
Modeling of Networked Populations
with Exponential-Family Random Network Models

when data is Sampled or Missing
Mark S. Handcock Ian E. Fellows

Department of Statistics
University of California - Los Angeles

https://faculty.stat.ucla.edu/handcock

Some joint work with

Andrea Wang Krista J. Gile

Supported by NIH Grant HD041877, NSF awards CCF-2200197, MMS-0851555,
SES-1357619, IIS-1546259.

Sunbelt 2023, June 29

Mark S. Handcock



Networked Population
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Contact other people via the seed’s social network
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Mechanisms for Partial Observation of Social
Networks

Sampling Design: Known mechanism
Egocentric
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Partial Observation of Social Networks

Sampling Design: Known mechanism
Egocentric
Adaptive
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Partial Observation of Social Networks

Sampling Design: Known mechanism
Egocentric
Adaptive

Out-of-design Missing Data: Unknown mechanism
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Adaptive Network Sampling

Strengths:
Exploits information in the network of relationships
Network structure used to improve the design
Increases the range of possible designs
Adjusts for discovered features in the population
Leads to increased e�ciency of sampling

Issues:
Seed Dependence: �nal sample depends on sampling mechanism of
seeds
Privacy: some populations prefer to stay “hidden”
Link-tracing can be challenging: con�dentiality, logistics
Estimation: The sample and sampling probabilities depend on the
unknown network
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Statistical Models for Social Networks

Consider a networked population with a set of n social “actors", social
relationship between each pair of actors, and a set of variables on those
actors/pairs.

a set of n social “actors"
a social relation Yij between pairs of actors.
call Y ⌘ [Yij]n⇥n a graph
X be n⇥ qmatrix of actor and dyadic covariates
call (Y , X) a network
The basic problem of stochastic modeling is to specify a distribution for
X, Y i.e.,

P(Y = y, X = x)
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The ERGM Framework for Network Modeling

Let Y be the sample space of Y e.g. {0,1}N
and X be the sample space of X .
Model the multivariate distribution of Y given X via:

P⌘(Y = y|X = x) =
exp{⌘·g(y|x)}
c(⌘, x,Y)

y 2 Y, x 2 X

Frank and Strauss (1986)

⌘ 2 ⇤ ⇢ Rd d-vector of parameters
g(y|x) d-vector of graph statistics.

) g(Y |x) are jointly su�cient for the model
c(⌘, x,Y) distribution normalizing constant

c(⌘, x,Y) =
X

y2Y
exp{⌘·g(y|x)}
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Extensive development of conditional models

Classes of g(y|x) (Generative Theory, Structural signatures)
Inference on the log-likelihood function,

`(⌘|yobs; xobs) = ⌘·g(yobs|xobs)� log c(⌘|xobs)

c(⌘|xobs) =
X

z in Y

exp{⌘·g(z|xobs)}

For computational reasons, approximate the likelihood via
Markov Chain Monte Carlo (MCMC)
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Exponential-family Random Network Models

Joint modeling of Y and X Fellows and Handcock (2012)
Let N be the sample space of Y , X

Model the multivariate distribution of Y , X
via the form:

P⌘(Y = y, X = x) =
exp{⌘·g(y, x)}

c(⌘,N )
y, x 2 N

⌘ 2 ⇤ ⇢ Rq q-vector of parameters
g(y, x) q-vector of network statistics.

) g(Y , X) are jointly su�cient for the model
c(⌘,N ) distribution normalizing constant

c(⌘,N ) =

Z

y, x2N
exp{⌘·g(y, x)}·dP0(y, x)
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Interesting model-classes of ERNM

Relationship to ERGM and Gibbs Random Fields

Let N (x) = {y : (x, y) 2 N} and N (y) = {x : (x, y) 2 N}

ERGM P(Y = y|X = x; ⌘) =
1

c(⌘; x)
e⌘·h(x,y) y 2 N (x)

Gibbs measure P(X = x|Y = y; ⌘) =
1

c(⌘; y)
e⌘·h(x,y) x 2 N (y)

ALAAM

The �rst model is the ERGM for the network conditional on the nodal
attributes.
The second model is an exponential-family for the �eld of nodal
attributes conditional on the network.
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Example: Joint Ising Models

Suppose X is univariate and binary xi 2 {�1,1}. One measure of
homophily on x is

homophily(y, x) =
nX

i=1

nX

j=1

xiyi,jxj (1)

A simple model for the network is

P(X = x, Y = y|⌘1, ⌘2) / e⌘1density(y)+⌘2homophily(y,x) (y, x) 2 N .

where density(y) = 1
n
P

i
P

j yi,j

GLM P(Yi,j = yi,j|X = x, ⌘1, ⌘2) / e⌘1
1
n yi,j+⌘2xiyi,jxj y 2 {0,1}, x 2 X

Ising model P(X = x|Y = y, ⌘2) / e⌘2
P

i
P

j xiyi,jxj (y, x) 2 N

So we have a simple joint Ising model
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Comparing ERGM to ERNM Conceptually

Social selection process: conventional network analysis with nodal
attributes �xed

A
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C

B
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D

Social Selection

Figure: Illustration of Social Selection: Color of nodes: nodal attributes
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Comparing ERGM to ERNM Conceptually

Social in�uence process: the network is �xed and the nodal attributes
can vary

A

Before

C

B

D
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B

D

Social In�uence

Figure: Illustration of Social In�uence: Color of nodes: nodal attributes
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Comparing ERGM to ERNM Conceptually

Social selection process: ERGM, SBM, etc
Social in�uence process: Gibbs �elds, Ising, ALAAM, etc
Social selection and in�uence jointly: ERNM
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Fitting Models to Partially Observed Social Network Data

Focus on the joint distribution of Z = (Y , X).
Types of data: Observed relations, nodal and dyadic variables
(zobs = (yobs, xobs)), and D, indicators of relations and covariates being
observed
Z = (Zobs, Zunobs)

L(⌘, ) ⌘ P(Zobs = zobs,D|⌘, )

=
X

zunobs

P(Zobs = zobs, Zunobs = zunobs,D|⌘, )

=
X

zunobs

P(D|Zobs = zobs, Zunobs = zunobs, )P⌘(Zobs = zobs, Zunobs = zunobs)

=
X

zunobs

P(D|Z, )⇥P⌘(Z = z)

sampling design⇥network model

⌘ is the network model parameter (“super population")
 is the sampling parameter
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Adaptive Sampling Designs

A sampling design adaptive if:

P(D = d|Zobs, Zmis, ) = P(D = d|Zobs, ) 8z 2 Z.

that is, it uses information collected during the survey to direct subsequent
sampling, but the sampling design depends only on the observed data.

adaptive sampling designs satisfy a “missing at random” condition from
Rubin (1976) in the context of missing data.

Result: standard network sampling designs such as conventional,
adaptive web, and multi-wave link-tracing sampling designs are adaptive

) Thompson and Frank (2000), Handcock and Gile (2006, 2010,
2016).
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Adaptive Sampling Designs and their Amenable Models

De�nition: Consider a sampling design governed by parameter  2  and
a stochastic network model P⌘(Z = z) governed by parameter ⌘ 2 ⌅. We
call the sampling design amenable to the model if the sampling design is
adaptive and the parameters  and ⌘ are distinct.

Result: If the sampling design is amenable to the model the likelihood for ⌘
and  is

L[⌘, |Zobs = zobs,D = d] / L[ |D = d, Zobs = zobs]L[⌘|Zobs = zobs]

sampling design likelihood⇥face-value likelihood

L[ |D = d, Zobs = zobs] = P(D|Zobs = zobs, )

L[⌘|Zobs = zobs] =
X

zunobs

P⌘(Zobs = zobs, Zunobs = zunobs)
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Adaptive Sampling Designs and their Amenable Models

Result: If the sampling design is not amenable to the model the likelihood
for ⌘ and  is

L(⌘, ) =
X

zunobs

P(D|Zobs = zobs, Zunobs = zunobs, )P⌘(Zobs = zobs, Zunobs = zunobs)

and the design will need to be represented.

Clearly P(D|Z, ) can be modeled when it is unknown.
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Approximating the loglikelihood

Let Z = (Y , X), Zobs = (Yunobs, Xunobs), Zunobs = (Yunobs, Xunobs)
missing data log-likelihood

`(⌘, |Zunobs = zunobs) =

log


P(D|zobs, zunobs, )P⌘(zobs, zunobs)

�
� log


c(zunobs,⌘, )

�

Z1, Z2, . . . , Zm i.i.d. P⌘0(Z = z) for some ⌘0 via MCMC.
Zc1, Z

c
2, . . . , Z

c
m i.i.d. P⌘0(Z = z|Zobs = zobs) via MCMC.

Using the LOLN, the di�erence in observed data log-likelihoods is

`(⌘, )� `(⌘0, 0) = log
c(zunobs, ⌘, )
c(zunobs, ⌘0, 0)

� log
c(⌘)
c(⌘0)

⇡ weighted sample means over {Zk}mk=1 and {Zck}
m
k=1
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Ex 1: Ignorably missing nodal attributes and ties

Sampling Sampson’s monk’s ties and Cloisterville attendance
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Ex 2: Biased seed link-tracing

In disease modeling, take the disease status as the nodal covariate.

If seeds are chosen as a convenience sample, followed by link-tracing then
likelihood inference is amenable.

e.g., seeds picked at random from among the infected individuals,
convenience sample of uninfected seeds
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Ex 3: Positive contact tracing

Contact tracing that follows all ties from infected nodes only

Clearly sampling is informative and the design is non-amenable.

Still the design can be modeled and likelihood inference based on ERNM is
very e�ective.
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Summary

We present a concise and systematic statistical framework for dealing
with partially observed network data mechanisms

missing relational ties and nodal covariates
adaptive sampling: link-tracing
non-amenable sampling designs (e.g., positive contact tracing)

likelihood-based inference is practical under partial observation
We develop MCMC-MLE algorithms and show they are computationally
feasible
We give three important special cases:

ignorably missing nodal attributes and relational ties
link-tracing with a convenience sample of seeds: e.g., seeds picked at random
from among the infected individuals, convenience sample of uninfected seeds
positive contact tracing: follow all ties from infected nodes only

Made available open-source, powerful, general, user-friendly software to
do all of the above.
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