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Networked Population
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Mechanisms for Partial Observation of Social

Networks

@ Sampling Design: Known mechanism
e Egocentric

-
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Partial Observation of Social Networks

@ Sampling Design: Known mechanism
e Egocentric
@ Adaptive
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Partial Observation of Social Networks

@ Sampling Design: Known mechanism
e Egocentric
@ Adaptive
@ Out-of-design Missing Data: Unknown mechanism
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Adaptive Network Sampling

Strengths:

@ Exploits information in the network of relationships
@ Network structure used to improve the design

@ Increases the range of possible designs

@ Adjusts for discovered features in the population

@ Leads to increased efficiency of sampling

Issues:

@ Seed Dependence: final sample depends on sampling mechanism of
seeds

@ Privacy: some populations prefer to stay “hidden”
@ Link-tracing can be challenging: confidentiality, logistics

@ Estimation: The sample and sampling probabilities depend on the
unknown network
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Statistical Models for Social Networks

Consider a networked population with a set of n social “actors", social
relationship between each pair of actors, and a set of variables on those
actors/pairs.

@ a set of n social “actors"

@ a social relation Y between pairs of actors.

@ call Y = [Yj]nxn a graph

@ X be n x g matrix of actor and dyadic covariates
@ call (Y, X) a network

@ The basic problem of stochastic modeling is to specify a distribution for
X,Yie,
P(Y :yvx = X)
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The ERGM Framework for Network Modeling

UCLA

Let ) be the sample space of Y e.g. {0, 1}V
and X be the sample space of X.
Model the multivariate distribution of Y given X via:

P, (Y =ylX =x) = exp{nglyx)}

X
n.x, Y) yey, xe

Frank and Strauss (1986)
@ 1 € A C RY d-vector of parameters

@ g(y|x) d-vector of graph statistics.
= g(Y|x) are jointly sufficient for the model

c(n,x,Y) distribution normalizing constant

c(nx,Y) = exp{ngylx)}

yey



Extensive development of conditional models

@ Classes of g(y|x) (Generative Theory, Structural signatures)
@ Inference on the log-likelihood function,

6(77|y0bs;xobs) = n’g(yobs|xobs) - |0g C(n|xobs)

c(11Xobs) ZGXP{W 8(2|Xons) }

ziny

@ For computational reasons, approximate the likelihood via
Markov Chain Monte Carlo (MCMQ)
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Exponential-family Random Network Models

Joint modeling of Y and X Fellows and Handcock (2012)
Let A be the sample space of Y, X

Model the multivariate distribution of Y, X
via the form:

P,(Y =y, X=x)= exp{ng(y, x)}

) V. xeN

@ 7 € A C RY g-vector of parameters

@ g(y,x) g-vector of network statistics.
= g(Y,X) are jointly sufficient for the model

@ c(n, V) distribution normalizing constant

(0 N) = /y _e{ngl. 1} aPoly. )
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Interesting model-classes of ERNM

Relationship to ERGM and Gibbs Random Fields
Let N(x) = {y: (x,y) e N} and N(y) = {x: (x,y) e N'}

1

c(my)

ERGM  P(Y=y|X=x;n)

Gibbs measure  P(X =x|Y =y;n) ey x e N(y)

ALAAM

@ The first model is the ERGM for the network conditional on the nodal
attributes.

@ The second model is an exponential-family for the field of nodal
attributes conditional on the network.
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Example: Joint Ising Models

Suppose X is univariate and binary x; € {—1,1}. One measure of
homophily on x is

homophily(y, x) Z Zx,y,jx/ M

i=1 j=1
A simple model for the network is

P(X =x,¥Y = y|m , 772) x e density(y)+mnzhomophily(y,X) (y,X) eN
where density(y) = 1 37, > Yij

GLM  P(Yjj=yijIX=X,m,m) o< €m LY TaXiYi X ye{0,1}, xex
Ising model ~ P(X =x|Y =y,15) o eRZi2* VX (y x) e N

@ So we have a simple joint Ising model
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Comparing ERGM to ERNM Conceptually

@ Social selection process: conventional network analysis with nodal
attributes fixed

Before After

@ ® @O—®

Social Selection

© © ©—®

Figure: Illustration of Social Selection: Color of nodes: nodal attributes
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Comparing ERGM to ERNM Conceptually

@ Social influence process: the network is fixed and the nodal attributes
can vary

Before After

© ©® — © O

Figure: lllustration of Social Influence: Color of nodes: nodal attributes
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Comparing ERGM to ERNM Conceptually
@ Social selection process: ERGM, SBM, etc

@ Social influence process: Gibbs fields, Ising, ALAAM, etc
@ Social selection and influence jointly: ERNM
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Fitting Models to Partially Observed Social Network Data

@ Focus on the joint distribution of Z = (Y, X).

@ Types of data: Observed relations, nodal and dyadic variables
(Zobs = (Vobs, Xobs)), @and D, indicators of relations and covariates being
observed

0 7= (ZobSaZunobs)
L(n,v) = P(Zobs = Zobs, D0, )
= Z P(Zobs = Zobs> Zunobs = Zunobs: DI, V)

Zunobs

- Z P(D|Zobs = Zobss Zunobs = Zunobs: d))P’r](Zobs = Zobs Zunobs = Zunobs)

Zunobs

=Y P(DIZ,4)xPy(Z = 2)

Zunobs

sampling designxnetwork model

@ 7 is the network model parameter (“super population")

@ ¢ is the sampling parameter
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Adaptive Sampling Designs

@ A sampling design adaptive if:
P(D = d|ZobSaZmis,w) =P = d|Zobs,¢) Vze Z.

that is, it uses information collected during the survey to direct subsequent

sampling, but the sampling design depends only on the observed data.

@ adaptive sampling designs satisfy a “missing at random" condition from
Rubin (1976) in the context of missing data.

@ Result: standard network sampling designs such as conventional,
adaptive web, and multi-wave link-tracing sampling designs are adaptive
= Thompson and Frank (2000), Handcock and Gile (2006, 2010,

2016).
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Adaptive Sampling Designs and their Amenable Models

Definition: Consider a sampling design governed by parameter ¢ € W and
a stochastic network model Py(Z = z) governed by parameter n € =. We
call the sampling design amenable to the model if the sampling design is
adaptive and the parameters v and n are distinct.

Result: If the sampling design is amenable to the model the likelihood for n
and ¢ is

L[Thw‘zobs = Zobs, D = d] X L[QND =d,Zops = Zobs]L[nlzobs = zobs]

sampling design likelihood x face-value likelihood

L[w|D = da Zobs = Zobs] = P(D|Zobs = Zob57¢)

L[n|Zobs = Zobs] = Z Pn(Zobs = Zobs, Zunobs = Zunobs)

Zunobs
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Adaptive Sampling Designs and their Amenable Models

Result: If the sampling design is not amenable to the model the likelihood
forpandis

L(n,v) = Z P(D|Zobs = Zobs: Zunobs = Zunob57¢)P7](Zobs = Zobss Zunobs = Zunobs)

Zunobs

and the design will need to be represented.

Clearly P(D|Z, ) can be modeled when it is unknown.
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Approximating the loglikelihood

@ letZ= (Y,X), Zobs = (Y.obs,x.obs)f Zunobs = (YunobSaXunobs)
@ missing data log-likelihood

6(777¢|Zunobs = Zunobs) =

log P(D|Zob57zunob57w)Pn(Zostunobs)] — log |:C(Zunobsa"7a¢)]

@ 21,2y,....2nmiid. Py (Z =2) for some g via MCMC.
Z25,25, ..., 25 idd. Ppo(Z = Z|Zops = Zops) Via MCMC.
@ Using the LOLN, the difference in observed data log-likelihoods is

€(n,1) — £(10, vo) log m ~ log CC(S;Z))

weighted sample means over {Zy}{_, and {Z;}},

Q
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Ex 1: Ignorably missing nodal attributes and ties

Sampling Sampson’s monk's ties and Cloisterville attendance
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Ex 2. Biased seed link-tracing

In disease modeling, take the disease status as the nodal covariate.

If seeds are chosen as a convenience sample, followed by link-tracing then
likelihood inference is amenable.

e.g., seeds picked at random from among the infected individuals,
convenience sample of uninfected seeds
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Ex 3: Positive contact tracing

Contact tracing that follows all ties from infected nodes only
Clearly sampling is informative and the design is non-amenable.

Still the design can be modeled and likelihood inference based on ERNM is
very effective.
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@ We present a concise and systematic statistical framework for dealing
with partially observed network data mechanisms

@ missing relational ties and nodal covariates
o adaptive sampling: link-tracing
@ non-amenable sampling designs (e.g., positive contact tracing)
@ likelihood-based inference is practical under partial observation

@ We develop MCMC-MLE algorithms and show they are computationally
feasible
@ We give three important special cases:

@ ignorably missing nodal attributes and relational ties

e link-tracing with a convenience sample of seeds: e.g., seeds picked at random
from among the infected individuals, convenience sample of uninfected seeds

@ positive contact tracing: follow all ties from infected nodes only

@ Made available open-source, powerful, general, user-friendly software to
do all of the above.
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