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Stylized Conventional Survey Sampling

Stylized description

@ Choose a population of interest and a population characteristic of
interest u

@ Determine the sampling frame: i =1, ..., N sample units.
@ Choose variables to measure on them: outcome variables y;, i =1,...,N.
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Stylized Conventional Survey Sampling

Stylized description
@ Choose a population of interest and a population characteristic of

interest i
@ Determine the sampling frame: i =1,...,N sample units.
@ Choose variables to measure on them: outcome variables y;,i =1, ..., N.

@ Choose a sampling design:
e.g., simple random sampling, stratified sampling on covariates,
stratified sampling on y

@ Choose a sample of unitsi=1,...,n and collect data on the sampled
units

UCLA 6



Sampled people (green)



Stylized Conventional Survey Sampling

Stylized description
@ Choose a population of interest and a population characteristic of

interest u
@ Determine the sampling frame: i =1,...,N sample units.
@ Choose variables to measure on them: outcome variables y;,i =1,...,N.

@ Choose a sampling design:
e.g., simple random sampling, stratified sampling on covariates,
stratified sampling on y

@ Choose a sample of unitsi = 1,...,n and collect data on the sampled
units

@ Estimate the population characteristics of interest based on the sample
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Using the sample to describe the population

@ Goal: Estimate the population mean of y:

1N
B= NZY/
i=1

where )
Y= { 1 i has the characteristic
1

0 i does not have the characteristic.
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Using the sample to describe the population

@ Goal: Estimate the population mean of y:

1N
n= N i; Yi
@ Sample indicators

S = { 1 i sampled

0/ not sampled

@ Inclusion probabilities
mi=PSi=1) i=1,...,N
e.g. simple random sampling

m=n/N i=1,...

UCLA



Classic Design-Based Inference

@ Goal: Estimate proportion positive (e.g., addicted, COVID+):

1N
n= N Zy;
i=1
@ Hajek Estimator:
S
,a . > ?’iyi
= L
e

where

1 i sampled
0 J not sampled

UCLA 1



Challenges to Traditional Survey Sampling

@ Eroding survey response rates and non-ignorable non-response

@ computation of inclusion probabilities is difficult
@ estimation of inclusion probabilities is required

@ Allure of model-assisted and model-based modes of inference
@ models require assumptions
@ assumptions may be difficult to validate

UCLA



Some types of non-probability samples

General types:

@ Convenience sampling: no formal design, the goal is acquisition

@ Online panels: using internet, social media, etc, to select and recruit
@ Sample matching: stratify on important population characteristics
@ Network sampling: applicable when the population is networked

Modes of inference for non-probability samples:
@ Quasi-randomization: Design-based via a model for m; = P(5; = 1)
@ Super-population: Model-based via a model for P(Y;)

UCLA



Non-probability survey sampling

We should not use it because:

@ Accuracy relies on (often untestable) modeling assumptions

@ The design is often opaque

@ Validity depends on implementation and is case/application specific

We may use it because:

@ It may be a “fit for purpose" design

@ Sensitivity analyses for each case are possible
@ We can insist on transparency / reproducibility

UCLA 14



Hard-to-Reach Population Sampling: Motivating Questions

@ What proportion of sub-Saharan migrants to Morocco have children?

@ What proportion of semi-rural people are at high-risk for opioid
addiction?

@ What proportion of unregulated workers in New York City experience
workplace violations of code?

@ What proportion of Injecting Drug Users in Kampala are HIV Positive?

@ What proportion of sex workers in rural China belong to ethnic
minorities?

Limitation: No practical conventional sampling frame.

UCLA 15



Adaptive Network Sampling

Suppose:
@ The population is joined by informal social network of relationships.
@ Researchers can access some members of the population.

UCLA 16
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Adaptive Network Sampling

Suppose:
@ The population is joined by informal social network of relationships.

@ Researchers can access some members of the population.

Sampling design:
@ Begin with a reachable (convenience) sample (the seeds)
@ Expand the sample by the researchers sampling those tied to those

already in the sample.
a process called link tracing.
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Commune

©1-.2-3-4
Figure: Graphical representation of the recruitment tree for the sampling of PWID.
The nodes are the respondents and the wave number increases as you go down
the page. The node color indicates the geographic neighborhood.
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Partial Observation of Social Networks

@ Sampling Design: Choose which part of an local community to observe:
“Ask 10% of people about who have a big influence on them”

UCLA 24



Partial Observation of Social Networks

@ Sampling Design: Choose which part of an local community to observe:
“Ask 10% of people who have a big influence on them”
e Egocentric

UCLA 25



Partial Observation of Social Networks

@ Sampling Design: Choose which part of an local community to observe:
“Ask 10% of people who have a big influence on them”
e Egocentric
e Adaptive

UCLA 26



Partial Observation of Social Networks

@ Sampling Design: Choose which part of an local community to observe:
“Ask 10% of people who have a big influence on them”
e Egocentric
e Adaptive

UCLA 27



Partial Observation of Social Networks

@ Sampling Design: Choose which part of an local community to observe:
“Ask 10% of people who have a big influence on them”
e Egocentric
e Adaptive

UCLA 28



Partial Observation of Social Networks

@ Sampling Design: Choose which part of an local community to observe:
“Ask 10% of people who have a big influence on them”
e Egocentric
e Adaptive

UCLA 29



Partial Observation of Social Networks

@ Sampling Design: Choose which part of an local community to observe:
“Ask 10% of people who have a big influence on them”
e Egocentric
e Adaptive

UCLA 30



Partial Observation of Social Networks

@ Sampling Design: Choose which part of an local community to observe:
“Ask 10% of people who have a big influence on them”
e Egocentric
o Adaptive
@ Out-of-design Missing Data:
“Try to survey the whole community, but someone is unavailable”
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Partial Observation of Social Networks

@ Sampling Design: Choose which part of an local community to observe:
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Partial Observation of Social Networks

@ Sampling Design: Choose which part of an local community to observe:
“Ask 10% of people who have a big influence on them”
e Egocentric
o Adaptive

@ Out-of-design Missing Data:
“Try to survey the whole community, but someone is unavailable”

@ Boundary Specification Problem:
“Should an overseas family member be considered a part of the
community?”

UCLA 33



Adaptive Network Sampling

Suppose:

@ The population is joined by informal social network of relationships.
@ Researchers can access some members of the population.
Sampling design:

@ Begin with a reachable (convenience) sample (the seeds)

@ Expand the sample by the researchers sampling those tied to those
already in the sample.

Concerns:

@ Seed Dependence: final sample depends on sampling mechanism of
seeds

@ Confidentiality: some populations prefer to stay “hidden”

@ Estimation: The sample and sampling probabilities depend on the
unknown network

UCLA 34



Adaptive Network Sampling

Strengths:

@ Exploits information in the network of relationships
@ Network structure used to improve the design

@ Increases the range of possible designs

@ Adjusts for discovered features in the population

@ Leads to increased efficiency of sampling

Issues:

@ Seed Dependence: final sample depends on sampling mechanism of
seeds

@ Privacy: some populations prefer to stay “hidden”
@ Link-tracing can be challenging: confidentiality, logistics

@ Estimation: The sample and sampling probabilities depend on the
unknown network

UCLA 35



Sampling depends on network: design-based

Observable sampling probabilities:

Sampling Nodal Probabilities m;  Dyadic Probabilities
Scheme Undirected Directed \ Undirected Directed
Simple Random Yes Yes Yes Yes
One-Wave Yes No No No
k—Wave, 1 < k < o0 No No No No
Saturated Yes No No No

(Unconditional) sampling probabilities unknown for many simple sampling
strategies

Snijders, T.A.B., 1992, “Estimation on the basis of snowball samples: how to
weight.” Bulletin Methodologie Sociologique, 36, 59-70.
Handcock, M.S. and K.J. Gile, 2010, “Modeling social networks from sampled
data.” , Annals of Applied Statistics, 4, Number 1, 5-25.
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A peculiar case: Respondent-Driven Sampling

@ Sampling design: Require respondents to choose from among their
social circle rather than the researcher chooses.

@ Seed Dependence: follow only a few links from each sampled

Privacy: respondent-driven: respondents distribute uniquely identified
COUpPONS. NO Names.

Link-tracing: none by researchers, done by respondents.
Estimation: Challenging to get valid estimates

Effective at obtaining large varied samples in many populations.

Widely used: over 100 studies, in over 30 countries. Often HIV-risk
populations.

Heckathorn, D.D., “Respondent-driven sampling: A new approach to the
study of hidden populations.” Social Problems, 1997.

Handcock, M.S. and K. Gile, “On the Concept of Snowball Sampling.”
Sociological Methodology, 2011.
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The first wave recruit the second wave ...
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and so on ...



At the end (the unsampled are shaded)




degree of node /# of ties of node i






Classic Design-Based Inference:

Generalized Horvitz-Thompson Estimators

@ Goal: Estimate the population mean of y:

1N
B= NZY:‘
i=1

where

1 i “positive"
Yi=Yo i “negative".

@ Hajek Estimator:
S
> ?’iyi
Y
e

/j —
where

| 1 isampled o o
3 = { 0 /i not sampled m =P(5i =1).
@ The key point: Estimator requires m = P(S;=1) Vi:§ =1
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One Approach: Random walk approximation

Respondent-driven Sampling:

@ Approximate link-tracing process by a Markov chain representation
@ Assume sample can be treated as from stationary distribution

@ Then sampling probabilities proportional to degree.
Volz-Heckathorn Estimator (VH): inverse probability weighted by degrees

~ Zisi%
VH — = c 1
H Zisf%-

where d; = degree of node i, S; sample indicator, y; quantity of interest.

Volz, E., and D.D. Heckathorn, “Probability Estimation Theory for Respondent
Driven Sampling,” Journal of Official Statistics, 2008.

UCLA 47



Design of a Simulation Study of the approximation

Simulate Populations

@ Number of people: 1000, 835, 715, 625, 555, or 525 nodes

@ 20% of the population are “positive”

Simulate Social Networks over those Populations

(from ERGM, using ergm/statnet)

@ Mean degree 7

@ Homophily on Positivity: R = ﬁgposmve to negative tie) _ g (o other)

negative to positive tie)

@ Differential Activity: w = 2ean degree for positives _ q (51 gther)

mean degree for negatives

Simulate Respondent-Driven Samples from the Populations
@ 500 total samples

@ 10 seeds, chosen proportional to degree

@ 2 coupons each

@ Coupons at random to relations

@ Sample without replacement

Repeat 1000 times
Blue parameters varied in study.

UCLA 48



Volz-Heckathorn, when no differential activity (w=1)
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When the positives are more active (w=1.5)
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Improvements to RDS design-based estimators

The key is the modeling of the sampling process

@ Salganik and Heckathorn (2004): simple Markov Chain model over
classes

@ Volz and Heckathorn (2008): Markov Chain model over people

@ Gile (2008, 2011): Develops a model based on the
successive sampling of people in time.
Adjusts for without-replacement and finite population effects

UCLA 51



When all the seeds are positives, homophily causes bias

o =)

™M — MW Mean ¢
__ o = VH o 8 4
o m ss . -
3V g [
o ! b

1 ' '

1 '
< 0
5 N
= o
=
L
o
£ ‘
® o !
w - ‘ ‘
L O ' | . ! | ' '
3 ' ' ! ! . o
f= ! ' ' ' ) ' ' . .
1) ' o L I - N
< + ' ' 8 I ° °
= 8 L2 8 + 8
(<3 ° s 3 53 °
S o6 3 o o
a 9 | N
=] )
3 ©
2
o
5
(=%
<
L

o

F!;

o

R 1 3 5

Homophily on Infection status

UCLA 52



Doing better: Broader Perspectives

@ Network-specific versus Population-process

- Network-specific: interest focuses only on the actual network under

study

- Super-Population-process: the network is part of a population of
networks, but interest is in the specific network
- the network is conceptualized as a realization of a social process

- Population-process: Interest focuses on the super-population process
and the sampled network is thought of as data

@ The choice of models depends on the objectives

- The complexity of most network processes precludes
complete modeling
- We choose those aspects of the network we represent and model well

UCLA 53



Conceptual Sampling Design Framework

Super-population

draw

Finite-Population

Draw a sample of size n
from design D

Sample

Zis a subset of D

UCLA 54



Network representations of the population

@ Networks are widely used to represent data on relations between
interacting entities or nodes.

Lamberteschi

Acciaiuoli

Pazzi
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Network representations of the population

@ Networks are widely used to represent data on relations between
interacting entities or nodes.

Lamberteschi

Pucci

@ The study of social networks is multi-disciplinary e
@ plethora of terminologies .
@ varied objectives, multitude of frameworks fockal - &,

@ Understanding the structure of social relations has been
the focus of the social sciences

@ Attempt to represent the structure in social relations via networks

UCLA 56



Network representations of the population

@ Networks are widely used to represent data on relations between
interacting entities or nodes.

Lamberteschi

@ The study of social networks is multi-disciplinary L g

@ plethora of terminologies
@ varied objectives, multitude of frameworks

@ Understanding the structure of social relations has been
the focus of the social sciences

@ Attempt to represent the structure in social relations via networks
@ Network representations can be helpful in many settings

Acciaiuoli

Pazzi

UCLA 57



Statistical Models for Social Networks?

Notation
A social network is defined as a set of n social “actors", a social relationship
between each pair of actors, and a set of variables on those actors/pairs.

v, — 1 relationship from actor i to actor j
7 10 otherwise

@ call Y = [Ylaxn a graph

e aN=n(n—1)binary array
@ X be n x g matrix of actor and dyadic covariates
@ call (Y, X) a network

@ The basic problem of stochastic modeling is to specify a distribution for
X,Yie, P(Y=y,X=X)

UCLA 58



Features of Many Social Networks

@ Mutuality of ties

@ /ndividual heterogeneity in the propensity to form ties
@ Homophily by actor attributes
= Lazarsfeld and Merton, 1954; Freeman, 1996; McPherson et al., 2001

@ higher propensity to form ties between actors with similar attributes
e.g., age, gender, geography, major, social-economic status
@ attributes may be observed or unobserved

@ Jransitivity of relationships
o friends of friends have a higher propensity to be friends

UCLA 59



The ERGM Framework for Graph Modeling

UCLA

Let Y be the sample space of Y e.g. {0, 1}V.
@ g(y),y € Y d-vector of graph statistics

@ represent graph features of interest (e.g., density, transitivity)
@ desire g(Y) to be jointly sufficient for the model

60



The ERGM Framework for Graph Modeling

Let g(y) be a probability mass function over Y.
Recall the maximum entropy motivation for exponential-families:

maximize 3" q(y)log(q(y)
y

subject to
Eq[gi(y)]:,ui, VI€{177d}

Leads to:

p(¥ —y) = “ETEN))

Ejg() = n

yey

UCLA 61



UCLA

The ERGM Framework for Network Modeling

Let ) be the sample space of Y e.g. {0, 1}V
and X be the sample space of X.
Model the multivariate distribution of Y given X via:

P (Y =ylX =x) = exp{nglyx)}

X
cn.x, Y) yey, xe

Frank and Strauss (1986)
@ 1 € A C RY d-vector of parameters

@ g(y|x) d-vector of graph statistics.
= g(Y|x) are jointly sufficient for the model

c(n,x, Y) distribution normalizing constant

c(nx,Y) = exp{ngylx)}

yey
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Fitting Models to Partially Observed Social Network Data

@ Focus on the joint distribution of Z = (Y, X).

@ Types of data: Observed relations, nodal and dyadic variables
(Zobs = (Vobs, Wops)), and indicators of relations and covariates

0 7= (ZobSaZunobs)

L(n, %) = P(Zobs = Zobs, DIn, )
= Z P(Zobs = Zobs; Zunobs = Zunobs: DI, ¥)

Zunobs

= Z P(D|Zobs = Zobss Zunobs = Zunob57¢)P’r](Zobs = Zobs, Zunobs = Zunobs)

Zunobs

= 3" P(DIZ, ) xPy(Z = 2)

Zunobs

sampling designxnetwork model

@ 7 is the network model parameter (“super population")

@ ¢ is the sampling parameter
UCLA 63



Adaptive Sampling Designs

@ A sampling design adaptive if:
P(D = d|Zops, Zmis, ) = P(D = d|Zpps, ) VZ € Z.
that is, it uses information collected during the survey to direct subsequent
sampling, but the sampling design depends only on the observed data.
@ adaptive sampling designs satisfy a “missing at random" condition from
Rubin (1976) in the context of missing data.

@ Result: standard network sampling designs such as conventional,
adaptive web, and multi-wave link-tracing sampling designs are adaptive
= Thompson and Frank (2000), Handcock and Gile (2007).
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When is sampling non-adaptive?

@ Individual sample based on unobserved properties of non-respondents
- like infection status or illicit activity.

@ Link-tracing sample starting where links are followed dependent
on unobserved properties of alters.

UCLA 65



Adaptive Sampling Designs and their Amenable Models

Definition: Consider a sampling design governed by parameter ¢ € W and
a stochastic network model Py(Z = z) governed by parameter n € =. We
call the sampling design amenable to the model if the sampling design is
adaptive and the parameters v and i are distinct.

Result: If the sampling design is amenable to the model the likelihood for n
and ¢ is

L[Thw‘zobs = Zobs, D = d] X L[QND =d,Zops = Zobs]L[TI‘Zobs = Zobs]

sampling design likelihood x face-value likelihood

L[w|D = da Zobs = Zobs] = P(D|Zobs = Zob57¢)

L[n|Zobs = Zobs] = Z Pn(Zobs = Zobs, Zunobs = Zunobs)

Zunobs
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Adaptive Sampling Designs and their Amenable Models

Result: If the sampling design is not amenable to the model the likelihood
forpandis

L(n,v) = Z P(D|Zobs = Zobs: Zunobs = Zunob57¢)P’r](Zobs = Zobs; Zunobs = Zunobs)

Zunobs

and the design will need to be represented.

Clearly P(D|Z, ) can be modeled when it is unknown.

UCLA 67



Doing better: A Network Model-Based Estimator

@ Fit a network model to observed data (ERGM, using statnet R package)

@ Estimate sampling probabilities based on network model, and weight
sample appropriately

@ Can estimate conditional on seed selection, to reduce bias induced by
seed selection.

UCLA 68



Network Model-Assisted Estimator

@ Interested in sampling probabilities m; = P, (S; = 1).
@ Should reflect:

o Nodal degree d;

o Sample fraction

@ Seed selection

e Homophily and branching structure of sampling

@ This is very difficult to do without known the underlying social network y

@ So we develop a “super-population” representation for y
with the purpose of “assisting” the design-based inference

UCLA 69



Network Model-Assisted Estimator

@ Approach: Retain design-based framework, but estimate the unknown
finite-population sampling probabilities m;(y) = E(S;|Y = y).
Idea:
@ For given network y, can compute

mi(y) = E(SilY =)

@ Estimate ; via
#i =Y mi(Y)Py(Y = ¥|Yobs = Yobs)

Yunobs

© We do not know 1, so we estimate it from the data.

UCLA 70



Example: A simple model for sociality in a network

Let Y be an undirected network (y; = ;). The g model is:

_ exp{dinyit}

oY =y) = TPt

where yjy = 3, .

- nj sociality of node i
- {14, Y24, -, Yot tis referred to as the degree sequence of the network.

UCLA 71



Extensive development of conditional models

@ Classes of g(y|x) (Generative Theory, Structural signatures)
@ Inference on the loglikelihood function,

6(77|y0bs;xobs) = n'g(yobs|xobs) - |0g C(n|xobs)

C(ﬁ IXobs) :ZGXP{U'g(Z|Xobs)}

ze)y

@ For computational reasons, approximate the likelihood via
Markov Chain Monte Carlo (MCMC)

UCLA 72



Returning to RDS: Fitting the Model

Use networks statistics g(y):

@ {V14,V24,---,¥Ynt }, the degree sequence of the network.

@ the number of ties between those positive and those negative.
Problem: Requires (unknown) networked population statistics g(y).
Solution: Use design-based estimators

N -

~ Si obs

g =% %
i=1 !

where g(yqps) are corresponding sample statistics.

Problem: This, in turn, requires sampling probabilities.
Solution: Novel iterative algorithm to find self-consistent solution.
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Model-Assisted Estimator: Algorithm

@ Goal: Estimate sampling probabilities (m;).
@ Afunction of homophily (), and population of degrees and infection N.
@ Initiate via #; estimated by simple rule.
@ lIterate the following steps:
e Estimate g(n) using #;.
e Find corresponding model parameter n (ergm R package)
o Simulate M networks, and samples from networks. Estimate #; by simulation.

@ Use the resulting estimated probabilities, #;, to form weighted

estimator.
Z,_g.&
o ! Iﬁ',’

- ZIS/}%.

/:\LMA
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Standard Error Estimation

Population Bootstrap:
@ Simulate M populations

o Conditional 0N Zyps
@ Use model parameter 5

@ Simulate adaptive network samples over each population
@ Compute MA estimates. Average estimates over M populations
@ Results:

e Performs well when statistics are homophily, degree distribution and

differential activity (w)
e Computationally expensive

Krista J. Gile and Mark S. Handcock, “Network Model-Assisted Inference
from Respondent-Driven Sampling Data.” JRSS, A, 178, 3, 619-639, 2015.
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Simulation Study

comparing design-based to model-assisted estimators

Critical Questions:

@ Does Model-Assisted estimator perform well
for differential activity and large sample fraction?

@ Does Model-Assisted estimator correct for seed bias?

@ What about unknown population size and network structure?
Comparison with design-based estimators:

@ Mean: Naive Sample Mean

@ SH: Salganik-Heckathorn: based on MME of number of cross-relations
@ VH: Volz-Heckathorn Estimator

@ SS: Gile's sequential sampling (SS) estimator

@ VA Network Model-Assisted Estimator
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For a 70% Sample, positives more active and homophily, Positive Seeds

0.30
|

=0.20

0.20 0.25
il

0.15
|

Estimate of Proportion Infected, Truth

0.10
L

Mean
SH
VH
SS
MA
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When all Seeds are positive, varying Homophily

Mean

0.30
|

VH
SS
MA

0.20)

0.25
1

0.20
|

0.15
1

00F - = == — - -

Expected Prevalence Estimate (Truth

3 0.10

1 3 5

Homophily of infection status
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More and deeper studies

Journal of Survey Statistics and Methodology (2018) 6, 23—45

EVALUATING VARIANCE ESTIMATORS FOR
RESPONDENT-DRIVEN SAMPLING

MICHAEL W. SPILLER*
KRISTA J. GILE

MARK S. HANDCOCK
CORINNE M. MAR
CYPRIAN WEJNERT
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Spiller et. al 2018

@ The first systematic evaluation of the different RDS variance estimators

@ Evaluation based on statistical performance on realistic but simulated
populations

@ Compare over simulated populations close to those of interest to the
CDC

@ Based on the CDC's National HIV Behavioral Surveillance system (NHBS)

o NHBS sampled persons-who-inject-drugs (PWID) in 20 U.S. cities in both 2009
and 2012

o Different surveys for heterosexuals, MSM and PWID, ongoing, 5 rounds since
2003.

@ astandardized protocol is used

e 40 populations are simulated using information from the 2 x 20 = 40

@ Primary focus is on estimates of confidence intervals (i.e., coverage)
@ Confidence intervals are the primary RDS estimates
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Confidence Interval Estimation

@ The key is the modeling of the sampling process, as we have dependent
data.

@ Most successful methods use a form of bootstrapping the recruitment
chains.
o Salganik bootstrap: resamples dyads from the infection mixing matrix
@ Volz and Heckathorn estimator: Uses the Salganik bootstrap
o Gile's SS: builds a population and resamples that using SS.
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Gile's SS bootstrap:

Population Bootstrap:
@ Simulate the networked population

o Estimate the infection status by degree distribution
e Estimate infection mixing matrix by infection status

@ Simulate without-replacement sampling

@ Choose recruit infection status according to mixing matrix
@ Choose recruit degree by successive sampling
@ Update available population and mixing matrix

@ Compute SS Estimates
@ Results:

e Performs well across differential activity and sample fraction
o Performs well with homophily
@ Unreliable when seeds biased.
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Outline of the study:

The first systematic evaluation of the different RDS Cl estimators
@ Compare VH, SH and SS bootstrap sampling procedures
@ Compare two different Cl computation procedures

@ percentile: Use quantiles of the bootstrap sample

@ studentized: Use the standard deviation of the bootstrap samples

@ Compare over simulated populations close to those of interest to the

CDC

@ The CDC's National HIV Behavioral Surveillance system (NHBS)

o NHBS sampled persons-who-inject-drugs (PWID) in 20 U.S. cities in both 2009
and 2012

@ astandardized protocol is used

@ 40 populations are simulated using information from the 2 x 20 = 40
surveys.
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Details of the simulated populations:

@ four characteristics matched:
o infection prevalence
@ network homophily on infection status
@ mean degree of population members
o differential activity (DA) of the population by infection status
@ For each population, simulated 1000 networks using ERGM with a
population size of 10000 PWID.

@ For each simulated population, approximated the RDS using the known
design characteristics

@ Estimated the various Cl for each simulated RDS and compared to
known truth.
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The coverage rate of the Cl estimators:

Table 2: 95% Confidence Interval (Cl) coverage rate for four RDS point and variance estimator pairs by bootstrap Cl method

Standard Percentage of Cls with coverage
Point Esti Variance Estil Cl Method Mean Deviation Median Range betweeﬁ 93 and 97 im:lusiveg
Sample mean SRS variance N/A 67.4 23.8 74.9 [14, 96] 5.0
Salganik- Heckathorn  |Salganik Percentile 87.0 12.8 91.9 [41, 96] 40.0
Salganik- Heckathorn  |Salganik Studentized bootstrap 93.0 2.8 93.9 (86, 97] 67.5
Volz-Heckathorn Salganik Percentile 87.0 12.8 91.8 [41, 96] 42.5
Volz-Heckathorn Salganik Studentized bootstrap 92.9 3.2 93.9 [82,97] 67.5
Successive Sampling Successive Sampling Percentile 94.1 1.8 94.6 [87,97) 80.0
Successive Sampling Successive Sampling Studentized bootstrap 93.8 1.8 94.2 [87, 96] 75.0

* The percentage of Cls with coverage between 93% and 97% is presented as a summary measure of the percentage of Cls with acceptable coverage rates for a
given estimator pair and bootstrap Cl method.
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Studies based on with and with-out replacement methods

@ We compared RDS simulated when:
o respondents are able to be re-sampled / re-surveyed “with replacement"
o respondents are surveyed at most once “with-out replacement"

@ Estimators based on with-out replacement outperformed those the
used with replacement

@ Studies based on with replacement give unrealistic and erroneous
results
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Estimation of Design Effects

@ The Design Effect: a measure of the variability of an estimator relative to
a SRS from the population.

Variance of the
RDS estimator

Design Effect =

Variance of the RDS estimator
from a hypothetical SRS

with the same sample size

@ Typical design effects for (non-RDS) complex surveys RDS are between
1.5and 2

@ Some prior studies claim design effects in RDS surveys are much larger

@ Our study shows RDS design effects are in the range of other complex
survey designs.
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The design-effects of the sampling:

Table 3: Design effects for four RDS point estimators for 40 sets of RDS simulations

Point Estimator (sampling method) Range Median Mean Starllda.rd

Deviation
Sample mean (without replacement) [0.71, 2.46] 1.28 1.35 0.46
Salganik-Heckathorn (without replacement) [0.79, 90.35] 1.61 7.1 18.73
Volz-Heckathorn (without replacement) [0.77,5.76] 1.59 1.81 0.88
Successive Sampling (without replacement) [0.78, 5.61] 1.56 1.79 0.86
Volz-Heckathorn (with replacement)* [1.01, 7.97] 2.34 2.77 1.46

* Point estimator and sampling method used in Goel and Salganik 2010
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Estimation of Effective Sample Size

@ A much better measure for RDS surveys is the effective sample size:
sample size

effective sample size = ———

Design Effect

This is the number of observations in a comparable SRS.
@ For example, an effective sample size of 50 is small, even in n = 100.
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Conclusions: Methodological

@ Coverage of nominally 95% RDS Cl are usually above 90%
@ Suggests that accurate RDS Cl estimation is feasible
@ The SS/SS-BS combination performed the best
o the SH and VH Cl estimators are poor when differential activity is low and
homophily is high

@ Fellows (2018) introduced the homophily configuration graph (HCG)
estimator. It is model assisted and based on the homophily
configuration graph model. It has the good features of the SH and SS
estimators. It appears to be the best estimator.

@ Improvements for cases with extreme low prevalence possible using
alternative Cl types
o the combined Agresti-Coull and the bootstrap-t interval of Mantalos and

Zografos (2008)

@ Both Cl coverage rates and design-effects are often acceptable but not
perfect.
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Conclusions: Broader

@ Focus on the effective sample size rather than design effect
or sample size.

@ Cl are alower bound on the actual uncertainty

@ The studies suggest that they are close to the actual uncertainty if the
sampling is executed well.

@ The availability of estimates and sensitivity methods in user-friendly
software is an essential research contribution
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Strengths and weaknesses of Respondent-Driven Sampling

Strengths:
@ Effective at obtaining large varied samples in many populations.
@ Can be used in situations where a sampling frame does not exist.

@ Unlike other link-tracing methods, does not require initial probability
sample.

@ Widely used: over 150 studies, in over 30 countries. Often populations
at high risk for HIV.

Weaknesses:
@ Still subject to many assumptions, especially data quality

@ The degree to which it can be considered a probability sample depends
on the quality of the implementation and network characteristics.

@ Requires case-specific sensitivity analysis to justify its validity.

Gile, K.J., and M.S. Handcock, “Respondent-Driven Sampling: An Assessment
of Current Methodology,” Sociological Methodology, 40, 2010, available on

arXiv.
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Other Designs:

Combining spatial sampling and link-tracing sampling

Martin Félix-Medina and Steve Thompson (2004)

SOREUTA VERSUS WSt

@ Identify a list of sites/venues/buildings that people can be found
@ Sample these venues
@ Link-trace out from these to the broader population
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Combining spatial sampling and link-tracing sampling

Population of venues and people

ﬁm}ked person
ot going to venues Pe0,0/e

Venues

Adapted, by permission, from Martin H. Félix-Medina and Steve K. Thompson (2004). Combining cluster
sampling and link-tracing sampling to estimate the size of hidden populations. Journal of Official Statistics,
20, 19-38.
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Time-Location Sampling:

@ Idea: Randomly sample spatial locations and enumerate within
o typically also randomly sample times of the day/week/year as well
o The sampling frame is now time-locations
@ Use standard survey methods with units the time-locations
@ Survey of Migration at the Northern Border of Mexico (EMIF - N)
@ EMIF-N samples passengers at airports, bus depots and train stations
@ ports of entry, international bridges, and Mexican Customs inspection points
o Typically sample 14-20K people per year
@ Run by El Colegio de la Frontera Norte (Colef), Tijuana
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Survey of Migration on the Mexican Northern
Border
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Discussion: Hard-to-Reach Population Sampling

UCLA

Hard-to-Reach Population Sampling
@ Powerful but challenging.
@ Typically, RDS not advisable if alternatives available.
@ RDS used in varied populations:
recent immigrants, unregulated workers, Nigerian rioters.
Network Model-Assisted Estimators:

@ Addresses many of these concerns.

@ Unlike other link-tracing methods, does not require initial probability
sample

@ Still subject to many assumptions, especially data quality
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Discussion

@ Statistical models for networks are a powerful way to model network
data

@ Improving designs
@ privatized network sampling: RDS, but collects more information on the

network while preserving the privacy
@ Using call-back surveys to collect more information
@ Surveys using a natural byproduct of digital technology
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