structures became

shorter ranged and smoother. In addition the parameters became less identifiable.
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Section 5.6 describes a Bayesian analysis of the kriging predictor. This approach

is more sensitive to the complete likelihood surface than plugging in the maximum

likelihood estimate of the covariance structure. It allows the performance of the

plug-in predictor to be critiqued within a larger framework.

In conclusion, one should ideally base inference on the complete posterior distri-

bution of the prediction error. Usually, inference is based on the perceived posterior

of the prediction error based on an estimated covariance structure. In §5.5 we see

that kriging based on on the maximum likelihood covariance structure provides an

adequate perceived posterior. However there is a definite loss incurred in the use of

a single covariance to represent the posterior knowledge of the covariance structure.

The maximum likelihood estimate may be the best single representative available,

but this reduction itself can be detrimental to the inference.

Ripley (1981), Warnes & Ripley (1987) and Ripley(1988) promote the use of

covariance structures suggested by the empirical covariance functions. This chapter

suggests that the perceived posteriors based on such estimated covariance structures

di↵er markedly from the complete posteriors. In addition the perceived posterior

are quite di↵erent for the actual performance of the predictors. Overall they are

markedly worse than the plug-in kriging predictions based on the maximum likelihood

estimates.

These conclusions provide support for the arguments in §5.5 against compar-

ing empirical correlation plots to the theoretical curves as a means of estimating

covariance parameters.

In §5.6 we consider some issues of numerical accuracy in the calculations of

likelihoods. As a side benefit some claims of Warnes & Ripley (1987) and Ripley

(1988) against likelihood methods have been evaluated. They claim that the likelihood

surface of this data for an Exponential covariance model with flat mean is multimodal.
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The results of §5.6 indicate that there is no evidence, numerical or substantive, to

support this claim.



CHAPTER 5

A LIKELIHOOD APPROACH TO THE ANALYSIS

OF DAVIS’ TOPOGRAPHIC DATA

5.1 Introduction

In this chapter we analyse data originally from Davis (1973) that has recently

attracted a lot of interest. The data are topological elevations over a small area on

the northern side of a hill. The data were measure by a surveying class, using a plane

table and alidade. Davis was interested in the analysis of maps and used the survey to

produce contours of the region. Our purpose is to demonstrate the value of likelihood

based methods in the analysis of spatial data when the objective is prediction.

The data are reproduced from Davis’ book in Figure 55. This is a view looking

slightly West of South. The region is about 300 yards by 300 yards. The 52 surveyed

locations are marked by the drop lines and the symbols represent their elevations in

feet above sea level. An important feature is the small streams running northward

down the hill and joining together at the base of the region. They are indicated on the

map by solid lines. The procedure used by Davis for contouring did not incorporate

the information about the topography in the streams, although he recognized their

importance. A map manually contoured by hand, given in his Figure 6.10, clearly

attempted to use the information in the streams.

The data have been studied by Ripley (1981, pp. 58–72), and subsequently by

Warnes (1986), Warnes & Ripley (1987) and Ripley(1988, pp. 15–21). The original

data were scaled so that 50 yards in location corresponds to one map unit. This

158
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scaling has been carried through the later studies and for this reason will also be used

here, even though a scaling in yards is more desirable. All locations are referenced as

(Easting, Northing) measured from the South-West corner of the region. The survey

locations are recorded to two significant figures and the elevations to three significant

figures.

One should note that in Ripley(1981) there are two errors in transcribing the

data. The elevation at (315, 110) should be 875 , not 855; the former elevation

appears in both the 1973 and 1978 editions of Davis’ book. On p. 58, the author

states that there are 51 observations, although the original data have 52 and they

all appear in his diagrams. All the analysis in this chapter has been repeated using

the data as reported in Ripley (1981) with no change in the substantive results. Also,

Davis (1973) originally refers to the location scale in feet, although it is actually yards.

Ripley (1981) suggests both the Exponential and the Squared Exponential

classes as models for the covariance structure. The former class was introduced in

§2.3 as a basic model for one-dimensional processes. The later class was proposed

by Thompson (1956) as a general model for two dimensional fields. The isotropic

covariance has the general form:

K
G

(x; ✓
1

, ✓
2

) = ✓
1

✓
2

e�x

2
/✓

2
2

where ✓
1

is the slope at the origin of the correlation function and ✓
2

is is a range

parameter. At that time the class became known as the “Gaussian covariance” based

on its mathematical form. However this association is not historically accurate and

can lead to confusion with the distribution of the field. Perhaps partially based on

its familiar name and classical shape it has received extensive use in Meteorology,

Hydrology and Geology. Unfortunately it corresponds to a field with analytic realiza-

tions, a very severe restriction. The corresponding likelihood surface exists and has
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a continuous second derivative.

In these previous studies the mean function is based on powers of the Northing

and Easting for each location. The information available in the streams was not

exploited.

In Ripley(1981) covariance functions are investigated based on fitting by eye the

empirical correlation function. The model suggested in Warnes & Ripley (1987) and

Ripley(1988), again based on empirical correlation plots, is Exponential with

(✓
1

, ✓
2

) = (2112, 2) and flat mean.

In Warnes(1986) the focus is the e↵ect of perturbations in the covariance struc-

ture on the prediction surface. He uses a flat mean and ✓
2

= 2 . He finds that the

predictions under the Exponential class are insensitive to perturbations in the range

parameter and that the reverse is true for the Squared Exponential class. It is argued

in Stein & Handcock (1989) that this behavior can be understood in terms of the

compatibility of the models in the respective classes. This issue will be returned to

in §5.3.

Warnes & Ripley (1987) and Ripley (1988) return to the question of parame-

ter estimation. Their focus is likelihood estimation and they argue that use of the

likelihood statistic can lead to misleading inference.

The bulk of this chapter uses this topological data as a forum for the issues raised

in Warnes & Ripley (1987) and Ripley(1988). The focus is on the applicability of

likelihood methods to the analysis of spatial data.

5.2 Choosing a modeling approach

How should we analyse the data if our objective is to predict the elevations

within the region surveyed?
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The major assumptions implicit in the model are stationarity of the Gaussian

random field, isotropy of the correlations and the correct specification of the mean.

These are interdependent so that checking them individually is usually not the best

approach.

In general it is di�cult to determine if the field is Gaussian because the observa-

tions are spatially dependent and the correlation structure is unknown. In particular

the marginal distribution of the observations is little guide to the joint distribution.

The realizations of the random field can be assumed to be smooth, at least continuous

and maybe even di↵erentiable. Two potential models for the covariance structure are

mentioned above. In §5.4 a third general model will be investigated. Given the nature

of the data and the measurement procedure it will be assumed that the measurement

error is small so that the (observed) field is continuous.

The mean function should clearly include the Northing and Easting of the survey

locations. In addition, there is information in the locations of the streams that should

be taken into account. One crude way is to use the horizontal distance of the survey

point to the closest stream as a covariate. This can be measured from Figure 55. We

can investigate di↵erent approximations to the mean function by using polynomials

of Northing, Easting and “Distance to Stream”. An informal way of discriminating

between nested models for the mean function is to look at di↵erences in log–likelihood.

The approach used here is to check the assumptions in the context of particular

models. Conditional on the correctness of a particular model there are verifiable

properties that can be checked. For example, cross validation is used in the next

section. As a preliminary check the data were screened for obvious deviations from

the assumptions. Some corrected errors are mentioned in §5.1. Initial exploration of

univariate data transformations such as square-root and log indicate similar results.

The analysis presented in the following sections is based on the untransformed data.
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5.3 Model selection and evaluation within the Exponential class

One of the most common methods for fitting a covariance model to data is to

match “by eye” a theoretical curve to the empirical correlation plot of the de-trended

observations. This guide to intuition is very dubious for three reasons. Firstly, the

values in the plot are very highly correlated so that the additional information in the

latter points is very small. Secondly, each point is based on the average of greatly

di↵ering numbers of pairs of points. Thirdly, misspecification of the mean function

will have a big e↵ect upon the points at medium to large lags. As much of the

information in the latter points is problematical, one good approach is to draw a line

through the first few points so as to gauge the slope at the origin. For the same

reasons direct curve fitting by optimization should be avoided.

Ripley (1981), Warnes & Ripley (1987) and Ripley (1988) suggest a value for

the range, ✓
1

, of about 2 , based on the empirical correlation plot in Figure 56. Two

theoretical models have been superimposed for comparison. An Exponential with

✓
2

= 2 is below the points for the first few lags, but is a better ‘overall’ fit to the

positive empirical correlations. Some researchers regard fitting ‘by eye’ to be a better

guide to the correlation structure than the maximum likelihood estimate. However,

it is based on a regression mind-set that is inappropriate. We will see in §5.5 that

fitting ‘by eye’ is a estimation procedure substantially inferior to maximum likelihood

estimate. The maximum likelihood correlation function, ✓
2

= 6.12 , matches only at

the first few lags. The vast di↵erences at larger lags can be indicative of a misspecified

mean function. This hypothesis is borne out later when models are compared.

Table 2 summarizes the results of fitting a number of di↵erent regression func-

tions using the Exponential model. In this and later summaries of the likelihood we

resist the temptation to give standard errors based on the curvature of the likelihood.
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Figure 57 is the empirical correlation plot for Model 6, on which the maximum like-

lihood estimate of the correlation function has been superimposed. Again note the

closeness of the maximum likelihood estimate to the empirical values at small lags.

5.3.1 Cross validation based on the prediction errors

How can we discriminate between di↵erent models given that the “truth” is

unlikely to be represented by one of the models considered? A simple cross validation

in this situation comprises of fitting the model to the n data sets obtained by exclud-

ing successively just one location. In each case predict the elevation at the excluded

location from the fitted model, and use these values to check the consistency of the

model.

Cross validation is often used to check the consistency of models using the

prediction errors,

Z(x
i

)� Ẑ(x
i

), (5.3.1)

or the standardized prediction errors,

Z(x
i

)� Ẑ(x
i

)
q

c\V
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i

)� Ẑ(x
i

)}
, (5.3.2)

or the prediction errors standardized by the prediction standard deviations of the

largest reasonable model,

Z(x
i

)� Ẑ(x
i

)
q
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i

)� Ẑ(x
i

)}
, (5.3.3)

as a guide. Figures 58 are plots of the relative prediction error (5.3.3) against the

elevation. Note the tendency of the errors to increase with elevation. The models

struggle with the value at (205, 40) with elevation 960 , which is isolated on a high

ridge between two branches of the stream. Figures 59 are plots of the standardized

prediction error (5.3.2) against the elevation. Conditional on the fitted model being
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the truth, these values should be mean zero Gaussian with unit variance. However

they are still correlated.

It is tempting to define overall measures of fit and the quality of the error pre-

cision. One such measure is the average sum of squares of the errors in (5.3.2) where

values near 1 are healthy and values much larger than 1 indicate that the model

tends to underpredict the true errors. However this measure favors the overprediction

of standard errors. Another measure is the average sum of squares of errors in (5.3.1),

which measures straight fit, but may be dominated by a few hard to predict survey

locations. A better measure standardizes by the prediction standard deviations of the

largest reasonable mode. Dividing by the degrees of freedom of the model, instead

of n , is a rough adjustment for the complexity of the model. All these measures are

reported in Table 2. Model 3, using only Northing and Stream as regressors is very

competitive by all these measures, which are influenced by the value at (205, 40) .

Model 3 represents this value best, both absolutely and relatively to its predicted

variance. These measures are tied to the observed locations, and represent the entire

area only as much as the observations themselves do. In general, the measure should

be tuned for the purpose of prediction and in practice we will not be predicting at the

observed locations. The Generalized Cross–validation developed by Craven & Wahba

(1979) is an interesting approach that adjusts for the “equivalent degrees of freedom”

of the model, but is not considered here.

Another model check is possible using the fact that, conditional on the estimated

model, the whitened residuals K
�1

2
ˆ

✓

{Z�F b�} are independent and standard Gaussian.

Figures 60 are plots of the whitened residuals against the elevation, where again the

more complicated models are overdispersed. The �2 values are given in Table 2. It

should be noted that this vector is not unique and we could just as well consider any

orthogonal transformation of K
�1

2
ˆ

✓

{Z � F b�}. The weakness of this check is that the
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whitened residuals no longer reflect the spatial information.

Overall, there is a weight of evidence for Model 3, although predictions from

Model 6 should also be consulted. Clearly this analysis is not the last word on this

data; much more can be achieved via models outside the structural confines that have

been set. A more honest to earth model would use topographic subject knowledge to

involve the stream patterns structurally.

5.4 Model selection and evaluation within the Matérn class

The analysis of the previous chapter indicated that there is room for improve-

ment in the choice of covariance structure. The Exponential, while providing a reason-

able initial covariance class, does not allow the field to have di↵erentiable realizations.

It is a natural class for one dimensional fields, but does not have special significance

for random fields on the plane (Whittle (1954)). Given that a priori the form of

the covariance is unknown it is unreasonable to exclude the possibility of smoother

random fields. The Matérn class, introduced in §1.5.3, is a much richer candidate

class. It covers a wide range of random fields, provides smooth transitions between

dimensions and has stable numerical properties.

In this section we consider the Matérn class using the same regression model for

the mean as for the Exponential. The results of model selection are compared to the

Exponential subclass. The corresponding likelihood surfaces exist and are smooth.

No evidence of multiple modal behavior has been observed, although there is no proof

of unimodality.

Figure 61 reports the log-likelihood for (✓
1

, ✓
2

) profiled over the variance pa-

rameter, ↵ and a flat mean. The contours are approximately elliptical and indicate

a strong correlation between the estimates ✓
1

and ✓
2

. The smoothness parameter at

the maximum is about 1 indicating an almost di↵erentiable field. Note that values for
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the smoothness parameter between 0.75 and 1.5 and ranges between 1 and 4 have

strong likelihoods. Given this strong dependence a re-parameterization is desirable.

Figure 62 reports the log-likelihood for (↵, ✓
2

) profiled over the range parameter, ✓
1

and a flat mean. The axes of the elliptical contours are now closely aligned with the

coordinate axes, indicating that the dependence between the parameters has been re-

duced. This parameterization will be used from now on. The best Exponential model

has a range of 6.12 and a a log-likelihood of �244.60 while the best Exponential

model with a range of 2 has a log-likelihood of �239.15 .

Figure 63 reports the log-likelihood for (↵, ✓
2

) profiled over the range parame-

ter, ✓
1

and a mean based on Northing and distance to closest stream as regressors.

The striking feature is the flat ridge over a wide range of the smoothness parameter.

The Orders between 2 and 30 have strong likelihood. The additional regressors

have accounted for most of the variation, so that the smoothness of the covariance

model is di�cult to identify. As the smoothness increases the range decreases. We

will comment on this lack of identifiability shortly.

Table 3 summarizes the results of fitting a number of di↵erent regression func-

tions using the Matérn class. Model 0 is the model suggested by Ripley (1988) and

has a log-likelihood of �254.92 . As the model becomes more complex the maximum

likelihood estimate of the smoothness parameter tends to increase and the range of

the covariance function tends to decrease. Under the more complex regression model

the covariance structure is essentially non-existent with a range of 0.20 map units

and an Order of 11 . The closest survey points are 10 yards or 0.2 map units apart.

At the same time the likelihood is very flat over the smoothness parameter.

Table 4 summarizes the results of fitting using modified log-likelihoods over a

number of di↵erent regression models. The likelihood surfaces are similar in shape

to the corresponding profiled likelihood surfaces. The modified maximum likelihood
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estimates tend to be less smooth and have longer ranges than the profile maximum

likelihood estimates. The modified likelihood surfaces tend to be very flat over a range

of smoothnesses. For example, the maximum likelihood estimates for the range at

✓
2

= 1

2

are 6.12 under the profile likelihood and 25.6 under the modified likelihood,

but the modified likelihood for 6.12 is only 0.3 units less than that at the maximum.

By comparison with Table 2 we see that the di↵erences in log-likelihoods for the

Matérn class over the Exponential subclass is at least 2 . In addition we see that the

range parameter has been greatly reduced.

The flatness of the likelihood surfaces for the more complex mean functions

requires more comment. These surfaces are very sensitive to the precise geometric

location of observations that are close. For example, suppose we perturb the location

of the observation at (125, 225) by 5 yards towards the point (115, 240) . This

shift represents the precision at which the locations were recorded. We then recal-

culated the maximum likelihood estimates for each of the models. The maximum

likelihood estimate for the covariance structure for the model with a mean based on

Northing and distance to closest stream as regressors is (b↵, b✓) = (2181, 0.48, 2.82) .

The original maximum likelihood estimate, reported as Model 4 in Table 3, has

(b↵, b✓) = (4817, 0.20, 11.12). This illustrates the extreme sensitivity of the smooth-

ness parameter to the geometry of the locations. The likelihood of this point under

the original data likelihood is 0.89 less than the maximum value. The maximum

likelihood estimates of the Matérn model with flat mean and the Exponential Model

with each mean change only slightly with this perturbed value. These surfaces are

also sensitive to the precise elevations of observations that are close. For example,

suppose we perturb the elevation of the observation at (125, 225) down by 1 foot

towards the elevation at (115, 240) . This shift represents the precision at which the

elevations were recorded. The maximum likelihood estimate for the covariance struc-
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ture for the model with a mean based on Northing and distance to closest stream as

regressors is (b↵, b✓) = (4091, 0.23, 8.28) . Thus the smoothness parameter has dropped

by 3 with a negligible drop in likelihood. Again the maximum likelihood estimates of

the Matérn model with flat mean and the Exponential Model with each mean change

only slightly. To understand this a little more consider Figure 64, the residual ele-

vations after subtracting o↵ the mean function at the maximum likelihood estimate.

The pair of observations perturbed are marked with a ⇥. As one point is on the

stream, the perturbation strongly alters the contribution to the mean function of the

distance to stream variable.

Should we choose between these models? While the maximum likelihood es-

timate is a good representative value the overall flatness of the likelihoods would

suggest against choosing a particular member as the “truth”. Clearly we need ad-

ditional information before we can choose between member of the same class. The

same comments apply to the choice of regression model. It is tempting to base the

decisions on the changes in log-likelihood. It is still an open question as to the validity

of this decision rule in the face of the interdependence of the mean and covariance

structures.

In summary, the Matérn class appears to be an appropriate model for this topo-

graphical data because of the wide range of random fields it covers. As the generality

of the model for the mean increases the level of identifiability of the smoothness pa-

rameter decreases. This suggests against using the maximum likelihood covariance

structure alone as a surrogate for the information in the data about the covariance

structure. As the log-likelihood is not close to elliptical, the usual measures of un-

certainty based on curvature will be e↵ected. Unless the inference is insensitive to

the particular choice of model, inference based on the maximum likelihood estimate

alone may be inadequate.
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5.4.1 Cross validation based on the likelihoods

In this section we consider checking the consistency of the Matérn model for the

topographical data using cross-validation of likelihoods. If the field is Gaussian and

covariance class correctly specified then inference based on the likelihood function, we

have argued, is sensible. Our concern is the possible misspecification of the covariance

class and the identification of influential observations. In §4.7.3 we investigated the

e↵ect on the prediction error of misspecifying the Spherical class by the Matérn class.

In §5.3.1 we considered cross–validation based on the prediction errors. We have

introduced the topic in §2.7.2, where regularly spaced random fields in two dimensions

are considered.

We have seen in §5.4 that the maximum likelihood estimates under the Matérn

model with complex mean are sensitive to perturbations in the geometry and el-

evations of the data. Figure 65 represents the spatial distribution of the full log-

likelihoods at the cross-validated maximum likelihood estimates for this model. In

general the values are within 0.2 units of the maximum. The feature that stands out

are the six very low values. Each of these corresponded to a smoothness parameter

estimate above 70. This indicates that dropping out each of these points leads to

a great change in the estimate of the smoothness parameter. Each of these values

is located on a branch of the stream. This plot provides additional evidence for the

sensitivity of the model to the data geometry. We believe that this sensitivity is a

strike against using the model as a basis for prediction, as the less complex models

are less sensitive.

For comparison we can consider the Matérn model with flat mean. The spa-

tial distribution of the full log-likelihoods is given in Figure 66. We no longer see

an extreme set of points, although our eyes are drawn to the location (205, 40)
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with elevation 960. This value was also sighted as hard to predict when we consid-

ered cross-validation based on the prediction error. Another influential point is at

(15, 305) probably because it is on the edge of the region and is thus influential on

the mean function.

The results for the Matérn model with flat mean and the particular members

with ✓
2

= 1 and ✓
2

= 1

2

show less sensitivity, although the observation located at

(205, 40) is influential. We have also considered the log-likelihood plotted against

the cross-validated maximum likelihood estimates, although it is unclear what they

say about the misspecification of the modeling class.

5.5 Bayesian analysis of the topographic data

In this section the Bayesian viewpoint of Chapter 4 will be applied to the

topological data. The main question is the quality of prediction, both actual and per-

ceived, achieved by using maximum likelihood estimates of the covariance structure in

place of the correct structure. The Matérn modeling class will be the reference class.

It is implicitly assumed that the true model is an unknown member of this class. The

constant model for the mean is used. This section is conceptually an extension of the

discussion in §5.4.

The prior distribution used for the smoothness parameter, ✓
2

, is uniform from

0.25 to 2.5, the rationale being that we do not expect the realizations to be discon-

tinuous or much smoother than once di↵erentiable. An informative prior for ✓
2

is

given in Figure 67. Values between 1

2

and 1 are regarded highly. Values rougher

than 0.25 are excluded. The tails on either side of 1

2

and 1 drop o↵ like an inverse

square. This prior will be used later in this section. One could consider placing point

masses at the ‘knots’ 1

2

, 3

2

or favoring the smoother structures. The joint prior for

(�, ↵) is inversely proportional to ↵. This is consistent with the lack of information
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about � . The issue of choice of distributions prior to the data is also considered in

§4.8.

Marginal posteriors for the smoothness parameter are given in Figure 68. Con-

sider the posterior based on the convenience prior. The mode is near ✓
2

= 1

sometimes called Whittle’s covariance function after Whittle (1954, 1962). Inter-

estingly, Whittle regarded this model as the natural extension of the Exponential

model (✓
2

= 1

2

) from one to two dimensions. It corresponds to a random field with

continuous realizations that are on the margin of mean-square di↵erentiability. For

✓
2

> 1 the field is mean-square di↵erentiable. The distribution fades out near 0.25

and 2.5 , compatible with the prior specification. It is interesting to note that the

ratio of the density at the mode to the density at the Exponential model is about

85 : 1 , so that the Exponential appears too rough for this field. The distribution

is right skewed, so that the density for ✓
2

= 1

2

is more than that at ✓
2

= 3

2

. The

posterior based on the informative data places less emphasis on the larger values of

the smoothness parameter. It is also centered about ✓
2

= 1 .

Clearly these posterior densities are a useful tool for understanding the data.

The location chosen to be predicted is marked on Figure 55 in the center of the

region. It was chosen to be reasonably distant from the survey locations. A second

location was chosen on the branch of the stream because it would be potentially useful

to a surveyor and because of the close proximity of survey locations.

The traditional kriging approach estimates the covariance parameters and pro-

ceeds as if the estimated covariance structure is known to be the correct covariance

for the field. In this section we will use the maximum likelihood estimate of the co-

variance parameters. Measures of uncertainty for the distribution are then based on

the perceived error distribution (7.6.1). The actual posterior predictive distribution

of this predictor is, under the full model, given by (7.6.3) and the complete poste-
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rior predictive distribution is given by (7.4.2). The complete posterior weighs each

covariance structure by the posterior density for the covariance structure under the

Matérn model.

Figure 69 presents the posterior predictive densities for the model with con-

stant mean function. The perceived posterior is a centered Gaussian with a stan-

dard deviation of about 25 feet. The maximum likelihood estimate is (b↵, b✓) =

(3881, 1.95, 0.97) . The actual and complete posteriors are mixtures of non-central

and central t-distributions respectively. The complete posterior is a better reflection

of the uncertainty in the covariance structure and should be regarded as a superior

reference for inference. It is always symmetric about zero. The perceived posterior is

based on an incorrect model, and can be wider or narrower than the complete pos-

terior depending on the plug-in estimates used. In general it tends to underestimate

the uncertainty. The actual posterior of the plug-in predictor indicates that it has

a downward bias of about �3 feet. It also indicates that the perceived posterior

slightly underestimates the uncertainty of the plug-in predictor. Figure 70 provides

relative comparisons of the densities. The vertical axis has a logarithmic scale. The

perceived posterior has lighter tails than the complete posterior and the actual poste-

rior of the estimated predictor. Notice that values outside of 75 feet have negligible

weight. Hence probability regions based on the perceived and complete posteriors

will be similar.

The estimate for the covariance structure proposed in Warnes & Ripley (1987)

and Ripley (1988) was (↵̃, ✓̃) = (2112, 2, 1

2

) . There they claimed that the maximum

likelihood estimate is “nonsensical” and that the “posterior density will have its mass

concentrated on unrealistic values”. We can evaluate this claim within the Bayesian

framework.

Figure 71 compares the perceived and actual performance of kriging predictor
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based on the parameters suggested by Warnes & Ripley (1987) to the complete pos-

terior under the Matérn model. The perceived posterior is much broader than the

actual posterior providing conservative inference. The actual posterior of this pre-

dictor indicates that it has a bias of about 5 feet. Figure 72 provides a relative

comparison. Probability intervals based on the perceived posterior will be markedly

wrong under the Bayesian model and will di↵er substantially from those based on the

complete posterior.

If we base the parameter estimates on values suggested by the empirical correla-

tion curves, as Warnes & Ripley (1987) have, then we will tend to obtain a misleading

perceived performance and a diminished actual performance compared to the point

predictor based on the maximum likelihood estimate. Given agreement on the model

and prior distributions for the parameters it is absurd to suggest that the posterior

will have its mass concentrated on unrealistic values.

How sensitive is our inference to the choice of prior distributions? In these ex-

amples a flat prior distribution for the smoothness parameter is used. Figure 73 is

the analogue of Figure 69 using the informative prior in Figure 68. This prior places

greater emphasis on values between 1

2

and 1. The posteriors in Figure 73 and Fig-

ure 69 are quite similar. The actual distribution of the prediction error indicates

that some of the bias has been removed from the predictor. Figure 74 represents a

relative comparison of the complete posteriors using informative priors to the com-

plete posterior using the convenience prior. The inference appears to be insensitive to

moderate changes in the prior for ✓
2

. In general the posterior distribution of the pre-

diction error will be less sensitive to alternative prior distributions than the posterior

distribution of the smoothness parameter. The dotted line in Figure 74 represents

a relative comparison of the complete posterior using a flat prior for ↵ instead of

the usual 1/↵. The resulting posterior has slightly thinner tails. The posterior is
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insensitive to changes in the prior for �.

The likelihood values in Table 4 suggest that the model with a flat mean may be

inadequate as compared to the models including the survey locations and distance to

streams as regressors. Figure 75 summarizes the performance of Model 4 in Table 3.

The posterior standard deviation is about 12 feet. The perceived posterior using the

maximum likelihood estimates is again narrower than the complete posterior. The

actual posterior of the plug-in predictor indicates that it has a bias of about 5 feet

and that the perceived posterior substantially underestimates the true uncertainty

of the predictor. Overall the plug-in predictor has greater deviation from the com-

plete posterior than in the situation of a flat mean. However the performance of all

predictors is better, that is, the posteriors are tighter. Figure 76 provides a relative

comparison.

Figure 77 is the analogue of Figure 72 using a more complex model for the mean

and analyzing the performance of the plug-in predictor based on the values suggested

in Ripley (1988). The perceived posterior has a standard deviation of about 25 feet.

This is an unacceptable di↵erence. The actual posterior indicates that the plug-in

predictor also has a bias of about 10 feet. The perceived performance of this predictor

is very misleading and the overall quality of the plug-in predictor is poor compared

to the complete Bayesian approach.

This analysis provides insight into the performance of the kriging procedure and

the e↵ect of misspecification of the covariance structure.

5.6 Numerical accuracy considerations in the calculation of

likelihoods

In this section we consider some accuracy issues in the computation of the like-

lihood for spatial random fields. The log-likelihood based on observing the random
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field at n locations was given in (2.2.1). It involves the inverse and determinant of the

n⇥n matrix K
✓

. As K
✓

is a covariance matrix it is positive definite and so, in prin-

ciple, these operations present no di�culties. As the number of observations increases

K
✓

approaches numerical singularity so that numerical stability becomes important.

In addition the computational e↵ort required for these operations increases like n3.

In calculating the log-likelihood it is unnecessary to invert K
✓

directly. All that is

needed is the log determinant of K
✓

and a quadratic form. These may be determined

from the Cholesky factorization and solving linear systems in the Cholesky triangle

using back-substitution. This is more e�cient and numerically stable than calculating

the inverse directly. However the Cholesky factorization still requires n3/6 + O(n2)

operations.

We can monitor how close K
✓

is to singular by, , the condition number for the

inversion problem. It can be defined using the matrix 2-norm, k K
✓

k= sup|x|=1

|K
✓

x|

where |x| =
p

x0x , so that  =k K
✓

k · k K�1

✓

k . The condition number measures

the closeness of K
✓

to singularity in the sense that �1 =k E k / k K
✓

k , where E

is the smallest matrix (in the k · k sense) for which K
✓

+ E is singular. The error

in the finite-precision arithmetic of linear systems in K
✓

is bounded by a constant

times (· machine precision ). The usual rule of thumb is to keep  < (machine

precision) �1
2 . All our calculations were done on a Sun 3/60 using double precision

arithmetic corresponding to a machine precision of 10�19. The issue of accuracy of

calculation is usually ignored by practitioners.

We now consider the accuracy of the calculation of the log-likelihood for the

topological data using a Exponential model with flat mean. Our interest is sparked

by a finding of Warnes & Ripley (1987) . They model the data by a Gaussian random

field with covariance from the Exponential class using the scale parameterization

(�, ✓
2

) where � =
p

✓
1

✓
2

. We can calculate the log-likelihood for (✓
1

, ✓
2

) profiled
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over a flat mean. For the covariance matrices considered the condition number is

about 2⇥ 103 . As a comparison the n x n matrix with n + 1 on the diagonal and

n elsewhere has condition number 2.7⇥ 103 for n = 52 and 104 for n = 100 . We

note that that the condition  < (machine precision) �1
2 is easily satisfied. Hence we

should not run into numerical accuracy problems in calculation the log-likelihood.

Warnes & Ripley (1987) claim the log–likelihood surface is given by Figure 78.

We have made exhaustive e↵orts to reproduce this figure with no success. The actual

log–likelihood appears to be Figure 79, with the unique maximum marked with a

⇥ . No ripples were found even going to an additional two decimal places than the

ripples in Warnes & Ripley (1987) . Figure 80 is a close up of the central region that

should show in detail two local maxima. All contour plots are based on independent

evaluations on a 40 x 40 grid of points. We note that as the log-likelihood is unimodal

in ✓
1

it su�ces to consider the log-likelihood (2.2.2) also profiled over ✓
1

. This is

given in Figure 81. There is no sign of multiple modes. After this section was written

a paper by Mardia & Watkins (1989) addressing the issue of ripples in the likelihood

was brought to our attention. Their investigation arrives at the same conclusions as

we do.

The condition number of K
✓

is sensitive to the geometry of the sites. Typically

the condition number increases as the minimum distance between locations decreases.

We now investigate the e↵ect of perturbations in the locations of the 52 sites on

the condition number of K
✓

. As the survey locations are recorded to 2 significant

digits, one approach is to randomly move the last digit up or down one and look at

the log–likelihood surface produced. The e↵ect is to move the surface around, while

retaining the basic shape. The maximum is perturbed about on the line approximately

joining (640,7) to (800,4). The condition number of K
✓

is approximately inversely

proportional to the smallest distance between sites. Hence, unless sites coincide, the
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condition number is still of the order 103 and is of little numerical concern. When

the sites were perturbed in a random direction a distance of 5 yards similar results

occurred. This indicates that the numerical e↵ects are not sensitive to the exact

definition of the observations.

Using the natural slope parameterization of §2.3, the log–likelihood contour is

given in Figure 82. Under this parameterization the eccentricity of the contours is

greatly reduced. This has obvious advantages for estimation and inference.

In conclusion, we have has found no evidence of ripples in the likelihood surface

for the topological data. All attempts to numerically produce them have failed and

the computation, while di�cult, appears to be numerically stable. Quite apart from

the numerical evidence their is no substantive rationale for ripples of this kind. Unlike

the situations studied in §2.5 and §2.6 the form of the covariance structure and the

geometry of the sites provide no hint that irregular behavior could arise.

5.7 Summary and conclusions

In this chapter topological data from Davis (1973) is used as a forum for the

analysis of spatial data when the objective is prediction. Our focus is likelihood

methods including Bayesian analysis.

The results of §5.3 indicate that the Exponential class, while adequate, leaves

room for improvement. The model selection is by maximum likelihood and evaluation

is by cross validation.

The results of §5.4 indicate that the Matérn class leads to improved modelling

of the data. The Exponential class is a sub-class of the Matérn class. As the model

for the mean became more sophisticated the estimated covariance structures became

shorter ranged and smoother. In addition the parameters became less identifiable.
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Section 5.6 describes a Bayesian analysis of the kriging predictor. This approach

is more sensitive to the complete likelihood surface than plugging in the maximum

likelihood estimate of the covariance structure. It allows the performance of the

plug-in predictor to be critiqued within a larger framework.

In conclusion, one should ideally base inference on the complete posterior distri-

bution of the prediction error. Usually, inference is based on the perceived posterior

of the prediction error based on an estimated covariance structure. In §5.5 we see

that kriging based on on the maximum likelihood covariance structure provides an

adequate perceived posterior. However there is a definite loss incurred in the use of

a single covariance to represent the posterior knowledge of the covariance structure.

The maximum likelihood estimate may be the best single representative available,

but this reduction itself can be detrimental to the inference.

Ripley (1981), Warnes & Ripley (1987) and Ripley(1988) promote the use of

covariance structures suggested by the empirical covariance functions. This chapter

suggests that the perceived posteriors based on such estimated covariance structures

di↵er markedly from the complete posteriors. In addition the perceived posterior

are quite di↵erent for the actual performance of the predictors. Overall they are

markedly worse than the plug-in kriging predictions based on the maximum likelihood

estimates.

These conclusions provide support for the arguments in §5.5 against compar-

ing empirical correlation plots to the theoretical curves as a means of estimating

covariance parameters.

In §5.6 we consider some issues of numerical accuracy in the calculations of

likelihoods. As a side benefit some claims of Warnes & Ripley (1987) and Ripley

(1988) against likelihood methods have been evaluated. They claim that the likelihood

surface of this data for an Exponential covariance model with flat mean is multimodal.
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The results of §5.6 indicate that there is no evidence, numerical or substantive, to

support this claim.



CHAPTER 6

SUMMARY AND FUTURE RESEARCH

6.1 Summary

In this section we will give a short overview of the thesis. It provides a comple-

ment to the primary five chapter summaries, which focus on the individual findings.

As indicated by the nature of the contributions in this thesis, foundational issues

of statistical inference for spatial random fields have yet to be resolved. Our level

of comprehension is usually ‘What are the right things to think about?’, sometimes

progressing to ‘What are the right things to do?’ and rarely to ‘Is it possible to prove

this is the right thing to do?’.

There are two factors that make the statistical issues challenging compared to

traditional statistical problems. The first is the dependence structure of the observa-

tions. If this structure is known up to location and scale parameters, then we can deal

with the issues in familiar ways. In the majority of situations the dependence struc-

ture is unknown so that we must adapt our inference to account for this uncertainty.

Until recently the impact of this uncertainty was largely unexplored and usually ig-

nored. An exception is time-series where there is a vast literature (Priestley (1981)).

The second factor is the pertinence of the spatial location of the observations to the

inference. When the observations are regularly spaced, as in time-series, symmetry

can be utilized to motivate and substantiate approaches to inference. When the ob-

servations are irregularly spaced it is necessary for inference to reflect the individual

211
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geometries. In particular the mathematics for the interesting situations is often in-

tractable. This is reflected in this thesis where the theoretical contributions are based

on either discrete equally spaced observation, continuous observation on a segment,

or asymptotics. In all three approaches the data geometry has been finessed.

The findings of Chapter 2, summarized in §2.8, are central to the thesis and

motivate the other chapters. In Chapter 3, we investigate the approximation of dis-

crete observation in a fixed interval by continuous observation on the same interval.

We find that the distribution of the maximum likelihood estimates are well approx-

imated by their continuous versions when the range of correlation is comparable to

the length of the segment, in a sense made precise. These distributions are surprising

close to log-Gaussian. We see in Chapter 4 that much can be gained by viewing the

kriging procedure for the prediction of Gaussian random fields within the Bayesian

framework. In particular the e↵ects of model misspecification are readily observable.

In Chapter 5 topographical data from Davis (1973) is used as a forum for for the

analysis of spatial data when the objective is prediction.

6.2 Future research

We have focussed on parametric approaches and likelihood based inference.

Based on the findings of this thesis, our future research will continue on this path. Of

course, there are other paths to follow and one may lead to better solutions. The pri-

mary focus of future research will be model validation. That is, how can we tell if we

have misspecified a hypothesized parametric model. We have explored some simple

approaches in Chapter 5. In §2.7.2 and §5.4.1 we considered cross-validation based on

the likelihood statistic. In §5.3.1 we considered cross-validation based on the predic-

tion errors. The study of these approaches is in its infancy. Another approach is based

on resampling the observations within successively finer sub-regions. The analysis is
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redone on each subsample for a given resampling and the variation in the inference

within a resampling is compared to that for successively finer resamplings. For exam-

ple, consider observing data on a 8⇥8 grid in two dimensions. We can look at the 4

overlapping 6⇥ 6 blocks and for each estimate the parameters under a hypothesized

model. These 4 estimates can be compared to those obtained under 4⇥4, 3⇥3 and

8 ⇥ 8 blockings. Deviations in the pattern of estimates as the resampling changes

can be evidence for model misspecification. Clearly the type of resampling should be

tailored to the parameter of interest. For example, non-contiguous blocks might be

better for parameters measuring the range of dependence. The individual estimates

will be dependent even if the subsamples are nonintersecting, so care must be taken

in calibrating the procedure. Initial results indicate that such resampling techniques

can be very informative.

Choosing good modeling classes is vital. This thesis promotes the Matérn class

of covariance functions for use as an omnibus model. We still need to extensively apply

it to real phenomena. Its statistical properties require more exploration, especially the

geometry of the likelihood. For example, we do not have a proof that the likelihood is

unimodal although the weight of empirical evidence indicates that it is. The properties

of peculiar models such as the Spherical and Square Exponential should be publicized,

so that researchers better understand their properties.

Advances in statistical computations and computer hardware are having an

impact on the theory of spatial prediction. Techniques regarded as extravagant today

will not be in the future. This is particularly true for graphical approaches. As

the figures in this thesis indicate, the analysis of spatial data is especially amenable

to graphical methods. We have considered in §2.7 and §5.6 numerical issues in the

calculation of likelihoods. These issues have received careful attention from numerical

analysts and our research should reflect their contributions.
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In Chapter 3, we consider using the empirical spectral density as a tool for

inference about the covariance structure when the correlation length of the process

is of the same magnitude as the length of observation. There we do not discuss the

estimation of the empirical spectral density based on observing the random field as

irregular locations. One approach is called Direct Quadratic Spectrum Estimation

and advocated by Marquardt & Acu↵ (1982, 1984). This amounts to the direct

approximation of the integrals defining the empirical spectral density. The issue has

been addressed in the literature on irregularly spaced time-series (Masry (1984)). Our

objective is to use the estimate of the empirical spectral density as a diagnostic tool.

It can also be used to estimate the covariance structure (Wahba (1980)).

The motivating problem for this thesis was the prediction of ore grades within

the Mount Charlotte gold mine. A complete and satisfactory analysis remains for

future research.
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