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Stylized Conventional Survey Sampling

Stylized description
Choose a population of interest and a population characteristic of
interest µ
Determine the sampling frame: i = 1, . . . ,N sample units.
Choose variables to measure on them: outcome variables yi, i = 1, . . . ,N.

2



Population

3



Stylized Conventional Survey Sampling

Stylized description
Choose a population of interest and a population characteristic of
interest µ
Determine the sampling frame: i = 1, . . . ,N sample units.
Choose variables to measure on them: outcome variables yi, i = 1, . . . ,N.

4



Population

5



Stylized Conventional Survey Sampling

Stylized description
Choose a population of interest and a population characteristic of
interest µ
Determine the sampling frame: i = 1, . . . ,N sample units.
Choose variables to measure on them: outcome variables yi, i = 1, . . . ,N.
Choose a sampling design:
e.g., simple random sampling, stratified sampling on covariates,

stratified sampling on y
Choose a sample of units i = 1, . . . ,n and collect data on the sampled
units
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Sampled people (green)
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Stylized Conventional Survey Sampling

Stylized description
Choose a population of interest and a population characteristic of
interest µ
Determine the sampling frame: i = 1, . . . ,N sample units.
Choose variables to measure on them: outcome variables yi, i = 1, . . . ,N.
Choose a sampling design:
e.g., simple random sampling, stratified sampling on covariates,

stratified sampling on y
Choose a sample of units i = 1, . . . ,n and collect data on the sampled
units
Estimate the population characteristics of interest based on the sample
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Using the sample to describe the population

Goal: Estimate the population mean of y:

µ =
1
N

N∑

i=1
yi

where
yi =

{
1 i has the characteristic
0 i does not have the characteristic.
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Using the sample to describe the population

Goal: Estimate the population mean of y:

µ =
1
N

N∑

i=1
yi

Sample indicators

Si =
{

1 i sampled
0 i not sampled

Inclusion probabilities

πi = P(Si = 1) i = 1, . . . ,N

e.g. simple random sampling

πi = n/N i = 1, . . . ,N
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Classic Design-Based Inference

Goal: Estimate proportion positive (e.g., addicted, COVID+):

µ =
1
N

N∑

i=1
yi

Hajek Estimator:

µ̂ =
∑

i
Si
πi
yi

∑
i
Si
πi

where

Si =
{

1 i sampled
0 i not sampled πi = P(Si = 1).
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Challenges to Traditional Survey Sampling

Eroding survey response rates and non-ignorable non-response
computation of inclusion probabilities is difficult
estimation of inclusion probabilities is required

Allure of model-assisted and model-based modes of inference
models require assumptions
assumptions may be difficult to validate
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Some types of non-probability samples

General types:
Convenience sampling: no formal design, the goal is acquisition
Online panels: using internet, social media, etc, to select and recruit
Sample matching: stratify on important population characteristics
Network sampling: applicable when the population is networked

Modes of inference for non-probability samples:
Quasi-randomization: Design-based via a model for πi = P(Si = 1)
Super-population: Model-based via a model for P(Yi)
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Non-probability survey sampling

We should not use it because:
Accuracy relies on (often untestable) modeling assumptions
The design is often opaque
Validity depends on implementation and is case/application specific

We may use it because:
It may be a “fit for purpose" design
Sensitivity analyses for each case are possible
We can insist on transparency / reproducibility
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Hard-to-Reach Population Sampling: Motivating Questions

What proportion of sub-Saharan migrants to Morocco have children?
What proportion of semi-rural people are at high-risk for opioid
addiction?
What proportion of unregulated workers in New York City experience
workplace violations of code?
What proportion of Injecting Drug Users in Kampala are HIV Positive?
What proportion of sex workers in rural China belong to ethnic
minorities?

Limitation: No practical conventional sampling frame.

15



Adaptive Network Sampling

Suppose:
The population is joined by informal social network of relationships.
Researchers can access some members of the population.
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Networked Population
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Adaptive Network Sampling

Suppose:
The population is joined by informal social network of relationships.
Researchers can access some members of the population.

Sampling design:
Begin with a reachable (convenience) sample (the seeds)
Expand the sample by the researchers sampling those tied to those
already in the sample.
a process called link tracing.
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Start with a seed person

seed
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Contact other people via the seed’s social network

seed
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Contact other people via the seed’s social network

seed
recruit

recruit

recruit
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Contact other people via the seed’s social network

seed
recruit

recruit

recruitrecruit

recruit

recruit

recruit

recruit
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Figure: Graphical representation of the recruitment tree for the sampling of PWID.
The nodes are the respondents and the wave number increases as you go down
the page. The node color indicates the geographic neighborhood.
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Partial Observation of Social Networks

Sampling Design: Choose which part of an local community to observe:
“Ask 10% of people about who have a big influence on them”
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Partial Observation of Social Networks

Sampling Design: Choose which part of an local community to observe:
“Ask 10% of people who have a big influence on them”

Egocentric
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Partial Observation of Social Networks

Sampling Design: Choose which part of an local community to observe:
“Ask 10% of people who have a big influence on them”

Egocentric
Adaptive
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Partial Observation of Social Networks

Sampling Design: Choose which part of an local community to observe:
“Ask 10% of people who have a big influence on them”

Egocentric
Adaptive

Out-of-design Missing Data:
“Try to survey the whole community, but someone is unavailable”
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Partial Observation of Social Networks

Sampling Design: Choose which part of an local community to observe:
“Ask 10% of people who have a big influence on them”

Egocentric
Adaptive

Out-of-design Missing Data:
“Try to survey the whole community, but someone is unavailable”
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Partial Observation of Social Networks

Sampling Design: Choose which part of an local community to observe:
“Ask 10% of people who have a big influence on them”

Egocentric
Adaptive

Out-of-design Missing Data:
“Try to survey the whole community, but someone is unavailable”
Boundary Specification Problem:
“Should an overseas family member be considered a part of the
community?”

?
?

?
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Adaptive Network Sampling

Suppose:
The population is joined by informal social network of relationships.
Researchers can access some members of the population.

Sampling design:
Begin with a reachable (convenience) sample (the seeds)
Expand the sample by the researchers sampling those tied to those
already in the sample.

Concerns:
Seed Dependence: final sample depends on sampling mechanism of
seeds
Confidentiality: some populations prefer to stay “hidden”
Estimation: The sample and sampling probabilities depend on the
unknown network
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Adaptive Network Sampling

Strengths:
Exploits information in the network of relationships
Network structure used to improve the design
Increases the range of possible designs
Adjusts for discovered features in the population
Leads to increased efficiency of sampling

Issues:
Seed Dependence: final sample depends on sampling mechanism of
seeds
Privacy: some populations prefer to stay “hidden”
Link-tracing can be challenging: confidentiality, logistics
Estimation: The sample and sampling probabilities depend on the
unknown network
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Sampling depends on network: design-based

Observable sampling probabilities:

Sampling Nodal Probabilities πi Dyadic Probabilities πij
Scheme Undirected Directed Undirected Directed
Simple Random Yes Yes Yes Yes
One-Wave Yes No No No
k−Wave, 1 < k <∞ No No No No
Saturated Yes No No No

(Unconditional) sampling probabilities unknown for many simple sampling
strategies

Snijders, T.A.B., 1992, “Estimation on the basis of snowball samples: how to
weight.” Bulletin Methodologie Sociologique, 36, 59-70.
Handcock, M.S. and K.J. Gile, 2010, “Modeling social networks from sampled
data.” , Annals of Applied Statistics, 4, Number 1, 5-25.
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A peculiar case: Respondent-Driven Sampling

Sampling design: Require respondents to choose from among their
social circle rather than the researcher chooses.
Seed Dependence: follow only a few links from each sampled
Privacy: respondent-driven: respondents distribute uniquely identified
coupons. no names.
Link-tracing: none by researchers, done by respondents.
Estimation: Challenging to get valid estimates

Effective at obtaining large varied samples in many populations.
Widely used: over 100 studies, in over 30 countries. Often HIV-risk
populations.
Heckathorn, D.D., “Respondent-driven sampling: A new approach to the

study of hidden populations.” Social Problems, 1997.
Handcock, M.S. and K.J. Gile, “On the Concept of Snowball Sampling.”

Sociological Methodology, 2011.
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Stylized population
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Start with seeds ...
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Seeds recruit the first wave ...
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The first wave recruit the second wave ...
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and so on ...
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At the end (the unsampled are shaded)
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degree of node i = # of ties of node i
44
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Classic Design-Based Inference:
Generalized Horvitz-Thompson Estimators

Goal: Estimate the population mean of y:

µ =
1
N

N∑

i=1
yi

where
yi =

{
1 i “positive"
0 i “negative".

Hajek Estimator:

µ̂ =
∑

i
Si
πi
yi

∑
i
Si
πi

where

Si =
{

1 i sampled
0 i not sampled πi = P(Si = 1).

The key point: Estimator requires πi = P(Si = 1) ∀ i : Si = 1
46



One Approach: Random walk approximation

Respondent-driven Sampling:
Approximate link-tracing process by a Markov chain representation
Assume sample can be treated as from stationary distribution
Then sampling probabilities proportional to degree.

Volz-Heckathorn Estimator (VH): inverse probability weighted by degrees

µ̂VH =
∑

i Si
yi
di∑

i Si 1di
where di = degree of node i, Si sample indicator, yi quantity of interest.

Volz, E., and D.D. Heckathorn, “Probability Estimation Theory for Respondent
Driven Sampling,” Journal of Official Statistics, 2008.
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Design of a Simulation Study of the approximation

Simulate Populations
Number of people: 1000, 835, 715, 625, 555, or 525 nodes
20% of the population are “positive”

Simulate Social Networks over those Populations
(from ERGM, using ergm/statnet)

Mean degree 7
Homophily on Positivity: R = P(positive to negative tie)

P(negative to positive tie) = 5 (or other)
Differential Activity: w = mean degree for positives

mean degree for negatives = 1 (or other)
Simulate Respondent-Driven Samples from the Populations

500 total samples
10 seeds, chosen proportional to degree
2 coupons each
Coupons at random to relations
Sample without replacement

Repeat 1000 times
Blue parameters varied in study.
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Volz-Heckathorn, when no differential activity (w=1)
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When the positives are more active (w=1.5)
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Improvements to RDS design-based estimators

The key is the modeling of the sampling process
Salganik and Heckathorn (2004): simple Markov Chain model over
classes
Volz and Heckathorn (2008): Markov Chain model over people
Gile (2008, 2011): Develops a model based on the
successive sampling of people in time.
Adjusts for without-replacement and finite population effects
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When all the seeds are positives, homophily causes bias
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Doing better: Broader Perspectives

Network-specific versus Population-process
– Network-specific: interest focuses only on the actual network under
study
– Super-Population-process: the network is part of a population of

networks, but interest is in the specific network
- the network is conceptualized as a realization of a social process

– Population-process: Interest focuses on the super-population process
and the sampled network is thought of as data

The choice of models depends on the objectives
– The complexity of most network processes precludes

complete modeling
– We choose those aspects of the network we represent and model well
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Conceptual Sampling Design Framework

Y, X, D

Y , X , D

  Y, X, Z

Z is a subset of D

•
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Network representations of the population

Networks are widely used to represent data on relations between
interacting entities or nodes.
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Network representations of the population

Networks are widely used to represent data on relations between
interacting entities or nodes.

The study of social networks is multi-disciplinary
plethora of terminologies
varied objectives, multitude of frameworks

Understanding the structure of social relations has been
the focus of the social sciences
Attempt to represent the structure in social relations via networks
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Network representations of the population

Networks are widely used to represent data on relations between
interacting entities or nodes.

The study of social networks is multi-disciplinary
plethora of terminologies
varied objectives, multitude of frameworks

Understanding the structure of social relations has been
the focus of the social sciences
Attempt to represent the structure in social relations via networks
Network representations can be helpful in many settings
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Statistical Models for Social Networks?

Notation
A social network is defined as a set of n social “actors", a social relationship
between each pair of actors, and a set of variables on those actors/pairs.

Yij =

{
1 relationship from actor i to actor j
0 otherwise

call Y ≡ [Yij]n×n a graph
a N = n(n− 1) binary array

X be n× qmatrix of actor and dyadic covariates
call (Y , X) a network
The basic problem of stochastic modeling is to specify a distribution for
X, Y i.e., P(Y = y, X = x)
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Features of Many Social Networks

Mutuality of ties
Individual heterogeneity in the propensity to form ties
Homophily by actor attributes

⇒ Lazarsfeld and Merton, 1954; Freeman, 1996; McPherson et al., 2001
higher propensity to form ties between actors with similar attributes
e.g., age, gender, geography, major, social-economic status
attributes may be observed or unobserved

Transitivity of relationships
friends of friends have a higher propensity to be friends
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The ERGM Framework for Graph Modeling

Let Y be the sample space of Y e.g. {0,1}N.
g(y), y ∈ Y d-vector of graph statistics
represent graph features of interest (e.g., density, transitivity)
desire g(Y) to be jointly sufficient for the model
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The ERGM Framework for Graph Modeling

Let q(y) be a probability mass function over Y .
Recall the maximum entropy motivation for exponential-families:

maximize
q

∑

y
q(y) log(q(y))

subject to
Eq[gi(Y)] = µi, ∀ i ∈ {1, . . . ,d}

Leads to:

Pη(Y = y) = exp{η·g(y)}
c(η,Y)

y ∈ Y

Eη[g(Y)] = µ
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The ERGM Framework for Network Modeling

Let Y be the sample space of Y e.g. {0,1}N
and X be the sample space of X .
Model the multivariate distribution of Y given X via:

Pη(Y = y|X = x) = exp{η·g(y|x)}
c(η, x,Y)

y ∈ Y, x ∈ X

Frank and Strauss (1986)

η ∈ Λ ⊂ Rd d-vector of parameters
g(y|x) d-vector of graph statistics.

⇒ g(Y |x) are jointly sufficient for the model
c(η, x,Y) distribution normalizing constant

c(η, x,Y) =
∑

y∈Y
exp{η·g(y|x)}
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Fitting Models to Partially Observed Social Network Data

Focus on the joint distribution of Z = (Y , X).
Types of data: Observed relations, nodal and dyadic variables
(zobs = (yobs,wobs)), and indicators of relations and covariates
Z = (Zobs, Zunobs)

L(η, ψ) ≡ P(Zobs = zobs,D|η, ψ)
=

∑

zunobs

P(Zobs = zobs, Zunobs = zunobs,D|η, ψ)

=
∑

zunobs

P(D|Zobs = zobs, Zunobs = zunobs, ψ)Pη(Zobs = zobs, Zunobs = zunobs)

=
∑

zunobs

P(D|Z, ψ)×Pη(Z = z)

sampling design×network model

η is the network model parameter (“super population")
ψ is the sampling parameter
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Adaptive Sampling Designs

A sampling design adaptive if:

P(D = d|Zobs, Zmis, ψ) = P(D = d|Zobs, ψ) ∀z ∈ Z.

that is, it uses information collected during the survey to direct subsequent
sampling, but the sampling design depends only on the observed data.

adaptive sampling designs satisfy a “missing at random” condition from
Rubin (1976) in the context of missing data.

Result: standard network sampling designs such as conventional,
adaptive web, and multi-wave link-tracing sampling designs are adaptive

⇒ Thompson and Frank (2000), Handcock and Gile (2007).
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When is sampling non-adaptive?

Individual sample based on unobserved properties of non-respondents
- like infection status or illicit activity.
Link-tracing sample starting where links are followed dependent
on unobserved properties of alters.
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Adaptive Sampling Designs and their Amenable Models

Definition: Consider a sampling design governed by parameter ψ ∈ Ψ and
a stochastic network model Pη(Z = z) governed by parameter η ∈ Ξ. We
call the sampling design amenable to the model if the sampling design is
adaptive and the parameters ψ and η are distinct.

Result: If the sampling design is amenable to the model the likelihood for η
and ψ is

L[η, ψ|Zobs = zobs,D = d] ∝ L[ψ|D = d, Zobs = zobs]L[η|Zobs = zobs]

sampling design likelihood×face-value likelihood

L[ψ|D = d, Zobs = zobs] = P(D|Zobs = zobs, ψ)

L[η|Zobs = zobs] =
∑

zunobs

Pη(Zobs = zobs, Zunobs = zunobs)
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Adaptive Sampling Designs and their Amenable Models

Result: If the sampling design is not amenable to the model the likelihood
for η and ψ is

L(η, ψ) =
∑

zunobs

P(D|Zobs = zobs, Zunobs = zunobs, ψ)Pη(Zobs = zobs, Zunobs = zunobs)

and the design will need to be represented.

Clearly P(D|Z, ψ) can be modeled when it is unknown.
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Doing better: A Network Model-Based Estimator

Fit a network model to observed data (ERGM, using statnet R package)
Estimate sampling probabilities based on network model, and weight
sample appropriately
Can estimate conditional on seed selection, to reduce bias induced by
seed selection.
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Network Model-Assisted Estimator

Interested in sampling probabilities πi = Py(Si = 1).
Should reflect:

Nodal degree di
Sample fraction
Seed selection
Homophily and branching structure of sampling

This is very difficult to do without known the underlying social network y
So we develop a “super-population” representation for y
with the purpose of “assisting” the design-based inference
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Network Model-Assisted Estimator

Approach: Retain design-based framework, but estimate the unknown
finite-population sampling probabilities πi(y) = E(Si|Y = y).

Idea:
1 For given network y, can compute

πi(y) = E(Si|Y = y)

2 Estimate πi via
π̂i =

∑

yunobs

πi(y)Pη(Y = y|Yobs = yobs)

3 We do not know η, so we estimate it from the data.
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Example: A simple model for sociality in a network

Let Y be an undirected network (yij = yji). The β model is:

Pη(Y = y) = exp{∑i ηiyi+}
κ(η)

where yi+ =
∑

j yij.

– ηi sociality of node i
– {y1+, y2+, . . . , yn+} is referred to as the degree sequence of the network.

71



Extensive development of conditional models

Classes of g(y|x) (Generative Theory, Structural signatures)
Inference on the loglikelihood function,

ℓ(η|yobs; xobs) = η·g(yobs|xobs)− log c(η|xobs)

c(η|xobs) =
∑

z ∈ Y
exp{η·g(z|xobs)}

For computational reasons, approximate the likelihood via
Markov Chain Monte Carlo (MCMC)
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Returning to RDS: Fitting the Model

Use networks statistics g(y):
{y1+, y2+, . . . , yn+}, the degree sequence of the network.
the number of ties between those positive and those negative.

Problem: Requires (unknown) networked population statistics g(y).
Solution: Use design-based estimators

ĝ(η) =
N∑

i=1

Sig̃(yobs)
π̂i

where g̃(yobs) are corresponding sample statistics.

Problem: This, in turn, requires sampling probabilities.
Solution: Novel iterative algorithm to find self-consistent solution.
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Model-Assisted Estimator: Algorithm

Goal: Estimate sampling probabilities (πi).
A function of homophily (η), and population of degrees and infection N.

Initiate via π̂i estimated by simple rule.
Iterate the following steps:

Estimate ĝ(η) using π̂i.
Find corresponding model parameter η (ergm R package)
Simulate M networks, and samples from networks. Estimate π̂i by simulation.

Use the resulting estimated probabilities, π̂i, to form weighted
estimator.

µ̂MA =

∑
i Si

yi
π̂i∑

i Si 1π̂i

.
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Standard Error Estimation

Population Bootstrap:
Simulate M populations

Conditional on zobs
Use model parameter η

Simulate adaptive network samples over each population
Compute MA estimates. Average estimates over M populations
Results:

Performs well when statistics are homophily, degree distribution and
differential activity (w)
Computationally expensive

Krista J. Gile and Mark S. Handcock, “Network Model-Assisted Inference
from Respondent-Driven Sampling Data.” JRSS, A, 178, 3, 619-639, 2015.
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Simulation Study
comparing design-based to model-assisted estimators

Critical Questions:
Does Model-Assisted estimator perform well
for differential activity and large sample fraction?
Does Model-Assisted estimator correct for seed bias?
What about unknown population size and network structure?

Comparison with design-based estimators:
Mean: Naive Sample Mean
SH: Salganik-Heckathorn: based on MME of number of cross-relations
VH: Volz-Heckathorn Estimator
SS: Gile’s sequential sampling (SS) estimator
MA: Network Model-Assisted Estimator
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For a 50% Sample, No homophily, Random Seeds
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For a 70% Sample, positives more active and homophily, Positive Seeds
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When all Seeds are positive, varying Homophily
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More and deeper studies

EVALUATING VARIANCE ESTIMATORS FOR
RESPONDENT-DRIVEN SAMPLING

MICHAEL W. SPILLER*
KRISTA J. GILE
MARK S. HANDCOCK
CORINNE M. MAR
CYPRIAN WEJNERT

Respondent-Driven Sampling (RDS) is a network-based method for
sampling hard-to-reach populations that is widely used by public health
agencies and researchers worldwide. Estimation of population character-
istics from RDS data is challenging due to the unobserved population
network, and multiple point and variance estimators have been proposed.
Research evaluating these estimators has been limited and largely
focused on point estimation; this analysis is the first evaluation of

*Address correspondence to Michael Spiller, Centers for Disease Control and Prevention,
Division of HIV/AIDS Prevention; E-mail: MSpiller@cdc.gov.
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Spiller et. al 2018

The first systematic evaluation of the different RDS variance estimators
Evaluation based on statistical performance on realistic but simulated
populations
Compare over simulated populations close to those of interest to the
CDC
Based on the CDC’s National HIV Behavioral Surveillance system (NHBS)

NHBS sampled persons-who-inject-drugs (PWID) in 20 U.S. cities in both 2009
and 2012
Different surveys for heterosexuals, MSM and PWID, ongoing, 5 rounds since
2003.
a standardized protocol is used
40 populations are simulated using information from the 2× 20 = 40

Primary focus is on estimates of confidence intervals (i.e., coverage)
Confidence intervals are the primary RDS estimates
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Confidence Interval Estimation

The key is the modeling of the sampling process, as we have dependent
data.
Most successful methods use a form of bootstrapping the recruitment
chains.

Salganik bootstrap: resamples dyads from the infection mixing matrix
Volz and Heckathorn estimator: Uses the Salganik bootstrap
Gile’s SS: builds a population and resamples that using SS.
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Gile’s SS bootstrap:

Population Bootstrap:
Simulate the networked population

Estimate the infection status by degree distribution
Estimate infection mixing matrix by infection status

Simulate without-replacement sampling
Choose recruit infection status according to mixing matrix
Choose recruit degree by successive sampling
Update available population and mixing matrix

Compute SS Estimates
Results:

Performs well across differential activity and sample fraction
Performs well with homophily
Unreliable when seeds biased.
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Outline of the study:

The first systematic evaluation of the different RDS CI estimators
Compare VH, SH and SS bootstrap sampling procedures
Compare two different CI computation procedures

percentile: Use quantiles of the bootstrap sample
studentized: Use the standard deviation of the bootstrap samples

Compare over simulated populations close to those of interest to the
CDC

The CDC’s National HIV Behavioral Surveillance system (NHBS)
NHBS sampled persons-who-inject-drugs (PWID) in 20 U.S. cities in both 2009
and 2012
a standardized protocol is used
40 populations are simulated using information from the 2× 20 = 40
surveys.
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Details of the simulated populations:

four characteristics matched:
infection prevalence
network homophily on infection status
mean degree of population members
differential activity (DA) of the population by infection status

For each population, simulated 1000 networks using ERGM with a
population size of 10000 PWID.
For each simulated population, approximated the RDS using the known
design characteristics
Estimated the various CI for each simulated RDS and compared to
known truth.
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The coverage rate of the CI estimators:
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The coverage rate of the CI estimators:

Point Estimator Variance Estimator Boostrap CI Method Mean
Standard 
Deviation

Median Range
Percentage of CIs with coverage 

between 93 and 97 inclusive*
Sample mean SRS variance N/A        67.4 23.8 74.9 [14, 96] 5.0
Salganik- Heckathorn Salganik Percentile 87.0 12.8 91.9 [41, 96] 40.0
Salganik- Heckathorn Salganik Studentized bootstrap 93.0 2.8 93.9 [86, 97] 67.5
Volz-Heckathorn Salganik Percentile 87.0 12.8 91.8 [41, 96] 42.5
Volz-Heckathorn Salganik Studentized bootstrap 92.9 3.2 93.9 [82, 97] 67.5
Successive Sampling Successive Sampling Percentile 94.1 1.8 94.6 [87, 97] 80.0
Successive Sampling Successive Sampling Studentized bootstrap 93.8 1.8 94.2 [87, 96] 75.0

* The percentage of CIs with coverage between 93% and 97% is presented as a summary measure of the percentage of CIs with acceptable coverage rates for a 
given estimator pair and bootstrap CI method.

Table 2: 95% Confidence Interval (CI) coverage rate for four RDS point and variance estimator pairs by bootstrap CI method
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Studies based on with and with-out replacement methods

We compared RDS simulated when:
respondents are able to be re-sampled / re-surveyed “with replacement"
respondents are surveyed at most once “with-out replacement"

Estimators based on with-out replacement outperformed those the
used with replacement
Studies based on with replacement give unrealistic and erroneous
results
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Estimation of Design Effects

The Design Effect: a measure of the variability of an estimator relative to
a SRS from the population.

Design Effect =
Variance of the
RDS estimator

Variance of the RDS estimator
from a hypothetical SRS
with the same sample size

Typical design effects for (non-RDS) complex surveys RDS are between
1.5 and 2
Some prior studies claim design effects in RDS surveys are much larger
Our study shows RDS design effects are in the range of other complex
survey designs.
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The design-effects of the sampling:

Point Estimator (sampling method) Range Median Mean Standard 
Deviation

Sample mean (without replacement) [0.71, 2.46] 1.28 1.35 0.46

Salganik-Heckathorn (without replacement) [0.79, 90.35] 1.61 7.1 18.73

Volz-Heckathorn (without replacement) [0.77, 5.76] 1.59 1.81 0.88

Successive Sampling (without replacement) [0.78, 5.61] 1.56 1.79 0.86

Volz-Heckathorn (with replacement)* [1.01, 7.97] 2.34 2.77 1.46

Table 3: Design effects for four RDS point estimators for 40 sets of RDS simulations 

* Point estimator and sampling method used in Goel and Salganik 2010
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Estimation of Effective Sample Size

A much better measure for RDS surveys is the effective sample size:

effective sample size =
sample size

Design Effect

This is the number of observations in a comparable SRS.
For example, an effective sample size of 50 is small, even in n = 100.
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Conclusions: Methodological

Coverage of nominally 95% RDS CI are usually above 90%
Suggests that accurate RDS CI estimation is feasible
The SS/SS-BS combination performed the best

the SH and VH CI estimators are poor when differential activity is low and
homophily is high

Fellows (2018) introduced the homophily configuration graph (HCG)
estimator. It is model assisted and based on the homophily
configuration graph model. It has the good features of the SH and SS
estimators. It appears to be the best estimator.
Improvements for cases with extreme low prevalence possible using
alternative CI types

the combined Agresti-Coull and the bootstrap-t interval of Mantalos and
Zografos (2008)

Both CI coverage rates and design-effects are often acceptable but not
perfect.

92



Conclusions: Broader

Focus on the effective sample size rather than design effect
or sample size.
CI are a lower bound on the actual uncertainty
The studies suggest that they are close to the actual uncertainty if the
sampling is executed well.
The availability of estimates and sensitivity methods in user-friendly
software is an essential research contribution
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Strengths and weaknesses of Respondent-Driven Sampling

Strengths:
Effective at obtaining large varied samples in many populations.
Can be used in situations where a sampling frame does not exist.
Unlike other link-tracing methods, does not require initial probability
sample.
Widely used: over 150 studies, in over 30 countries. Often populations
at high risk for HIV.

Weaknesses:
Still subject to many assumptions, especially data quality
The degree to which it can be considered a probability sample depends
on the quality of the implementation and network characteristics.
Requires case-specific sensitivity analysis to justify its validity.

Gile, K.J., and M.S. Handcock, “Respondent-Driven Sampling: An Assessment
of Current Methodology,” Sociological Methodology, 40, 2010, available on
arXiv.
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Other Designs:
Combining spatial sampling and link-tracing sampling

Martin Félix-Medina and Steve Thompson (2004)

Identify a list of sites/venues/buildings that people can be found
Sample these venues
Link-trace out from these to the broader population
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Combining spatial sampling and link-tracing sampling

q
networked person

not going to venues

qq q

qqq q
Population of venues and people

Venues People

Adapted, by permission, from Martin H. Félix-Medina and Steve K. Thompson (2004). Combining cluster
sampling and link-tracing sampling to estimate the size of hidden populations. Journal of Official Statistics,
20, 19-38.
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Time-Location Sampling:

Idea: Randomly sample spatial locations and enumerate within
typically also randomly sample times of the day/week/year as well
The sampling frame is now time-locations
Use standard survey methods with units the time-locations

Survey of Migration at the Northern Border of Mexico (EMIF – N)
EMIF-N samples passengers at airports, bus depots and train stations
ports of entry, international bridges, and Mexican Customs inspection points
Typically sample 14-20K people per year
Run by El Colegio de la Frontera Norte (Colef), Tijuana
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May 2012 

Survey of Migration on the Mexican Northern 
Border 
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Statistical Observatory of migration flows 

EMIF Norte has been running continuously since 
1993 
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Discussion: Hard-to-Reach Population Sampling

Hard-to-Reach Population Sampling
Powerful but challenging.
Typically, RDS not advisable if alternatives available.
RDS used in varied populations:
recent immigrants, unregulated workers, Nigerian rioters.

Network Model-Assisted Estimators:
Addresses many of these concerns.
Unlike other link-tracing methods, does not require initial probability
sample
Still subject to many assumptions, especially data quality
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Discussion

Statistical models for networks are a powerful way to model network
data
Improving designs

privatized network sampling: RDS, but collects more information on the
network while preserving the privacy
Using call-back surveys to collect more information
Surveys using a natural byproduct of digital technology
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