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Statistical Models for Social Networks

Notation

A social network is defined as a set of n social “actors”, a social

relationship between each pair of actors, and a set of variables on those

actors/pairs.

Yij =

{
1 relationship from actor i to actor j

0 otherwise

call Y ≡ [Yij ]n×n a graph

a N = n(n − 1) binary array

X be n × q matrix of actor variates

call (Y ,X ) a network

The basic problem of stochastic modeling is to specify a distribution

for X ,Y i.e., P(Y = y ,X = x)
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Examples of Friendship Relationships

The National Longitudinal Study of Adolescent Health

⇒ www.cpc.unc.edu/projects/addhealth

– “Add Health” is a school-based study of the health-related

behaviors of adolescents in grades 7 to 12.

Each nominated up to 5 boys and 5 girls as their friends

160 schools: Smallest has 69 adolescents in grades 7–12
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White (non-Hispanic)Grade 7
Black (non-Hispanic)
Hispanic (of any race)
Asian / Native Am / Other (non-Hispanic)
Race NA

Grade 8
Grade 9
Grade 10
Grade 11
Grade 12
Grade NA
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Common Features of Social Networks

Mutuality of ties

Individual heterogeneity in the propensity to form ties

Homophily by actor attributes

⇒ Lazarsfeld and Merton, 1954; Freeman, 1996; McPherson et al., 2001

higher propensity to form ties between actors with similar attributes

e.g., age, gender, geography, major, social-economic status

attributes may be observed or unobserved

Transitivity of relationships

friends of friends have a higher propensity to be friends

Social Context is important ⇒ Simmel (1908), Heider (1946)

triad, not the dyad, is the fundamental social unit

dependence on nodal and dyadic attributes
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The ERGM Framework for Graph Modeling

Let Y be the sample space of Y e.g. {0, 1}N .

g(y), y ∈ Y d-vector of graph statistics

represent graph features of interest (e.g., density, transitivity)

desire g(Y ) to be jointly sufficient for the model
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The ERGM Framework for Graph Modeling

Let q(y) be a probability mass function over Y.

Recall the maximum entropy motivation for exponential-families:

maximize
q

∑

y

q(y) log(q(y))

subject to

Eq(gi (Y )) = µi , ∀ i ∈ {1, . . . , d}

Leads to:

Pη(Y = y) =
exp{η·g(y)}

c(η,Y)
y ∈ Y

Eη(g(Y )) = µ
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The ERGM Framework for Network Modeling

Let Y be the sample space of Y e.g. {0, 1}N
and X be the sample space of X .

Model the multivariate distribution of Y given X via:

Pη(Y = y |X = x) =
exp{η·g(y |x)}
c(η, x ,Y)

y ∈ Y, x ∈ X

Frank and Strauss (1986)

η ∈ Λ ⊂ Rd d-vector of parameters

g(y |x) d-vector of graph statistics.

⇒ g(Y |x) are jointly sufficient for the model

c(η, x ,Y) distribution normalizing constant

c(η, x ,Y) =
∑

y∈Y
exp{η·g(y |x)}
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Extensive development of conditional models

Classes of g(y |x) (Generative Theory, Structural signatures)

Inference on the log-likelihood function,

ℓ(η|yobs; xobs) = η·g(yobs|xobs)− log c(η|xobs)

c(η|xobs) =
∑

z in Y
exp{η·g(z |xobs)}

For computational reasons, approximate the likelihood via

Markov Chain Monte Carlo (MCMC)
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How can we tell if a model class is useful?

Many aspects:

Is the model-class itself able to represent a range of

realistic networks?

– model degeneracy: small range of graphs covered as

the parameters vary

Much work: Strauss, 1986; Jonasson, 1999; Handcock, 2003;

Rinaldo, Fienberg and Zhou, 2009; Schweinberger 2011;

Schweinberger ...
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Model Degeneracy

idea: A random graph model is near degenerate if the model places

almost all its probability mass on the boundary of the convex hull of

{g(y |x) : y ∈ Y}.
e.g. empty graph, full graph, no 2−stars, mono-degree graphs

Example: The triangle model

Pη(Y = y) =
exp{η1edge(y) + η2triangle(y)}

c(η1, η2)
y ∈ Y

is near-degenerate for most values of η2 > 0

edge(y) =
∑

i<j

yij triangle(y) =
∑

i<j<k

yijyikyjk

← →8

Classes of statistics used for modeling

1) Nodal Markov statistics ⇒ Frank and Strauss (1986)

– motivated by notions of “symmetry” and “homogeneity”
– edges in Y that do not share an actor are

conditionally independent given the rest of the network
⇒ analogous to nearest neighbor ideas in spatial statistics

• Degree distribution: dk(y) = proportion of nodes of degree k in y.

• k-star distribution: sk(y) = proportion of k-stars in the graph y.

• triangles: t1(y) = proportion of triangles in the graph y.

• •

•

i j

h

.................................................................................................................................................
...............................
...............................
.....................

...............................
...............................
...............................
.....................

triangle
= transitive triad

• •

•

j1 j2

i

...............................
...............................
...............................
.....................

...............................
...............................
...............................
.....................

two-star

• •
•
•

j1 j2

i

j3

....................................
....................................
............

....................................
....................................
............
...........................
...........................
....................

three-star

⇐ Mark S. Handcock Statistical Modeling With ERGM →
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Degeneracy: The triangle model

P(Y = y) =

∫
p(η)Pη(Y = y)dη

where p(η) denotes a distribution over η.
Local Dependence 3
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ERGMs induce either no dependence and are simplistic (e.g., Bernoulli random graph models) or
strong dependence and are near-degenerate (e.g., Markov random graph models, Frank and Strauss,
1986).

We take first steps to characterise local dependence in random graph models in Section 2. We
demonstrate that local dependence endows random graph models with desirable properties which
makes them amenable to statistical inference. One property is a natural domain consistency condi-
tion that any probability model should satisfy, but many parametrisations of ERGMs do not satisfy
(Shalizi and Rinaldo, 2013). A second, and more important property is asymptotic Gaussian be-
havior of statistics, which suggests that random graph models with local dependence place much
probability mass around the expected value of statistics of interest. We discuss the construction of
random graph models with local dependence in Section 3 and Bayesian inference given complete as
well as incomplete data in Section 4. If suitable neighborhood structure is observed, at least two
approaches to statistical inference are possible, depending on whether the observed neighborhood
structure is regarded as fixed or random. If no suitable neighborhood structure is observed, we
take a Bayesian view and express the uncertainty about the neighborhood structure by specifying a
prior on a set of suitable neighborhood structures, using hierarchical parametric and non-parametric
priors and auxiliary-variable Markov chain Monte Carlo methods. We present simulation results
and applications to two real-world networks with ground truth in Section 5.

Other, related work. Snijders et al. (2006) and Hunter and Handcock (2006) considered non-
linear constraints on the parameter space of ERGMs. Such curved ERGMs have been applied with
some success (Hunter et al., 2008), but do not admit simple representations of dependencies and the
interpretation of parameters is challenging, as noted by Snijders et al. (2006, p. 149). An alternative
are latent variable models, which we discuss in Section 2.1. Selected, special cases and other, related
work are discussed in Section 3.4.

2. Dependence

We discuss in Section 2.1 two broad approaches to modeling dependence, one based on latent vari-
able models and the other one based on ERGMs, and we argue that ERGMs are attractive when
dependence is of substantive interest. We discuss in Section 2.2 the challenges encountered in mod-
eling dependence of substantive interest by ERGMs. In Section 2.3, we introduce a notion of local
dependence and in Section 2.4 we show that that local dependence endows models with desirable
properties which makes them amenable to statistical inference.

Prior predictions of the  statistics under the triangle model 
                                    N=4,950 edge variables. Note the extreme polarisation.

number of edges number of triangles
13



Modeling Dependence: Challenges

ERGMs similar to models in physics, spatial statistics, time-series

lack of a natural neighborhood structure to bound dependence

important to exploit X to explain variation

Schweinberger and Handcock (2015): important to use hierarchical

specification to “localize dependence”

14



Tapered ERGM

Consider the simple modification adding variation constraints:

maximize
q

∑

y

q(y) log(q(y))

subject to

Eq(gi (Y )) = µi , Eq((µi − gi (Y ))2) ≤ σ2
i , ∀ i ∈ {1, . . . , d},

Leads to:

q(y |θ, τ) = 1

Z (θ, τ)
e
∑

k θkgk (y)−
∑

k τk (µk (θ,τ)−gk (y))
2

, (1)

where µ(θ, τ) = Eq(g(Y ))

15



Tapered ERGM

A “new” family of exponential-family models

q(y |θ, τ) = 1

Z (θ, τ)
e

∑

k

θkgk(y)−
∑

k

τk(µk(θ, τ)− gk(y))
2

. (2)

where τ > 0 are vectors of hyper parameters

mean value parameters : µ(θ, τ) = Eq(g(Y ))

tapering parameters : σ2 = V(θ, τ)≡Vq(g(Y ))

the augmented term tapers the likelihood of configurations far from the

mean µ.

τk interpreted as the strength of the attractive force to the mode

τ is determined by σ2 via

V(θ, τ) = Vq(g(Y )) = σ2 = (σ2
1 , . . . , σ

2
d)

16



Degeneracy of Tapered ERGM

When near-degeneracy occurs, the ERGM q(y |θ) is plagued by

multimodality in g(Y ).

One way to ensure q(y |θ) is unimodal is to require it does not have any

local minima or saddle points for any θ.

Using results of Horvat, Czabarka, and Toroczkai (2015), Blackburn and

Handcock (2022) show:

Theorem

Let chull(T ) be the convex hull of the sample space of statistics, T .

For any vector µ of mean parameters in chull(T ), there exists a vector

of tapering parameters τ ∈ Rd
≥0 such that the Tapered ERGM with

tapering center µ is non-degenerate.
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Degeneracy of Tapered ERGM

Let s ∈ {g(y , x) : y ∈ Y, x ∈ X} be a possible network statistic.

Let N(s) be the number of networks with statistic s.

Let N∗(s) be a smoothed twice differentiable approximation of N(s).

Let q∗(s) = N∗(s)
N(s) q(s) be a smoothed version of the tapered ERGM PMF.

Theorem

There exists α > 0 such that for all α > τ > 0, the smooth q∗(s) has

no local minima, nor saddle points for all θ.

It is uniphase in the sense of Horvat, Czabarka, and Toroczkai (2015).
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Illustration: Ising Model for Political Polarization

Consider a 10×10 grid of cells linked via contiguity. We consider the links

as fixed and cell values, yij , as random {red, blue}

q(y |θ, τ) = 1

Z (θ, τ)
e

∑

k

θkgk(y)−
∑

k

τk(µk(θ, τ)− gk(y))
2

. (3)

Choose

g1(y) =
∑

i,j

yij g1(y) =
∑

i,j

yij(y(i+1)j + yi(j+1)) “shared spin”
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Illustration: Ising Model for Political Polarization

Simulations from traditional Ising model (τ = 0)Ian E. Fellows, Mark S. Handcock

Figure 1: Simulations from the Ising model at the
MLE with θ̂mle = (0, 0.45). The observed configura-
tion is marked as a red point. Note that the configura-
tions similar to the observed are extremely uncommon
under the maximum likelihood model.

tice. The extreme multimodal nature of the like-
lihood dramatically reduced the computational ef-
ficiency of MCMC algorithms such as Metropolis-
Hastings. This has restricted their routine usage in
MCMC-based maximum likelihood estimation [Hand-
cock, 2003]. Secondly, if the true value is close to a
phase transition point and the MLE was found, the
model fit would typically not be useful [Chatterjee
et al., 2013].

Suppose instead of magnetic spins, the Ising model in-
dicated “liberal” or “conservative” political affiliation
and n = 100. Imagine that we observe a community
where exactly half of people are conservative and there
is a very strong tendency for like political affiliation to
be connected to like, with 177 of the 200 connections
being between the same affiliations. This can be con-
sidered a simple version of the social influence model
introduced in Robins et al. [2001]. Recall that at the
MLE, the mean value parameters equal their observed
values, so average simulations from the fit will consist
of 50% conservatives. However, as shown in Figure 1,
the MLE has two phases, one where almost all are con-
servative and one where almost all are liberal. Even
though the average of these two modes matches the
observed value, configurations like the one observed
are extremely rare. Thus the fit of the Ising model is
at best highly questionable.

Let N∗ be a smoothed twice differentiable approxima-

tion of N , and p∗(g(x)) = N∗(g(x))
N(g(x)) p(g(x)) be an ap-

proximation of the exponential family probability dis-
tribution p. This smoothed version of N∗, introduced

by Horvát et al. [2015], is a mathematical convenience
removing the effects of small local fluctuations and as-
suring the existence of a Hessian. While the choice
of N* could result in a probability distribution, this
is not a hard requirement of its construction, and in
many cases, N* could be made to be arbitrarily close
to N while still maintaining 2nd order differentiability.
Following Horvát et al. [2015] we define uniphase and
multiphase as:

Definition 1 A distribution p(g(x)) is uniphase with
respect to p∗ if it contains no local minima or saddle
points, and is multiphase otherwise.

Horvát et al. [2015] developed an insightful connec-
tion between multiphase behavior and the configura-
tion count function N . We restate two results from
that work here.

Lemma 1 Let f be a continuous twice differentiable
function and h(y) = f(y)eθ·y, where y is a vector. h
has no minima or saddlepoints in y for all θ if and
only if f is strictly log concave.

Theorem 1 A Gibbs measure pgibbs(g(x)|θ) is
uniphase with respect to smoothing p∗gibbs for all θ, if
and only if N∗ is strictly log concave.

Theorem 1 reduces the existence of multiphase param-
eter values to a statement about configuration density,
and motivates using sufficient statistics in the model
such that N is approximately log concave. However,
as a practical insight it is difficult to use. In most
cases, due to the high dimensional nature of x, N is
intractable and is therefore difficult to compute.

3 A Robust Extension of the Gibbs
Measure

In order to reduce the appearance of distributional
modes that are far away from one another in terms
of the sufficient statistics, we will use the same max-
imum entropy framework that underlies Gibb’s mea-
sures, but add an additional constraint that the vari-
ance of the sufficient statistics should be less than or
equal to a maximum value. The maximum entropy
problem is

maximize
q

∑

x

q(x) log(q(x))

subject to
∑

x

q(x) = 1,

Eq(gi(X)) = µi,

Eq((µi − gi(X))2) ≤ κi,
∀ i ∈ {1, . . . , d}.

The red point is a society where 177 of 200 connections are with like. 20



Illustration: Ising Model for Political Polarization

Simulations from tapered Ising model (τ = 0 to 1.41)Removing Phase Transitions from Gibbs Measures

# Conservative # Like-to-Like Ties
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Figure 2: Histogram density estimates based on 10,000
simulations at each β value from the MLE fit to the
configuration with 50 conservatives and 177 like affili-
ation ties. Smaller values of β remove the bimodality
of the phase transition.

average position. This tendency to pull of actors to
the average is precisely the effect of the tapering term
in Equation 1.

Figure 2 shows simulations from the MLE model fit of
q to our hypothetical community with varying degrees
of tapering. No tapering was added to g2 as β2 =∞ in
all simulations. When both βs are infinite, the model
reduces to a Gibbs measure. At β1 = 30 we start to
see increasing density around the mean value statistic,
but the two modes are still prominent. At β1 = 10,
configurations with 55 or 45 conservatives receive a
log probability reduction of 1, and the ones with 0 or
100 conservatives receive a log probability reduction
of 100. The distribution of counts of conservatives is
symmetric and looks nearly Gaussian. β1 = 5 has a
qualitatively similar look to that of β1 = 10, except
the variation in the counts has been reduced.

With no tapering term, we see a high variation in the
counts of conservatives (g1). A priori, an analyst might
have expected a level of variation similar to a binomial
distribution, which would be v1 = 100∗0.5∗(1−0.5) =
25. Using r = 2 yields β1 = 2

√
25 = 10 and at β1 = 10,

the MLE displays none of the bimodality present in the
untapered model.

4.3 Example: A Network Model for Network
Science Collaboration

Exponential-family random graph models (ERGM)
represent a very general and flexible class of distri-
butions for modeling relational ties. A quite exten-
sive literature on these models exists, see for example
Robins et al. [2007] and references therein. An ERGM
is a Gibbs measure where elements of x indicate the
present or absence of a relational tie between individ-
uals. Node i is tied to node j if xij = 1 and xij = 0
otherwise.

What makes ERGMs different from any other Gibbs
Measure is the choice of sufficient statistics to use in
modeling. These statistics are chosen to match our
theoretical understanding of the forces governing social
interactions, six of which are described here.

edges The number of edges in the graph.

k-star The number of subgraphs where k edges are
connected to a single vertex.

isolates The number of vertices with no neighbors.

triangles The number of triangles present in the
graph.

k-esp The number of edges whose vertices share ex-
actly k neighbors in common.

dcp The cross-product of the degrees of connected
vertices divided by the number of total edges.

The first three terms (“edges,” “k-star” and “isolates”)
model the distribution of the number of neighbors of
the vertices in the network. This is known as the de-
gree distribution. The next two terms “k-esp” and
“triangles” model the transitivity of relations. If i is
connected to j and k, then j and k may be more likely
to be connected. The final term “dcp” models tenden-
cies of high degree vertices to be connected to other
high degree vertices.

The above terms have been repeatedly shown to have
extreme difficulties in modeling real world social net-
works due to multiphase behavior [Schweinberger,
2011, Chatterjee et al., 2013, Handcock, 2003], espe-
cially in networks of any significant size. However,
because we now have the tools to remove phase tran-
sitions, it is possible to model networks never before
amenable to ERGM analysis.

Newman [2006] collected and introduced a network
representing the co-authorship of scientists publishing
on the topic of network science. The full network con-
tains 1589 scientists, of which we removed one outly-
ing biology paper with an extreme number of authors

𝜏=1.41

𝜏=0.32

𝜏=0.18

  𝜏=0
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Inference for Tapered ERGM

The first derivative of the log likelihood is

δℓ

δθi
= (gi (x)− µi (θ, τ))− 2

∑

k

τk
δµk(θ, τ)

δθi
(µk(θ, τ)− gk(x))

The second derivative of the log likelihood at the MLE is

δℓ

δθiδθj

∣∣∣∣
θ̂mle

= −δµi (θ, τ)

δθj
− 2

∑

k

τk
δµk(θ, τ)

δθi

δµk(θ, τ)

δθj
. (4)

where
δµ(θ, τ)

δθi
= (I − B)−1c i ,

Brk = 2β−2
k cov(gr (X ), gk(X ))

and c i be a vector with elements

c ir = cov(gr (X ), gi (X )),

22



Inference for Tapered ERGM

So finding the MLE of θ reduces to finding the MLE with

µ(θ, τ) = g(xobs) and can be computed as simply as a standard ERGM

(via MCMC or otherwise).

Nominal standard errors and likelihood ratios can be computed using the

above formulas

23



Add Health Network

“Add Health” is a school-based study of the health-related

behaviors of adolescents in grades 7 to 12.

Each nominated up to 5 boys and 5 girls as their friends

Synthetic data (Faux Desert High)

n = 107 students across six grades

Covariates: grade (7 through 12) and race

There are 439 directed friendship edges, 677 triangles

24



Comparing an ERGM to a Tapered ERGM

Table 1: ERGM fit vs Tapered ERGM fit on Faux Desert High Network. In the

Tapered ERGM, tapering was done on the dyad-dependent terms.

Term ERGM SE Tapered ERGM

# edges -3.48 (0.10) -3.49 (0.10)

# triangles -0.008 (0.038) -0.002 (0.054)

# isolates 1.16 (0.47) 1.20 (0.63)

# no shared -1.35 (0.13) -1.35 (0.15)

# homophily on 7 2.22 (0.23) 2.19 (0.24)

# homophily on 8 2.07 (0.17) 2.05 (0.17)

# homophily on 9 1.99 (0.16) 1.98 (0.16)

# homophily on 10 1.57 (0.11) 1.57 (0.11)

# homophily on 11 1.78 (0.15) 1.77 (0.15)

# homophily on 12 1.28 (0.28) 1.28 (0.28)

25



How much does tapering change the parameter estimates?

We see that regardless of how much tapering we apply, the parameter

estimates and standard errors are similar to standard ERGM.
26



How do we interpret the parameters of the tapered ERGM?

If the tapering parameters τ are zero, then the Tapered model is identical

to the standard ERGM and an interpretation of the θ parameters is as

conditional log-odds. However, non-zero τ has an effect on the

interpretation of the parameters. To see this, Let

P(Yij = 1|Y c
ij = y c

ij ) ≡ P(Y+
ij ) and P(Yij = 0|Y c

ij = y c
ij ) ≡ P(Y−

ij ).

Under the Tapered ERGM the log-odds of a tie conditional on Y c
ij is

log

(
P(Y+

ij )

P(Y−
ij )

)
=
∑

∆tk(Yij) [θk + τkδkij ]

where

∆tk(Yij) = tk(Y
+
ij )− tk(Y

−
ij ) is the change statistic

δkij = (µk − tk(Y
+
ij )) + (µk − tk(Y

−
ij )) is the sum of the differences

from the mean.

δkij is a measure of the deviation of the network statistics from their

mean.
27



How do we interpret the parameters of the tapered ERGM?

When θk is the MLE, the log-odds of a tie conditional on Y c
ij is

∑

k

∆tk(Yij)
[
θ̂k + τk(2Yij − 1)∆tk(Yij)

]

.

The last expression suggests a measure of the bias in the Tapered ERGM

parameter estimate θ̂k , as an estimate of the conditional log-odds, is the

average over the dyads (i , j) in the network of the penalty term:

−τk
∑

ij

(2Yij − 1)∆tk(Yij)

28



How much does tapering change the parameter estimates?

We see that regardless of how much tapering we apply, the parameter

estimates and standard errors are similar to standard ERGM.
29



How to choose the tapering?

Fellows and Handcock suggest τ = 1
r2µ where r is a user specified

multiplier so that observations r standard deviations from the mean

are tapered most.

In particular, a reasonable default assumes Poisson-like variation in

g(Y ) so that τ = 1
r2g(yobserved)

.

This usually leads to light tapering of graphs unexpectedly far away

from the mean

30



How, really, should we choose the tapering?

One of the hallmarks of near-degeneracy is bi/multimodality.

How can we measure the bimodality of a distribution?

Let Z be the standardized version of g(Y ) then the kurtosis is:

Kurt[g(Y )] ≡ E
[
Z 4
]
=
µ4

µ2
2

Kurt[g(Y )] ≥ 1

Gaussian: Kurt[g(Y )] = 3; Uniform: Kurt[g(Y )] = 9/5;

Poisson: Kurt[g(Y )] = 3 + 1
µ

Blackburn and Handcock (2022) argue that we can interpret kurtosis

as a measure of bimodality in the context of network modeling
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Penalized Likelihood via the Kurtosis

If we set a target kurtosis value we can simply maximize the

log-likelihood subject to a penalty on how far the kurtosis deviates from

the target value plus a penalty on the magnitude of τ :

τ̂ = arg max
τ

[l(θ, τ, ; yobserved)− τ − γ penalty on K [g(Y )|θ, τ ]]

where KT is a target kurtosis and Kσ and γ are scale parameters.

32



Penalized Likelihood via the Kurtosis

If we set a target kurtosis value we can simply maximize the

log-likelihood subject to a penalty on how far the kurtosis deviates from

the target value plus a penalty on the magnitude of τ :

τ̂ = arg max
τ

[
l(θ, τ, ; yobserved)− τ − γ

(
K [g(Y )|θ, τ ]− KT

Kσ

)2
]

where KT is a target kurtosis and Kσ and γ are scale parameters.

Sensible default values are

KT = 3 (Gaussian)

Kσ = 0.6, half the distance from 3 to 1.8 (Uniform).

γ = 1
2

To simplify, take the average penalty over all tapered terms and reexpress

as r̂ = 1√
τ̂µ

.

33



Example: Add Health Network

The optimal r̂ = 2.48, that is taper at over two standard deviations -

very weak.
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Example: Ethnic heterogeneity of a London street gang

The members of a London gang between 2006 and 2009.

A tie exists between two gang members if they were arrested

together for committing a crime at least once.

undirected network with 54 vertices and 133 ties

Studied by Grund and Densley (2015)
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Co-offending network of a London street gang

A tie exists between two gang members if they have committed at least

one crime together. All gang members are Black but the gang is

comprised of four distinct ethnicities, categorized by the authors as their

countries of origin.
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Modeling Ethnic heterogeneity of a London street gang

Grund and Densley (2015) posit that who co-offends with whom is driven

by ethnic homophily and homphilous triad-closure.

But the triangle term is near degenerate in standard ERGM.

So they use homophilous GWESP terms and conclude homophilous

triangle closure

Tapered ERGM can fit the homophilous triangles directly
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Tapered ERGMs fit on London Gang Network

Term Model 1 Model 2 τ bias

edges -3.23 (0.18)*** -3.34 (0.17)*** 0.001 -0.0001

triangles 0.68 (0.10)*** 0.71 (0.09)*** 0.001 -0.0012

triangles(West Africa) 0.11 (0.38) 0.12 (0.37) 0.011 -0.0023

triangles(Jamaican) 0.17 (0.61) 0.41 (0.54) 0.027 0.0000

triangles(UK) 0.56 (0.38) 0.61 (0.42) 0.021 -0.0015

match(West Africa) 0.96 (0.60) 0.95 (0.56) 0.008 -0.0005

match(Jamaican) 1.35 (0.66)* 0.94 (0.55) 0.012 0.0006

match(UK) 0.27 (0.40) 0.31 (0.42) 0.007 -0.0004

match(Somali) 2.17 (0.59)*** 2.33 (0.50)*** 0.027 0.0004

isolates 0.98 (0.67) 0.027 -0.0027

*p < .05 **p < .01 ***p < .001

The conclusion is that overall triad closure is the main factor, not

homophilous closure.
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Goodness-of-fit diagnostic plots for Model 2

39



Conclusions on Tapering models

Practical modeling via ERGMs has been hindered by concerns about

near-degeneracy.

Near-degeneracy constrains the space of ERGMs in that many

intuitive or theory-driven terms, like the triangle, most often cannot

be used

The Tapered ERGM can incorporate any term with a guarantee of

non-degeneracy.

Frees modeler to choose most scientifically interpretable statistics

Has theoretical guarantees of stability

Has a simple and appealing interpretation (constrained max entropy)
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Conclusions on Tapering models

We have the developed a procedure to estimate the tapering needed

for a non-degenerate model

Parameter estimates are close to ERGM, when the later exist.

The procedure usually chooses a standard ERGM when justified.

Computationally stable: Can be used as a computational device

Open-source, user-friendly software is available on GitHub in the

ergm.tapered package
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https://github.com/statnet/ergm.tapered

