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Statistical Models for Social Networks

Notation
A social network is defined as a set of n social “actors”, a social relationship
between each pair of actors, and a set of variables on those actors/pairs.

Y.

B {1 relationship from actor 4 to actor j
iy

0 otherwise

@ callY =Y, agraph

@ a N =n(n—1)binary array
@ X be n x g matrix of actor variates
@ call (Y, X) a network

@ The basic problem of stochastic modeling is to specify a distribution for
X,Y ie,P(Y =y, X =2)



Examples of Friendship Relationships

@ The National Longitudinal Study of Adolescent Health
= addhealth.cpc.unc.edu

- "Add Health" is a school-based study of the health-related
behaviors of adolescents in grades 7 to 12.

@ Fach nominated up to 5 boys and 5 girls as their friends
@ 160 schools: Smallest has 69 adolescents in grades 7-12


addhealth.cpc.unc.edu
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Grade 9 (nonsmoker:smoker = 168 : 88 )

Grade 10 (nonsmoker:smoker = 138 : 90 )

Smoke Behaviour ® rensmsker @ smoler

Smoke Behaviour ® rensmoker ®  smoker

Grade 11 (nonsmoker:smoker = 118 : 74 )

Grade 12 (nonsmoker:smoker = 101 : 92 )




Common Features of Social Networks

@ Mutuality of ties

@ Individual heterogeneity in the propensity to form ties
@ Homophily by actor attributes
= Lazarsfeld and Merton, 1954; Freeman, 1996; McPherson et al., 2001

@ higher propensity to form ties between actors with similar attributes
e.g., age, gender, geography, major, social-economic status
@ attributes may be observed or unobserved

@ Transitivity of relationships
e friends of friends have a higher propensity to be friends

@ Social Contextisimportant = Simmel (1908), Heider (1946)
@ triad, not the dyad, is the fundamental social unit

@ dependence on nodal and dyadic attributes

UCLA



The ERGM Framework for Graph Modeling

Let Y be the sample space of Ye.g. {0,1}7.
@ g(y), y € Yd-vector of graph statistics

@ represent graph features of interest (e.g., density, transitivity)
@ desire g(Y) to be jointly sufficient for the model

UCLA



The ERGM Framework for Graph Modeling

Let q(y) be a probability mass function over Y.
Recall the maximum entropy motivation for exponential-families:

maxiqmize > a(y)log(q(y))

subject to
Eg:(Y) =, Vi€ ({l,..,d)

Leads to:

P =) = 22090}

E(9(Y)) = p

yey



The ERGM Framework for Network Modeling

Let Y be the sample space of Y e.g. {0,1}¥
and X be the sample space of X.
Model the multivariate distribution of Ygiven X via:

Pn(Y:y|X:x):w

ceY, ze X
c(n,z,Y) Y v

Frank and Strauss (1986)
@ 1 € A C R?d-vector of parameters

@ g(y|z) d-vector of graph statistics.
= g(Y|z) are jointly sufficient for the model

¢(n, z,Y) distribution normalizing constant
c(n,z,Y) = exp{ng(ylx)}

yey



Extensive development of conditional models

@ Classes of g(y|z) (Generative Theory, Structural signatures)
@ Inference on the log-likelihood function,

Z(myobs; $obs) = n'g(yobs|xobs) - IOgc(mxobs)

c(Nons) =D _exp{n-g(2|Tpe) }

zinY

@ For computational reasons, approximate the likelihood via
Markov Chain Monte Carlo (MCMCQ)



How can we tell if a model class is useful?

Many aspects:

@ Is the model-class itself able to represent a range of
realistic networks?

- model degeneracy: small range of graphs covered as
the parameters vary
Much work: Strauss, 1986; Jonasson, 1999; Handcock, 2003;
Rinaldo, Fienberg and Zhou, 2009; Schweinberger 2011;
Schweinberger ...



Model Degeneracy

idea: A random graph model is near degenerate if the model places
almost all its probability mass on the boundary of the convex hull of

{g(ylz) :y € Y}.
e.g. empty graph, full graph, no 2—stars, mono-degree graphs

@ Example: The triangle model

exp{n;edge(y) + nytriangle(y)}

P Y =y) = yey
! c(m1,7,)
is near—degenerate for most values of n, > 0
edge Zym trlangle Z yzjyzk:yjk

i<j i<j<k

)3

7 J J1 J2 J1 J2

triangle two-star three-star
= transitive triad

UCLA



Degeneracy: The triangle model

where p(n) denotes a distribution over 7.

Prior predictions of the statistics under the triangle model
N=4,950 edge variables. Note the extreme polarisation.
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@ Example: The two-star model

exp{n, edge(y) + nytwo — star(y) }
0(771a 772)

P(Y =y) = yey

is near-degenerate for most values of n, > 0
edge(y) = > i two —star(y) = Y yi¥

i<j i<j<k

)3
7
7 J J1 J2 J1 J2

triangle two-star three-star
= transitive triad



0ct

00T

08

_ _
09 oy

SJlels—¢ Jo Jsquinu

0¢

20

15

10

number of edges



I, mean 2-stars parameter

100

80

60

40

20

Figure 4: Regions of the parameter space of pu

U, mean edges parameter

20




Figure 5: Regions of the parameter space of 6

|
€ 4 T 0 T-

1918wered sieis-z %9

20

15

10

-10

0, edges parameter



Modeling Dependence: Challenges

@ ERGMSs similar to models in physics, spatial statistics, time-series
@ lack of a natural neighborhood structure to bound dependence
@ important to exploit X to explain variation

@ Schweinberger and Handcock (2015): important to use hierarchical
specification to “localize dependence”



Tapered ERGM

Consider the simple modification adding variation constraints:

maxiqmize > a(y) log(q(y))

subject to
Eq(gz(y)) = Mi’ Eq((Mz _gz(Y>)2) S U'L'Qa VZ € {1a ~~'ad}a

Leads to:
ek 0 (W) =2, T (i (0:7) =0, (1)) (1)

q(ylo, ) = 70,7

where u(6,7) = E,(9(Y))

UCLA 16



Tapered ERGM

A "new” class of exponential-family models

> 09 (W)= > 7 (6,7) — gi(y))?
e k k .

q(ylo, ) = (2)

Z(0,7)
where 7 > 0 are vectors of hyper parameters
mean value parameters :  u(0,7) = E (9(Y))

tapering parameters : 0% = V(0,7)=V _(g(Y))

the augmented term tapers the propensity of configurations far from the
mean u.

7, Interpreted as the strength of the attractive force to the mode

7is determined by o? via

V(o) = Vq(g(Y)) =0 = (0%, ... ,05)

UCLA 17



Degeneracy of Tapered ERGM

When near-degeneracy occurs, the ERGM ¢(y|0) is plagued by
multimodality in g(Y).

One way to ensure ¢(y|6) is unimodal is to require it does not have any
local minima or saddle points for any 6.

Using results of Horvat, Czabarka, and Toroczkai (2015), Blackburn and
Handcock (2022) show:

Theorem

Let chull(T") be the convex hull of the sample space of statistics, T'. For any
vector p of mean parameters in chull(7"), there exists a vector of tapering
parameters T € ]Rd>0 such that the Tapered ERGM with tapering center p is
non-degenerate. N

UCLA



Degeneracy of Tapered ERGM

Lets € {g(y,x) : y € Y,z € X} be a possible network statistic.

Let N(s) be the number of networks with statistic s.

Let N*(s) be a smoothed twice differentiable approximation of N(s).
Let ¢*(s) = 1]\(,*(<S‘§))q(s) be a smoothed version of the tapered ERGM PMF.

Theorem

There exists a > 0 such that for all & > 7 > 0, the smooth ¢*(s) has no local
minima, nor saddle points for all 6.

Itis uniphase in the sense of Horvat, Czabarka, and Toroczkai (2015).

UCLA



lllustration: Ising Model for Political Polarization

Consider a 10x10 grid of cells linked via contiguity. We consider the links as
ﬂxedandcevauegghTasrandonwﬂed,mue}

Z Or9r(y)— Z (e (0, 7) = g1,(y))?
ek k .

q(ylf,7) = 3)

Z(0,7)
Choose

91(y) = Z Yi; G (y) = Z yij(y(i+1)j + yi(j+1)) "shared spin’
(] 4]

UCLA 20



lllustration: Ising Model for Political Polarization

Simulations from traditional Ising model (7 = 0)

# Conservative
0 20 40 60 80 100

I I I
130 150 170 190

# Like-to-Like Ties

Figure 1: Simulations from the Ising model at the
MLE with 6, = (0,0.45). The observed configura-
tion is marked as a red point. Note that the configura-
tions similar to the observed are extremely uncommon
under the maximum likelihood model.

The red point is a society where 177 of 200 connections are with like.

UCLA 21



lllustration: Ising Model for Political Polarization

Simulations from tapered Ising model (r = 0 to 1.41)

# Conservative # Like-to-Like Ties
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Figure 2: Histogram density estimates based on 10,000
simulations at each § value from the MLE fit to the
configuration with 50 conservatives and 177 like affili-
ation ties. Smaller values of 5 remove the bimodality

of the phase transition.
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Inference for Tapered ERGM

The first derivative of the log likelihood is

577 = 0:) = 10.7) =237 BT 0.7 )

%

The second derivative of the log likelihood at the MLE is

24 _ 5,% 5!% 7) S (0,7)
30,00, | _22 K 50, @
Omic J
where 51(0.7)
wO,7) o o
86, =(I—B)

Brk = 26};200V<gr(X)7gk(X))
and ¢! be a vector with elements
Cj” = Cov(gr(X),gi(X))v

UCLA 23



Inference for Tapered ERGM

So finding the MLE of 8 reduces to finding the MLE with (6, 7) = g(z )
and can be computed as simply as a standard ERGM (via MCMC or
otherwise).

Nominal standard errors and likelihood ratios can be computed using the
above formulas



Add Health Network

@ "Add Health” is a school-based study of the health-related
behaviors of adolescents in grades 7 to 12.

@ Fach nominated up to 5 boys and 5 girls as their friends
@ Synthetic data (Faux Desert High)

@ n = 107 students across six grades

@ Covariates: grade (7 through 12) and race

@ There are 439 directed friendship edges, 677 triangles

UCLA 25



Comparing an ERGM to a Tapered ERGM

Table: ERGM fit vs Tapered ERGM fit on Faux Desert High Network. In the
Tapered ERGM, tapering was done on the dyad-dependent terms.

Term ERGM SE Tapered ERGM
# edges -3.48 (0.10) -3.49 (0.10)
# triangles -0.008 (0.038)  -0.002 (0.054)
# isolates 1.16 (0.47 1.20 (0.63
# no shared -1.35 (013 -1.35 (015

(
0.47) (
(0.13) (

# homophily on 7 2.22 ( ) 2.19 (0.
# homophily on 8 2.07 ( ) 2.05 (0.17
# homophily on 9 1.99 (0.16) 1.98 (0.
# homophilyon 10 1.57 ( ) 1.57 (0.
# homophilyon 11 1.78 ( ) 1.77 (0.
# homophilyon 12 1.28 ( ) 1.28 (0.
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How much does tapering change the parameter

estimates?

parameter
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We see that regardless of how much tapering we apply, the parameter
estimates and standard errors are similar to standard ERGM.
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How do we interpret the parameters of the ta-
pered ERGM?

If the tapering parameters 7 are zero, then the Tapered model is identical
to the standard ERGM and an interpretation of the § parameters is as
conditional log-odds. Let P(Y;; = 1|Y5 = y§;) = P(Y*,) and

P(Y;; =05 = yi;) = P(Y;;).

Under the Tapered ERGM the log-odds of a tie conditional on YSis

P(Y;})
log < Y] ) Z At (Y, Hk + Tk(sk”]

’LJ

where

@ Aty (Y;;) = t,(V;}) — t,(Y;;) is the change statistic

@ Oy = (g — 1, (Yi5)) + (g — t,,(Y;;)) is the sum of the differences from
the mean.

@ J,,; is a measure of the deviation of the network statistics from their
mean.

UCLA 28



How do we interpret the parameters of the ta-
pered ERGM?

When ¢, is the MLE, the log-odds of a tie conditional on Y is

> At(Y,) (00 + 7 (2Y;; — DAL(Y))]

The last expression suggests a measure of the bias in the Tapered ERGM
parameter estimate, 8, as an estimate of the conditional log-odds, is the
average over the dyads (4, 5) in the network of the penalty term:

—T Z DA, (Y;;)

UCLA 29



How much does tapering change the parameter

estimates?

parameter

+- edge

bbb 2

tri

Parameter Estimate

50 75
Triangle Standard Deviation ergm

We see that regardless of how much tapering we apply, the parameter
estimates and standard errors are similar to standard ERGM.

UCLA 30



How to choose the tapering?

@ Fellows and Handcock (2017) suggest r = % where ris a user specified

multiplier so that observations r standard deviations from the mean are
tapered most.

@ In particular, a reasonable default assumes Poisson-like variation in
g(Y) sothat 7 1

- 7.
7" 9(Yobserved)

@ This usually leads to light tapering of graphs unexpectedly far away from
the center

UCLA | 31



How, really, should we choose the tapering?

@ One of the hallmarks of near-degeneracy is bi/multimodality.

@ How can we measure the bimodality of a distribution?
Let Z be the standardized version of ¢g(Y') then the kurtosis is:
Kurt[g(Y)] = E[24] = 24
M
@ Kurt[g(Y)] > 1

@ Gaussian: Kurt[g(Y)] =3; Uniform: Kurt[g(Y)] = 9/5; Poisson:
Kurt[g(Y)] = 3 + &

@ Blackburn and Handcock (2022) argue that we can interpret kurtosis as
a measure of bimodality in the context of network modeling

UCLA 32



Penalized Likelihood via the Kurtosis

If we set a target kurtosis value we can simply maximize the log-likelihood
subject to:

@ a penalty on how far the kurtosis deviates from the target value plus
@ a penalty on the magnitude of .

7 =arg max [[(0,7, ; Yopserved) — 7 — 7 Penalty on K[g(Y)|0, ]]

T



Penalized Likelihood via the Kurtosis

If we set a target kurtosis value we can simply maximize the log-likelihood
subject to:

@ a penalty on how far the kurtosis deviates from the target value plus
@ a penalty on the magnitude of 7.

- Klg(Y)|0, 7] — K, \°
T = arg max {l(&,fr, 3yobserved)7‘( l9( )|K ] T> }

T o

where K is a target kurtosis and K, and « are scale parameters.

Sensible default values are

@ K, =3 (Gaussian)

@ K_ = 0.6, half the distance from 3 to 1.8 (Uniform).

@ v = %

To fimplillcy, take the average penalty over all tapered terms and reexpress
ast =

T

UCLA 34




Example: Add Health Network

The optimal 7 = 2.48, that is taper at over two standard deviations - very
weak.

UCLA 35



Example: Ethnic heterogeneity of a London

street gang

@ The members of a London gang between 2006 and 2009.

@ Atie exists between two gang members if they were arrested together
for committing a crime at least once.

@ undirected network with 54 vertices and 133 ties
@ Studied by Grund and Densley (2015)

UCLA | %



Co-offending network of a London street gang

Atie exists between two gang members if they have committed at least
one crime together. All gang members are Black but the gang is comprised
of four distinct ethnicities, categorized by the authors as their countries of
origin.

UCLA 37



Modeling Ethnic heterogeneity of a London

street gang

Grund and Densley (2015) posit that who co-offends with whom is driven
by ethnic homophily and homphilous triad-closure.

@ But the triangle term is near degenerate in standard ERGM.

@ So they use homophilous GWESP terms and conclude homophilous
triangle closure

@ Tapered ERGM can fit the homophilous triangles directly

38



Tapered ERGMs fit on London Gang Network

Term Model 1 Model 2 T bias
edges -3.23(0.18)***  -334(0.17)*** 0.001 -0.0001
triangles 0.68 (0.10y***  0.71 (0.09)***  0.001 -0.0012
triangles(West Africa) 0.11(0.38) 0.12(0.37) 0.011  -0.0023
triangles(Jamaican) 0.17(0.61) 0.41 (0.54) 0.027 0.0000
triangles(UK) 0.56 (0.38) 0.61(0.42) 0.021  -0.0015
match(West Africa) 0.96 (0.60) 0.95 (0.56) 0.008 -0.0005
match(Jamaican) 1.35(0.66)* 0.94 (0.55) 0.012  0.0006
match(UK) 0.27 (0.40) 0.31(0.42) 0.007  -0.0004
match(Somali) 2.17(0.59)***  233(0.50)*** 0.027  0.0004
isolates 0.98 (0.67) 0.027  -0.0027

*p <.05 **p<.01 ***p < .001

The conclusion is that overall triad closure is the main factor, not
homophilous closure.

UCLA 39
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Conclusions on Tapering models

@ Practical modeling via ERGMs has been hindered by concerns about
near-degeneracy.

@ Near-degeneracy constrains the space of ERGMs in that many intuitive
or theory-driven terms, like the triangle, most often cannot be used

@ The Tapered ERGM can incorporate any term with a guarantee of
non-degeneracy.

@ Frees modeler to choose most scientifically interpretable statistics
@ Has theoretical guarantees of stability
@ Has a simple and appealing interpretation (constrained max entropy)

UCLA M



Conclusions on Tapering models

@ We have the developed a procedure to estimate the tapering needed
for a non-degenerate model

@ Parameter estimates are close to ERGM, when the later exist.
@ The procedure usually chooses a standard ERGM when justified.
@ Computationally stable: Can be used as a computational device

@ Open-source, user-friendly software is available on statnet in the
ergm.tapered package

UCLA 42
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