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Statistical Models for Social Networks

Notation
A social network is defined as a set of 𝑛 social “actors”, a social relationship
between each pair of actors, and a set of variables on those actors/pairs.

𝑌𝑖𝑗 =
⎧
⎨⎩

1 relationship from actor 𝑖 to actor 𝑗
0 otherwise

call 𝑌 ≡ [𝑌𝑖𝑗]𝑛×𝑛 a graph

a 𝑁 = 𝑛(𝑛 − 1) binary array
𝑋 be 𝑛 × 𝑞 matrix of actor variates

call (𝑌 , 𝑋) a network
The basic problem of stochastic modeling is to specify a distribution for
𝑋, 𝑌 i.e., 𝑃(𝑌 = 𝑦, 𝑋 = 𝑥)
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Examples of Friendship Relationships

The National Longitudinal Study of Adolescent Health
⇒ addhealth.cpc.unc.edu

– “Add Health” is a school-based study of the health-related
behaviors of adolescents in grades 7 to 12.

Each nominated up to 5 boys and 5 girls as their friends

160 schools: Smallest has 69 adolescents in grades 7–12

3

addhealth.cpc.unc.edu


−10 −5 0 5 10

−
10

−
5

0
5

10
12

7 9

10

9

8

10

11

7

8

11

8

10

8

8

10

97

8

8

11

8

9
9

7

11

9

10

8

11

7

9

11

11

11

10

10

9

9

7

10

10

7

7 9

9

1111

8

12

9

9

10

7

7

9

7

11

9

7

12

7

8

9

11

11

7

8

12

4



Z. Wang et al.

Fig. 3. Addhealth network visualization.

5.3. Computational aspects

All models in this paper are fit with the open-source user-friendly
R packages ergm (Handcock et al., 2021) or ernm (Fellows, 2014;
R Development Core Team, 2022). The easy availability of powerful,
sophisticated community supported software allows broad accessibility
of both these modeling classes for researchers. In particular, the ergm
package is a part of the statnet community of packages (Krivitsky
et al., 2003–2020). Together these allow robust MCMC based max-
imum likelihood estimation of ERGM and ERNM model parameters.
In addition, they offer powerful models and computational diagnostic
tools that we applied here and are available to all. We do not focus on
these computational aspects here but refer the reader to the extensive
material in the references.

As we discussed earlier in Section 3.2, due to the intricate de-
pendence feature of ERGM and ERNM, computation of approximate
maximum likelihood estimates of the parameters may be complicated
by model degeneracy. MCMC diagnostics are needed to check the ap-
propriation of the model, in other words, whether the model converges.
From the results of MCMC diagnostics (Appendix A.2), the trace plots
of simulated statistics from the fitted model indicate low dependency
and Markov chains convergent to the stationary distribution for both
ERGM and ERNM. The MCMC samplers mix well.

5.4. ERGM and ERNM fits

We show the results of ERGM fit under the suggested model of four
networks (corresponding to grades 9, 10, 11, and 12) in Table 2. We can
interpret the coefficients using the log-odds definition in Section 2.3.
The combination of Edges, Diff-homophily-smoke and Homophily-non-
smoker represents the propensity for forming a tie between all the
possible combinations of smoking attributes between paring of nodes.
The baseline (Edges) corresponds to a heterogeneous pairing. The
Homophily-non-smoke term represents the homophily for non-smokers.
All networks exhibit a positive estimated coefficient on the homophily
of non-smokers (although Grade 11 is not significant). To interpret
this result, taking Grade 9 as an example, the positive coefficient
estimate of homophily on non-smoking (0.40) suggests that students
who have not smoked are more likely to nominate as friends others who
have not smoked (all else held constant). The Diff-homophily-smoke
coefficients give us the differential homophily for smokers. In other
words, it represents the excess (or differential) homophily for smokers
over that for non-smokers. Summing the Homophily-non-smoker and
Diff-homophily-smoke coefficients give us the homophily for smokers.
All networks exhibit stronger homophily for smokers (although Grade
12 is only marginally significant). To interpret this result, taking Grade
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Common Features of Social Networks

Mutuality of ties

Individual heterogeneity in the propensity to form ties

Homophily by actor attributes
⇒ Lazarsfeld and Merton, 1954; Freeman, 1996; McPherson et al., 2001

higher propensity to form ties between actors with similar attributes
e.g., age, gender, geography, major, social-economic status
attributes may be observed or unobserved

Transitivity of relationships

friends of friends have a higher propensity to be friends

Social Context is important ⇒ Simmel (1908), Heider (1946)

triad, not the dyad, is the fundamental social unit

dependence on nodal and dyadic attributes
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The ERGM Framework for Graph Modeling

Let 𝑌 be the sample space of 𝑌 e.g. {0, 1}𝑁.

𝑔(𝑦), 𝑦 ∈ 𝑌 𝑑-vector of graph statistics

represent graph features of interest (e.g., density, transitivity)

desire 𝑔(𝑌 ) to be jointly sufficient for the model
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The ERGM Framework for Graph Modeling

Let 𝑞(𝑦) be a probability mass function over 𝑌.
Recall the maximum entropy motivation for exponential-families:

maximize
𝑞

∑
𝑦

𝑞(𝑦) log(𝑞(𝑦))

subject to

𝐸𝑞(𝑔𝑖(𝑌 )) = 𝜇𝑖, ∀ 𝑖 ∈ {1, … , 𝑑}

Leads to:

𝑃𝜂(𝑌 = 𝑦) = exp{𝜂⋅𝑔(𝑦)}
𝑐(𝜂, 𝑌 )

𝑦 ∈ 𝑌

𝐸𝜂(𝑔(𝑌 )) = 𝜇
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The ERGM Framework for Network Modeling

Let 𝑌 be the sample space of 𝑌 e.g. {0, 1}𝑁

and 𝑋 be the sample space of 𝑋.
Model the multivariate distribution of 𝑌 given 𝑋 via:

𝑃𝜂(𝑌 = 𝑦|𝑋 = 𝑥) = exp{𝜂⋅𝑔(𝑦|𝑥)}
𝑐(𝜂, 𝑥, 𝑌 )

𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋

Frank and Strauss (1986)

𝜂 ∈ Λ ⊂ 𝑅𝑑 𝑑-vector of parameters

𝑔(𝑦|𝑥) 𝑑-vector of graph statistics.
⇒ 𝑔(𝑌 |𝑥) are jointly sufficient for the model

𝑐(𝜂, 𝑥, 𝑌 ) distribution normalizing constant

𝑐(𝜂, 𝑥, 𝑌 ) = ∑
𝑦∈𝑌

exp{𝜂⋅𝑔(𝑦|𝑥)}
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Extensive development of conditional models

Classes of 𝑔(𝑦|𝑥) (Generative Theory, Structural signatures)
Inference on the log-likelihood function,

ℓ(𝜂|𝑦obs; 𝑥obs) = 𝜂⋅𝑔(𝑦obs|𝑥obs) − log 𝑐(𝜂|𝑥obs)

𝑐(𝜂|𝑥obs) =∑
𝑧 𝑖𝑛 𝑌

exp{𝜂⋅𝑔(𝑧|𝑥obs)}

For computational reasons, approximate the likelihood via
Markov Chain Monte Carlo (MCMC)
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How can we tell if a model class is useful?

Many aspects:

Is the model-class itself able to represent a range of
realistic networks?

–model degeneracy: small range of graphs covered as
the parameters vary
Much work: Strauss, 1986; Jonasson, 1999; Handcock, 2003;
Rinaldo, Fienberg and Zhou, 2009; Schweinberger 2011;
Schweinberger ...
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Model Degeneracy

idea: A random graph model is near degenerate if the model places
almost all its probability mass on the boundary of the convex hull of
{𝑔(𝑦|𝑥) ∶ 𝑦 ∈ 𝑌 }.
e.g. empty graph, full graph, no 2−stars, mono-degree graphs

Example: The trianglemodel

𝑃𝜂(𝑌 = 𝑦) = exp{𝜂1edge(𝑦) + 𝜂2triangle(𝑦)}
𝑐(𝜂1, 𝜂2)

𝑦 ∈ 𝑌

is near-degenerate for most values of 𝜂2 > 0
edge(𝑦) = ∑

𝑖<𝑗
𝑦𝑖𝑗 triangle(𝑦) = ∑

𝑖<𝑗<𝑘
𝑦𝑖𝑗𝑦𝑖𝑘𝑦𝑗𝑘

← →8

Classes of statistics used for modeling

1) Nodal Markov statistics ⇒ Frank and Strauss (1986)

– motivated by notions of “symmetry” and “homogeneity”
– edges in Y that do not share an actor are

conditionally independent given the rest of the network
⇒ analogous to nearest neighbor ideas in spatial statistics

• Degree distribution: dk(y) = proportion of nodes of degree k in y.

• k-star distribution: sk(y) = proportion of k-stars in the graph y.

• triangles: t1(y) = proportion of triangles in the graph y.

• •

•

i j

h

.................................................................................................................................................
...............................
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.....................
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⇐ Mark S. Handcock Statistical Modeling With ERGM →
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Degeneracy: The triangle model

𝑃(𝑌 = 𝑦) = ∫ 𝑝(𝜂) 𝑃𝜂(𝑌 = 𝑦)𝑑𝜂

where 𝑝(𝜂) denotes a distribution over 𝜂. Local Dependence 3
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ERGMs induce either no dependence and are simplistic (e.g., Bernoulli random graph models) or
strong dependence and are near-degenerate (e.g., Markov random graph models, Frank and Strauss,
1986).

We take first steps to characterise local dependence in random graph models in Section 2. We
demonstrate that local dependence endows random graph models with desirable properties which
makes them amenable to statistical inference. One property is a natural domain consistency condi-
tion that any probability model should satisfy, but many parametrisations of ERGMs do not satisfy
(Shalizi and Rinaldo, 2013). A second, and more important property is asymptotic Gaussian be-
havior of statistics, which suggests that random graph models with local dependence place much
probability mass around the expected value of statistics of interest. We discuss the construction of
random graph models with local dependence in Section 3 and Bayesian inference given complete as
well as incomplete data in Section 4. If suitable neighborhood structure is observed, at least two
approaches to statistical inference are possible, depending on whether the observed neighborhood
structure is regarded as fixed or random. If no suitable neighborhood structure is observed, we
take a Bayesian view and express the uncertainty about the neighborhood structure by specifying a
prior on a set of suitable neighborhood structures, using hierarchical parametric and non-parametric
priors and auxiliary-variable Markov chain Monte Carlo methods. We present simulation results
and applications to two real-world networks with ground truth in Section 5.

Other, related work. Snijders et al. (2006) and Hunter and Handcock (2006) considered non-
linear constraints on the parameter space of ERGMs. Such curved ERGMs have been applied with
some success (Hunter et al., 2008), but do not admit simple representations of dependencies and the
interpretation of parameters is challenging, as noted by Snijders et al. (2006, p. 149). An alternative
are latent variable models, which we discuss in Section 2.1. Selected, special cases and other, related
work are discussed in Section 3.4.

2. Dependence

We discuss in Section 2.1 two broad approaches to modeling dependence, one based on latent vari-
able models and the other one based on ERGMs, and we argue that ERGMs are attractive when
dependence is of substantive interest. We discuss in Section 2.2 the challenges encountered in mod-
eling dependence of substantive interest by ERGMs. In Section 2.3, we introduce a notion of local
dependence and in Section 2.4 we show that that local dependence endows models with desirable
properties which makes them amenable to statistical inference.

Prior predictions of the  statistics under the triangle model 
                                    N=4,950 edge variables. Note the extreme polarisation.

number of edges number of triangles
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Example: The two-starmodel

𝑃𝜂(𝑌 = 𝑦) = exp{𝜂1edge(𝑦) + 𝜂2two − star(𝑦)}
𝑐(𝜂1, 𝜂2)

𝑦 ∈ 𝑌

is near-degenerate for most values of 𝜂2 > 0
edge(𝑦) = ∑

𝑖<𝑗
𝑦𝑖𝑗 two − star(𝑦) = ∑

𝑖<𝑗<𝑘
𝑦𝑖𝑗𝑦𝑖𝑘

← →8

Classes of statistics used for modeling

1) Nodal Markov statistics ⇒ Frank and Strauss (1986)

– motivated by notions of “symmetry” and “homogeneity”
– edges in Y that do not share an actor are

conditionally independent given the rest of the network
⇒ analogous to nearest neighbor ideas in spatial statistics

• Degree distribution: dk(y) = proportion of nodes of degree k in y.

• k-star distribution: sk(y) = proportion of k-stars in the graph y.

• triangles: t1(y) = proportion of triangles in the graph y.

• •

•

i j

h

.................................................................................................................................................
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= transitive triad
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⇐ Mark S. Handcock Statistical Modeling With ERGM →
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Modeling Dependence: Challenges

ERGMs similar to models in physics, spatial statistics, time-series

lack of a natural neighborhood structure to bound dependence

important to exploit 𝑋 to explain variation

Schweinberger and Handcock (2015): important to use hierarchical
specification to “localize dependence”
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Tapered ERGM

Consider the simple modification adding variation constraints:

maximize
𝑞

∑
𝑦

𝑞(𝑦) log(𝑞(𝑦))

subject to

𝐸𝑞(𝑔𝑖(𝑌 )) = 𝜇𝑖, 𝐸𝑞((𝜇𝑖 − 𝑔𝑖(𝑌 ))2) ≤ 𝜎2
𝑖 , ∀ 𝑖 ∈ {1, … , 𝑑},

Leads to:

𝑞(𝑦|𝜃, 𝜏) = 1
𝑍(𝜃, 𝜏)

𝑒∑𝑘 𝜃𝑘𝑔𝑘(𝑦)−∑𝑘 𝜏𝑘(𝜇𝑘(𝜃,𝜏)−𝑔𝑘(𝑦))2 , (1)

where 𝜇(𝜃, 𝜏) = 𝐸𝑞(𝑔(𝑌 ))

16



Tapered ERGM

A “new” class of exponential-family models

𝑞(𝑦|𝜃, 𝜏) = 1
𝑍(𝜃, 𝜏)

𝑒
∑

𝑘
𝜃𝑘𝑔𝑘(𝑦)− ∑

𝑘
𝜏𝑘(𝜇𝑘(𝜃, 𝜏) − 𝑔𝑘(𝑦))2

. (2)

where 𝜏 > 0 are vectors of hyper parameters

mean value parameters ∶ 𝜇(𝜃, 𝜏) = 𝐸𝑞(𝑔(𝑌 ))

tapering parameters ∶ 𝜎2 = V(𝜃, 𝜏)≡V𝑞(𝑔(𝑌 ))

the augmented term tapers the propensity of configurations far from the
mean 𝜇.
𝜏𝑘 interpreted as the strength of the attractive force to the mode
𝜏 is determined by 𝜎2 via

V(𝜃, 𝜏) = V𝑞(𝑔(𝑌 )) = 𝜎2 = (𝜎2
1, … , 𝜎2

𝑑)

17



Degeneracy of Tapered ERGM

When near-degeneracy occurs, the ERGM 𝑞(𝑦|𝜃) is plagued by
multimodality in 𝑔(𝑌 ).

One way to ensure 𝑞(𝑦|𝜃) is unimodal is to require it does not have any
local minima or saddle points for any 𝜃.

Using results of Horvat, Czabarka, and Toroczkai (2015), Blackburn and
Handcock (2022) show:

Theorem

Let chull(𝑇 ) be the convex hull of the sample space of statistics, 𝑇 . For any
vector 𝜇 of mean parameters in chull(𝑇 ), there exists a vector of tapering
parameters 𝜏 ∈ R𝑑

≥0 such that the Tapered ERGM with tapering center 𝜇 is
non-degenerate.

18



Degeneracy of Tapered ERGM

Let 𝑠 ∈ {𝑔(𝑦, 𝑥) ∶ 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋} be a possible network statistic.
Let 𝑁(𝑠) be the number of networks with statistic 𝑠.
Let 𝑁 ∗(𝑠) be a smoothed twice differentiable approximation of 𝑁(𝑠).
Let 𝑞∗(𝑠) = 𝑁∗(𝑠)

𝑁(𝑠) 𝑞(𝑠) be a smoothed version of the tapered ERGM PMF.

Theorem

There exists 𝛼 > 0 such that for all 𝛼 > 𝜏 > 0, the smooth 𝑞∗(𝑠) has no local
minima, nor saddle points for all 𝜃.

It is uniphase in the sense of Horvat, Czabarka, and Toroczkai (2015).

19



Illustration: Ising Model for Political Polarization

Consider a 10×10 grid of cells linked via contiguity. We consider the links as
fixed and cell values, 𝑦𝑖𝑗, as random {red, blue}

𝑞(𝑦|𝜃, 𝜏) = 1
𝑍(𝜃, 𝜏)

𝑒
∑

𝑘
𝜃𝑘𝑔𝑘(𝑦)− ∑

𝑘
𝜏𝑘(𝜇𝑘(𝜃, 𝜏) − 𝑔𝑘(𝑦))2

. (3)

Choose

𝑔1(𝑦) = ∑
𝑖,𝑗

𝑦𝑖𝑗 𝑔1(𝑦) = ∑
𝑖,𝑗

𝑦𝑖𝑗(𝑦(𝑖+1)𝑗 + 𝑦𝑖(𝑗+1)) "shared spin"

20



Illustration: Ising Model for Political Polarization

Simulations from traditional Ising model (𝜏 = 0)Ian E. Fellows, Mark S. Handcock

Figure 1: Simulations from the Ising model at the
MLE with θ̂mle = (0, 0.45). The observed configura-
tion is marked as a red point. Note that the configura-
tions similar to the observed are extremely uncommon
under the maximum likelihood model.

tice. The extreme multimodal nature of the like-
lihood dramatically reduced the computational ef-
ficiency of MCMC algorithms such as Metropolis-
Hastings. This has restricted their routine usage in
MCMC-based maximum likelihood estimation [Hand-
cock, 2003]. Secondly, if the true value is close to a
phase transition point and the MLE was found, the
model fit would typically not be useful [Chatterjee
et al., 2013].

Suppose instead of magnetic spins, the Ising model in-
dicated “liberal” or “conservative” political affiliation
and n = 100. Imagine that we observe a community
where exactly half of people are conservative and there
is a very strong tendency for like political affiliation to
be connected to like, with 177 of the 200 connections
being between the same affiliations. This can be con-
sidered a simple version of the social influence model
introduced in Robins et al. [2001]. Recall that at the
MLE, the mean value parameters equal their observed
values, so average simulations from the fit will consist
of 50% conservatives. However, as shown in Figure 1,
the MLE has two phases, one where almost all are con-
servative and one where almost all are liberal. Even
though the average of these two modes matches the
observed value, configurations like the one observed
are extremely rare. Thus the fit of the Ising model is
at best highly questionable.

Let N∗ be a smoothed twice differentiable approxima-

tion of N , and p∗(g(x)) = N∗(g(x))
N(g(x)) p(g(x)) be an ap-

proximation of the exponential family probability dis-
tribution p. This smoothed version of N∗, introduced

by Horvát et al. [2015], is a mathematical convenience
removing the effects of small local fluctuations and as-
suring the existence of a Hessian. While the choice
of N* could result in a probability distribution, this
is not a hard requirement of its construction, and in
many cases, N* could be made to be arbitrarily close
to N while still maintaining 2nd order differentiability.
Following Horvát et al. [2015] we define uniphase and
multiphase as:

Definition 1 A distribution p(g(x)) is uniphase with
respect to p∗ if it contains no local minima or saddle
points, and is multiphase otherwise.

Horvát et al. [2015] developed an insightful connec-
tion between multiphase behavior and the configura-
tion count function N . We restate two results from
that work here.

Lemma 1 Let f be a continuous twice differentiable
function and h(y) = f(y)eθ·y, where y is a vector. h
has no minima or saddlepoints in y for all θ if and
only if f is strictly log concave.

Theorem 1 A Gibbs measure pgibbs(g(x)|θ) is
uniphase with respect to smoothing p∗gibbs for all θ, if
and only if N∗ is strictly log concave.

Theorem 1 reduces the existence of multiphase param-
eter values to a statement about configuration density,
and motivates using sufficient statistics in the model
such that N is approximately log concave. However,
as a practical insight it is difficult to use. In most
cases, due to the high dimensional nature of x, N is
intractable and is therefore difficult to compute.

3 A Robust Extension of the Gibbs
Measure

In order to reduce the appearance of distributional
modes that are far away from one another in terms
of the sufficient statistics, we will use the same max-
imum entropy framework that underlies Gibb’s mea-
sures, but add an additional constraint that the vari-
ance of the sufficient statistics should be less than or
equal to a maximum value. The maximum entropy
problem is

maximize
q

∑
x

q(x) log(q(x))

subject to
∑
x

q(x) = 1,

Eq(gi(X)) = µi,

Eq((µi − gi(X))2) ≤ κi,
∀ i ∈ {1, . . . , d}.

The red point is a society where 177 of 200 connections are with like.
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Illustration: Ising Model for Political Polarization

Simulations from tapered Ising model (𝜏 = 0 to 1.41)Removing Phase Transitions from Gibbs Measures
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Figure 2: Histogram density estimates based on 10,000
simulations at each β value from the MLE fit to the
configuration with 50 conservatives and 177 like affili-
ation ties. Smaller values of β remove the bimodality
of the phase transition.

average position. This tendency to pull of actors to
the average is precisely the effect of the tapering term
in Equation 1.

Figure 2 shows simulations from the MLE model fit of
q to our hypothetical community with varying degrees
of tapering. No tapering was added to g2 as β2 =∞ in
all simulations. When both βs are infinite, the model
reduces to a Gibbs measure. At β1 = 30 we start to
see increasing density around the mean value statistic,
but the two modes are still prominent. At β1 = 10,
configurations with 55 or 45 conservatives receive a
log probability reduction of 1, and the ones with 0 or
100 conservatives receive a log probability reduction
of 100. The distribution of counts of conservatives is
symmetric and looks nearly Gaussian. β1 = 5 has a
qualitatively similar look to that of β1 = 10, except
the variation in the counts has been reduced.

With no tapering term, we see a high variation in the
counts of conservatives (g1). A priori, an analyst might
have expected a level of variation similar to a binomial
distribution, which would be v1 = 100∗0.5∗(1−0.5) =
25. Using r = 2 yields β1 = 2

√
25 = 10 and at β1 = 10,

the MLE displays none of the bimodality present in the
untapered model.

4.3 Example: A Network Model for Network
Science Collaboration

Exponential-family random graph models (ERGM)
represent a very general and flexible class of distri-
butions for modeling relational ties. A quite exten-
sive literature on these models exists, see for example
Robins et al. [2007] and references therein. An ERGM
is a Gibbs measure where elements of x indicate the
present or absence of a relational tie between individ-
uals. Node i is tied to node j if xij = 1 and xij = 0
otherwise.

What makes ERGMs different from any other Gibbs
Measure is the choice of sufficient statistics to use in
modeling. These statistics are chosen to match our
theoretical understanding of the forces governing social
interactions, six of which are described here.

edges The number of edges in the graph.

k-star The number of subgraphs where k edges are
connected to a single vertex.

isolates The number of vertices with no neighbors.

triangles The number of triangles present in the
graph.

k-esp The number of edges whose vertices share ex-
actly k neighbors in common.

dcp The cross-product of the degrees of connected
vertices divided by the number of total edges.

The first three terms (“edges,” “k-star” and “isolates”)
model the distribution of the number of neighbors of
the vertices in the network. This is known as the de-
gree distribution. The next two terms “k-esp” and
“triangles” model the transitivity of relations. If i is
connected to j and k, then j and k may be more likely
to be connected. The final term “dcp” models tenden-
cies of high degree vertices to be connected to other
high degree vertices.

The above terms have been repeatedly shown to have
extreme difficulties in modeling real world social net-
works due to multiphase behavior [Schweinberger,
2011, Chatterjee et al., 2013, Handcock, 2003], espe-
cially in networks of any significant size. However,
because we now have the tools to remove phase tran-
sitions, it is possible to model networks never before
amenable to ERGM analysis.

Newman [2006] collected and introduced a network
representing the co-authorship of scientists publishing
on the topic of network science. The full network con-
tains 1589 scientists, of which we removed one outly-
ing biology paper with an extreme number of authors

𝜏=1.41

𝜏=0.32

𝜏=0.18

  𝜏=0
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Inference for Tapered ERGM

The first derivative of the log likelihood is

𝛿ℓ
𝛿𝜃𝑖

= (𝑔𝑖(𝑥) − 𝜇𝑖(𝜃, 𝜏)) − 2 ∑
𝑘

𝜏𝑘
𝛿𝜇𝑘(𝜃, 𝜏)

𝛿𝜃𝑖
(𝜇𝑘(𝜃, 𝜏) − 𝑔𝑘(𝑥))

The second derivative of the log likelihood at the MLE is

𝛿ℓ
𝛿𝜃𝑖𝛿𝜃𝑗

∣
̂𝜃mle

= −𝛿𝜇𝑖(𝜃, 𝜏)
𝛿𝜃𝑗

− 2 ∑
𝑘

𝜏𝑘
𝛿𝜇𝑘(𝜃, 𝜏)

𝛿𝜃𝑖

𝛿𝜇𝑘(𝜃, 𝜏)
𝛿𝜃𝑗

. (4)

where
𝛿𝜇(𝜃, 𝜏)

𝛿𝜃𝑖
= (𝐼 − 𝐵)−1𝑐𝑖,

𝐵𝑟𝑘 = 2𝛽−2
𝑘 cov(𝑔𝑟(𝑋), 𝑔𝑘(𝑋))

and 𝑐𝑖 be a vector with elements

𝑐𝑖
𝑟 = cov(𝑔𝑟(𝑋), 𝑔𝑖(𝑋)),
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Inference for Tapered ERGM

So finding the MLE of 𝜃 reduces to finding the MLE with 𝜇(𝜃, 𝜏) = 𝑔(𝑥obs)
and can be computed as simply as a standard ERGM (via MCMC or
otherwise).

Nominal standard errors and likelihood ratios can be computed using the
above formulas
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Add Health Network

“Add Health” is a school-based study of the health-related
behaviors of adolescents in grades 7 to 12.

Each nominated up to 5 boys and 5 girls as their friends

Synthetic data (Faux Desert High)

𝑛 = 107 students across six grades
Covariates: grade (7 through 12) and race

There are 439 directed friendship edges, 677 triangles
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Comparing an ERGM to a Tapered ERGM

Table: ERGM fit vs Tapered ERGM fit on Faux Desert High Network. In the
Tapered ERGM, tapering was done on the dyad-dependent terms.

Term ERGM SE Tapered ERGM
# edges -3.48 (0.10) -3.49 (0.10)
# triangles -0.008 (0.038) -0.002 (0.054)
# isolates 1.16 (0.47) 1.20 (0.63)
# no shared -1.35 (0.13) -1.35 (0.15)
# homophily on 7 2.22 (0.23) 2.19 (0.24)
# homophily on 8 2.07 (0.17) 2.05 (0.17)
# homophily on 9 1.99 (0.16) 1.98 (0.16)
# homophily on 10 1.57 (0.11) 1.57 (0.11)
# homophily on 11 1.78 (0.15) 1.77 (0.15)
# homophily on 12 1.28 (0.28) 1.28 (0.28)
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How much does tapering change the parameter
estimates?

We see that regardless of how much tapering we apply, the parameter
estimates and standard errors are similar to standard ERGM.

27



How do we interpret the parameters of the ta-
pered ERGM?

If the tapering parameters 𝜏 are zero, then the Tapered model is identical
to the standard ERGM and an interpretation of the 𝜃 parameters is as
conditional log-odds. Let 𝑃(𝑌𝑖𝑗 = 1|𝑌 𝑐

𝑖𝑗 = 𝑦𝑐
𝑖𝑗) ≡ 𝑃(𝑌 +

𝑖𝑗 ) and
𝑃(𝑌𝑖𝑗 = 0|𝑌 𝑐

𝑖𝑗 = 𝑦𝑐
𝑖𝑗) ≡ 𝑃(𝑌 −

𝑖𝑗 ).
Under the Tapered ERGM the log-odds of a tie conditional on 𝑌 𝑐

𝑖𝑗 is

log ⎛
⎝

𝑃(𝑌 +
𝑖𝑗 )

𝑃 (𝑌 −
𝑖𝑗 )

⎞
⎠

= ∑ Δ𝑡𝑘(𝑌𝑖𝑗) [𝜃𝑘 + 𝜏𝑘𝛿𝑘𝑖𝑗]

where

Δ𝑡𝑘(𝑌𝑖𝑗) = 𝑡𝑘(𝑌 +
𝑖𝑗 ) − 𝑡𝑘(𝑌 −

𝑖𝑗 ) is the change statistic
𝛿𝑘𝑖𝑗 = (𝜇𝑘 − 𝑡𝑘(𝑌 +

𝑖𝑗 )) + (𝜇𝑘 − 𝑡𝑘(𝑌 −
𝑖𝑗 )) is the sum of the differences from

the mean.

𝛿𝑘𝑖𝑗 is a measure of the deviation of the network statistics from their
mean.
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How do we interpret the parameters of the ta-
pered ERGM?

When 𝜃𝑘 is the MLE, the log-odds of a tie conditional on 𝑌 𝑐
𝑖𝑗 is

∑
𝑘

Δ𝑡𝑘(𝑌𝑖𝑗) [ ̂𝜃𝑘 + 𝜏𝑘(2𝑌𝑖𝑗 − 1)Δ𝑡𝑘(𝑌𝑖𝑗)]

.

The last expression suggests a measure of the bias in the Tapered ERGM

parameter estimate, ̂𝜃𝑘, as an estimate of the conditional log-odds, is the
average over the dyads (𝑖, 𝑗) in the network of the penalty term:

−𝜏𝑘 ∑
𝑖𝑗

(2𝑌𝑖𝑗 − 1)Δ𝑡𝑘(𝑌𝑖𝑗)
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How much does tapering change the parameter
estimates?

We see that regardless of how much tapering we apply, the parameter
estimates and standard errors are similar to standard ERGM.
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How to choose the tapering?

Fellows and Handcock (2017) suggest 𝜏 = 1
𝑟2𝜇 where 𝑟 is a user specified

multiplier so that observations 𝑟 standard deviations from the mean are
tapered most.

In particular, a reasonable default assumes Poisson-like variation in
𝑔(𝑌 ) so that 𝜏 = 1

𝑟2𝑔(𝑦observed) .

This usually leads to light tapering of graphs unexpectedly far away from
the center
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How, really, should we choose the tapering?

One of the hallmarks of near-degeneracy is bi/multimodality.

How can we measure the bimodality of a distribution?

Let 𝑍 be the standardized version of 𝑔(𝑌 ) then the kurtosis is:

Kurt[𝑔(𝑌 )] ≡ E [𝑍4] = 𝜇4
𝜇2

2

Kurt[𝑔(𝑌 )] ≥ 1

Gaussian: Kurt[𝑔(𝑌 )] = 3; Uniform: Kurt[𝑔(𝑌 )] = 9/5; Poisson:
Kurt[𝑔(𝑌 )] = 3 + 1

𝜇

Blackburn and Handcock (2022) argue that we can interpret kurtosis as
a measure of bimodality in the context of network modeling
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Penalized Likelihood via the Kurtosis

If we set a target kurtosis value we can simply maximize the log-likelihood
subject to:

a penalty on how far the kurtosis deviates from the target value plus

a penalty on the magnitude of 𝜏:

̂𝜏 = arg max
𝜏

[𝑙(𝜃, 𝜏 , ; 𝑦observed) − 𝜏 − 𝛾 penalty on 𝐾[𝑔(𝑌 )|𝜃, 𝜏 ]]
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Penalized Likelihood via the Kurtosis

If we set a target kurtosis value we can simply maximize the log-likelihood
subject to:

a penalty on how far the kurtosis deviates from the target value plus

a penalty on the magnitude of 𝜏:

̂𝜏 = arg max
𝜏

⎡
⎣

𝑙(𝜃, 𝜏 , ; 𝑦observed) − 𝜏 − 𝛾 (𝐾[𝑔(𝑌 )|𝜃, 𝜏 ] − 𝐾𝑇
𝐾𝜎

)
2
⎤
⎦

where 𝐾𝑇 is a target kurtosis and 𝐾𝜎 and 𝛾 are scale parameters.

Sensible default values are

𝐾𝑇 = 3 (Gaussian)
𝐾𝜎 = 0.6, half the distance from 3 to 1.8 (Uniform).

𝛾 = 1
2

To simplify, take the average penalty over all tapered terms and reexpress
as ̂𝑟 = 1

√ ̂𝜏𝜇 .
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Example: Add Health Network

The optimal ̂𝑟 = 2.48, that is taper at over two standard deviations - very
weak.

35



Example: Ethnic heterogeneity of a London
street gang

The members of a London gang between 2006 and 2009.

A tie exists between two gang members if they were arrested together
for committing a crime at least once.

undirected network with 54 vertices and 133 ties

Studied by Grund and Densley (2015)
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Co-offending network of a London street gang

A tie exists between two gang members if they have committed at least
one crime together. All gang members are Black but the gang is comprised
of four distinct ethnicities, categorized by the authors as their countries of
origin.
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Modeling Ethnic heterogeneity of a London
street gang

Grund and Densley (2015) posit that who co-offends with whom is driven
by ethnic homophily and homphilous triad-closure.

But the triangle term is near degenerate in standard ERGM.

So they use homophilous GWESP terms and conclude homophilous
triangle closure

Tapered ERGM can fit the homophilous triangles directly
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Tapered ERGMs fit on London Gang Network

Term Model 1 Model 2 𝜏 bias
edges -3.23 (0.18)*** -3.34 (0.17)*** 0.001 -0.0001
triangles 0.68 (0.10)*** 0.71 (0.09)*** 0.001 -0.0012
triangles(West Africa) 0.11 (0.38) 0.12 (0.37) 0.011 -0.0023
triangles(Jamaican) 0.17 (0.61) 0.41 (0.54) 0.027 0.0000
triangles(UK) 0.56 (0.38) 0.61 (0.42) 0.021 -0.0015
match(West Africa) 0.96 (0.60) 0.95 (0.56) 0.008 -0.0005
match(Jamaican) 1.35 (0.66)* 0.94 (0.55) 0.012 0.0006
match(UK) 0.27 (0.40) 0.31 (0.42) 0.007 -0.0004
match(Somali) 2.17 (0.59)*** 2.33 (0.50)*** 0.027 0.0004
isolates 0.98 (0.67) 0.027 -0.0027
*𝑝 < .05 **𝑝 < .01 ***𝑝 < .001

The conclusion is that overall triad closure is the main factor, not
homophilous closure.
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Goodness-of-fit diagnostic plots for Model 2
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Conclusions on Tapering models

Practical modeling via ERGMs has been hindered by concerns about
near-degeneracy.

Near-degeneracy constrains the space of ERGMs in that many intuitive
or theory-driven terms, like the triangle, most often cannot be used

The Tapered ERGM can incorporate any term with a guarantee of
non-degeneracy.

Frees modeler to choose most scientifically interpretable statistics

Has theoretical guarantees of stability

Has a simple and appealing interpretation (constrained max entropy)

41



Conclusions on Tapering models

We have the developed a procedure to estimate the tapering needed
for a non-degenerate model

Parameter estimates are close to ERGM, when the later exist.

The procedure usually chooses a standard ERGM when justified.

Computationally stable: Can be used as a computational device

Open-source, user-friendly software is available on statnet in the
ergm.tapered package
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https://github.com/statnet/ergm.tapered

