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Challenges to Traditional Survey Sampling

Eroding survey response rates and non-ignorable non-response
computation of inclusion probabilities is di�cult
estimation of inclusion probabilities is required

Allure of model-assisted and model-based modes of inference
models require assumptions
assumptions may be di�cult to validate
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Some types of non-probability samples

General types:
Convenience sampling: no formal design, the goal is acquisition
Online panels: using internet, social media, etc, to select and recruit
Sample matching: stratify on important population characteristics
Network sampling: applicable when the population is networked

Modes of inference for non-probability samples:
Quasi-randomization: Design-based via a model for inclusion
probabilities: ⇡i = P(Si = 1)
Super-population: Model-based via a model for outcomes: P(Yi)
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Hard-to-Reach Population Sampling: Motivating Questions

What proportion of sub-Saharan migrants to Morocco have children?
What proportion of semi-rural people are at high-risk for opioid
addiction?
What proportion of unregulated workers in New York City experience
workplace violations of code?
What proportion of Injecting Drug Users in Kampala are HIV Positive?
What proportion of sex workers in rural China belong to ethnic
minorities?

Limitation: No practical conventional sampling frame.
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Adaptive Network Sampling

Suppose:
The population is joined by informal social network of relationships.
Researchers can access some members of the population.

Sampling design:
Begin with a reachable (convenience) sample (the seeds)
Expand the sample by the researchers sampling those tied to those
already in the sample.
a process called link tracing.
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Start with a seed person

seed
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Contact other people via the seed’s social network

seed
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Contact other people via the seed’s social network

seed
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recruit

recruit

8



Contact other people via the seed’s social network

seed
recruit

recruit

recruit
recruit

recruit

recruit

recruit

recruit

9



●

● ● ●

● ●

● ● ● ● ●

● ● ● ●

● ● ●

● ● ● ● ● ●

● ● ●

● ●

● ●

●

● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ●

● ● ● ● ● ● ●

● ● ●

● ● ●

●

●

●

●

●

●

● ●

● ●

●

● ●

● ● ●

● ● ● ●

●

● ●

● ● ●

●

● ● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

●

● ●

● ● ●

●

● ● ●

● ● ● ● ●

● ● ●

● ●

●

● ●

1

8 9 10

26 27

51 52 53 54 55

94 95 96 97

136 137 138

191 192 193 194 195 196

235 236 237

255 256

267 268

2

11 12 13

28 29 30 31 32 33 34 35 36

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

197 198 199 200 201 202 203 204 205 206

207 208 209

210 211 212 213 214 215 216

238 239 240

241 242 243

257

258

269

270

271

3

14 15

37 38

4

16 17

39 40 41

76 77 78 79

123

174 175

217 218 219

5

18 19 20

42 43 44 45

80 81 82 83 84 85 86 87 88 89 90

124 125 126 127 128 129 130 131 132 133

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

244 245 246 247 248 249 250 251 252 253 254

259 260 261 262 263 264 265 266

272

273 274

275 276 277

6

21 22 23

46 47 48 49 50

91 92 93

134 135

7

24 25

● ● ● ●

Commune
1 2 3 4

Figure: Graphical representation of the recruitment tree for the sampling of PWID.
The nodes are the respondents and the wave number increases as you go down
the page. The node color indicates the geographic neighborhood.
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Adaptive Network Sampling

Strengths:
Exploits information in the network of relationships
Network structure used to improve the design
Increases the range of possible designs
Adjusts for discovered features in the population
Leads to increased e�ciency of sampling

Issues:
Seed Dependence: �nal sample depends on sampling mechanism of
seeds
Privacy: some populations prefer to stay “hidden”

Link-tracing can be challenging: con�dentiality, logistics
Estimation: The sample and sampling probabilities depend on the
unknown network
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Sampling depends on network: design-based

Observable sampling probabilities:

Sampling Nodal Probabilities ⇡i Dyadic Probabilities ⇡ij
Scheme Undirected Directed Undirected Directed
Simple Random Yes Yes Yes Yes
One-Wave Yes No No No
k�Wave, 1 < k < 1 No No No No
Saturated Yes No No No

(Unconditional) sampling probabilities unknown for many simple sampling
strategies

Snijders, T.A.B., 1992, “Estimation on the basis of snowball samples: how to
weight.” Bulletin Methodologie Sociologique, 36, 59-70.
Handcock, M.S. and K.J. Gile, 2010, “Modeling social networks from sampled
data.” , Annals of Applied Statistics, 4, Number 1, 5-25.
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A peculiar case: Respondent-Driven Sampling

Sampling design: Require respondents to choose from among their
social circle rather than the researcher chooses.
Seed Dependence: follow only a few links from each sampled
Privacy: respondent-driven: respondents distribute uniquely identi�ed
coupons. no names.
Link-tracing: none by researchers, done by respondents.
Estimation: Challenging to get valid estimates

E�ective at obtaining large varied samples in many populations.
Widely used: over 100 studies, in over 30 countries. Often HIV-risk
populations.
Heckathorn, D.D., “Respondent-driven sampling: A new approach to the

study of hidden populations.” Social Problems, 1997.

Handcock, M.S. and K.J. Gile, “On the Concept of Snowball Sampling.”
Sociological Methodology, 2011.
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Classic Design-Based Inference:
Generalized Horvitz-Thompson Estimators

Goal: Estimate the population mean of y:

µ =
1
N

NX

i=1

yi

where
yi =

⇢
1 i “positive"

0 i “negative".

Hajek Estimator:

µ̂ =
P

i
Si
⇡i
yi

P
i
Si
⇡i

where

Si =
⇢

1 i sampled

0 i not sampled
⇡i = P(Si = 1).

The key point: Estimator requires ⇡i = P(Si = 1) 8 i : Si = 1
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One Approach: Random walk approximation

Respondent-driven Sampling:
Approximate link-tracing process by a Markov chain representation
Assume sample can be treated as from stationary distribution
Then sampling probabilities proportional to degree.

Volz-Heckathorn Estimator (VH): inverse probability weighted by degrees

µ̂VH =
P

i Si
yi
diP

i Si
1
di

where di = degree of node i, Si sample indicator, yi quantity of interest.

Volz, E., and D.D. Heckathorn, “Probability Estimation Theory for Respondent
Driven Sampling,” Journal of O�cial Statistics, 2008.
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Improvements to RDS design-based estimators

The key is the modeling of the sampling process
Salganik and Heckathorn (2004): simple Markov Chain model over
classes. Struggles with Seed bias and �nite population, good on
homophily
Volz and Heckathorn (2008): Markov Chain model over people. Seed
bias, �nite population, di�erential activity, homophily
Gile (2008, 2011): Develops a model based on the
successive sampling of people in time.
Adjusts for without-replacement and �nite population e�ects
Fellows (2018) introduced the homophily con�guration graph (HCG)
estimator that has the good features of the SH and SS estimators.
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Fitting Models to Partially Observed Social Network Data

Focus on the joint distribution of Z = (Y , X).
Types of data: Observed relations, nodal and dyadic variables
(zobs = (yobs,wobs)), and indicators of relations and covariates
Z = (Zobs, Zunobs)

L(⌘, ) ⌘ P(Zobs = zobs,D|⌘, )

=
X

zunobs

P(Zobs = zobs, Zunobs = zunobs,D|⌘, )

=
X

zunobs

P(D|Zobs = zobs, Zunobs = zunobs, )P⌘(Zobs = zobs, Zunobs = zunobs)

=
X

zunobs

P(D|Z, )⇥P⌘(Z = z)

sampling design⇥network model

⌘ is the network model parameter (“super population")
 is the sampling parameter
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Adaptive Sampling Designs

A sampling design adaptive if:

P(D = d|Zobs, Zmis, ) = P(D = d|Zobs, ) 8z 2 Z.

that is, it uses information collected during the survey to direct subsequent
sampling, but the sampling design depends only on the observed data.

adaptive sampling designs satisfy a “missing at random” condition from
Rubin (1976) in the context of missing data.

Result: standard network sampling designs such as conventional,
adaptive web, and multi-wave link-tracing sampling designs are adaptive

) Thompson and Frank (2000), Handcock and Gile (2007).
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When is sampling non-adaptive?

Individual sample based on unobserved properties of non-respondents
- like infection status or illicit activity.
Link-tracing sample starting where links are followed dependent
on unobserved properties of alters.
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Adaptive Sampling Designs and their Amenable Models

De�nition: Consider a sampling design governed by parameter  2  and
a stochastic network model P⌘(Z = z) governed by parameter ⌘ 2 ⌅. We
call the sampling design amenable to the model if the sampling design is
adaptive and the parameters  and ⌘ are distinct.

Result: If the sampling design is amenable to the model the likelihood for ⌘
and  is

L[⌘, |Zobs = zobs,D = d] / L[ |D = d, Zobs = zobs]L[⌘|Zobs = zobs]

sampling design likelihood⇥face-value likelihood

L[ |D = d, Zobs = zobs] = P(D|Zobs = zobs, )

L[⌘|Zobs = zobs] =
X

zunobs

P⌘(Zobs = zobs, Zunobs = zunobs)
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Adaptive Sampling Designs and their Amenable Models

Result: If the sampling design is not amenable to the model the likelihood
for ⌘ and  is

L(⌘, ) =
X

zunobs

P(D|Zobs = zobs, Zunobs = zunobs, )P⌘(Zobs = zobs, Zunobs = zunobs)

and the design will need to be represented.

Clearly P(D|Z, ) can be modeled when it is unknown.
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Doing better: A Network Model-Based Estimator

Fit a network model to observed data (ERGM, using statnet R package)
Estimate sampling probabilities based on network model, and weight
sample appropriately
Can estimate conditional on seed selection, to reduce bias induced by
seed selection.
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Network Model-Assisted Estimator

Interested in sampling probabilities ⇡i = Py(Si = 1).
Should re�ect:

Nodal degree di
Sample fraction
Seed selection
Homophily and branching structure of sampling

This is very di�cult to do without known the underlying social network y
So we develop a “super-population” representation for y
with the purpose of “assisting” the design-based inference
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Network Model-Assisted Estimator

Approach: Retain design-based framework, but estimate the unknown
�nite-population sampling probabilities ⇡i(y) = E(Si|Y = y).

Idea:
1 For given network y, can compute

⇡i(y) = E(Si|Y = y)

2 Estimate ⇡i via
⇡̂i =

X

yunobs

⇡i(y)P⌘(Y = y|Yobs = yobs)

3 We do not know ⌘, so we estimate it from the data.
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The ERGM Framework for Network Modeling

Let Y be the sample space of Y e.g. {0,1}N
and X be the sample space of X .
Model the multivariate distribution of Y given X via:

P⌘(Y = y|X = x) =
exp{⌘·g(y|x)}
c(⌘, x, Y)

y 2 Y, x 2 X

Frank and Strauss (1986)

⌘ 2 ⇤ ⇢ Rd d-vector of parameters
g(y|x) d-vector of graph statistics.

) g(Y |x) are jointly su�cient for the model
c(⌘, x, Y) distribution normalizing constant

c(⌘, x, Y) =
X

y2Y
exp{⌘·g(y|x)}
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Extensive development of conditional models

Classes of g(y|x) (Generative Theory, Structural signatures)
Inference on the loglikelihood function,

`(⌘|yobs; xobs) = ⌘·g(yobs|xobs) � log c(⌘|xobs)

c(⌘|xobs) =
X

z 2 Y
exp{⌘·g(z|xobs)}

For computational reasons, approximate the likelihood via
Markov Chain Monte Carlo (MCMC)
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Returning to RDS: Fitting the Model

Use networks statistics g(y):
{y1+, y2+, . . . , yn+}, the degree sequence of the network.
the number of ties between those positive and those negative.

Problem: Requires (unknown) networked population statistics g(y).
Solution: Use design-based estimators

ĝ(⌘) =
NX

i=1

Sig̃(yobs)
⇡̂i

where g̃(yobs) are corresponding sample statistics.

Problem: This, in turn, requires sampling probabilities.
Solution: Novel iterative algorithm to �nd self-consistent solution.
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Model-Assisted Estimator: Algorithm

Goal: Estimate sampling probabilities (⇡i).
A function of homophily (⌘), and population of degrees and infection N.

Initiate via ⇡̂i estimated by simple rule.
Iterate the following steps:

Estimate ĝ(⌘) using ⇡̂i.
Find corresponding model parameter ⌘ (ergm R package)
Simulate M networks, and samples from networks. Estimate ⇡̂i by simulation.

Use the resulting estimated probabilities, ⇡̂i, to form weighted
estimator.

µ̂MA =

P
i Si

yi
⇡̂iP

i Si
1
⇡̂i

.
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Standard Error Estimation

Population Bootstrap:
Simulate M populations

Conditional on zobs
Use model parameter ⌘

Simulate adaptive network samples over each population
Compute MA estimates. Average estimates over M populations
Results:

Performs well when statistics are homophily, degree distribution and
di�erential activity (w)
Computationally expensive

Krista J. Gile and Mark S. Handcock, “Network Model-Assisted Inference
from Respondent-Driven Sampling Data.” JRSS, A, 178, 3, 619-639, 2015.
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Simulation Study
comparing design-based to model-assisted estimators
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More and deeper studies

EVALUATING VARIANCE ESTIMATORS FOR
RESPONDENT-DRIVEN SAMPLING

MICHAEL W. SPILLER*
KRISTA J. GILE
MARK S. HANDCOCK
CORINNE M. MAR
CYPRIAN WEJNERT

Respondent-Driven Sampling (RDS) is a network-based method for
sampling hard-to-reach populations that is widely used by public health
agencies and researchers worldwide. Estimation of population character-
istics from RDS data is challenging due to the unobserved population
network, and multiple point and variance estimators have been proposed.
Research evaluating these estimators has been limited and largely
focused on point estimation; this analysis is the first evaluation of

*Address correspondence to Michael Spiller, Centers for Disease Control and Prevention,
Division of HIV/AIDS Prevention; E-mail: MSpiller@cdc.gov.
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Spiller et. al 2018

The �rst systematic evaluation of the di�erent RDS variance estimators
Evaluation based on statistical performance on realistic but simulated
populations
Compare over simulated populations close to those of interest to the
CDC
Based on the CDC’s National HIV Behavioral Surveillance system (NHBS)

NHBS sampled persons-who-inject-drugs (PWID) in 20 U.S. cities in both 2009
and 2012
Di�erent surveys for heterosexuals, MSM and PWID, ongoing, 5 rounds since
2003.
a standardized protocol is used
40 populations are simulated using information from the 2⇥ 20 = 40

Primary focus is on estimates of con�dence intervals (i.e., coverage)
Con�dence intervals are the primary RDS estimates
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Conclusions: Methodological

Coverage of nominally 95% RDS CI are usually above 90%
Suggests that accurate RDS CI estimation is feasible
The SS/SS-BS combination performed the best

the SH and VH CI estimators are poor when di�erential activity is low and
homophily is high

Fellows (2018) introduced the homophily con�guration graph (HCG)
estimator. It is model assisted and based on the homophily
con�guration graph model. It has the good features of the SH and SS
estimators. It appears to be the best estimator.
Improvements for cases with extreme low prevalence possible using
alternative CI types

the combined Agresti-Coull and the bootstrap-t interval of Mantalos and
Zografos (2008)

Both CI coverage rates and design-e�ects are often acceptable but not
perfect.
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Conclusions: Broader

Focus on the e�ective sample size rather than design e�ect
or sample size.
CI are a lower bound on the actual uncertainty
The studies suggest that they are close to the actual uncertainty if the
sampling is executed well.
The availability of estimates and sensitivity methods in user-friendly
software is an essential research contribution
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Strengths and weaknesses of Respondent-Driven Sampling

Strengths:
E�ective at obtaining large varied samples in many populations.
Can be used in situations where a sampling frame does not exist.
Unlike other link-tracing methods, does not require initial probability
sample.
Widely used: over 150 studies, in over 30 countries. Often populations
at high risk for HIV.

Weaknesses:
Still subject to many assumptions, especially data quality
The degree to which it can be considered a probability sample depends
on the quality of the implementation and network characteristics.
Requires case-speci�c sensitivity analysis to justify its validity.

Gile, K.J., and M.S. Handcock, “Respondent-Driven Sampling: An Assessment
of Current Methodology,” Sociological Methodology, 40, 2010, available on
arXiv.
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