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Modeling frame

• We consider the case where we have multiple time-series of all-
cause mortality counts from each member state for each week 
from January 1, 2015 to a recent date. 

• To fix ideas, consider the case of females, aged 65-74 years in 
Australia.

• Let 𝑦! be the mortality count for week 𝑡 = 1,… , 𝑇
with 𝑡 = 1,… , 260 being the period January 1, 2015 to now



Model

• We model 𝑦! as negative-binomial distribution with mean 
parameter 𝜆!.

• We make this choice rather than a Poisson distribution to 
account for overdispersion in the counts.

• The overdispersion parameter is itself estimated from the data 
and the mean parameters 𝜆! are modelled as

log 𝜆! = 𝑐 𝑡 + 𝑡𝑟𝑒𝑛𝑑 𝑡 + 𝑋!𝛽



Model for the mean

log 𝜆! = 𝑐 𝑡 + 𝑡𝑟𝑒𝑛𝑑 𝑡 + 𝑋!𝛽
where 𝑐 𝑡 represents the annual cycle in all-cause mortality

𝑡𝑟𝑒𝑛𝑑 𝑡 is the curvilinear trend of all-cause 

The annual cycle 𝑐 𝑡 is modeled as a cyclic cubic spline function 
of time with a period of 52 weeks (that is, 𝑐 𝑡 = 𝑐 𝑡 + 52 ).



Model for the mean 

Choose 𝑐! to minimize the penalized square error (PSE):

𝑃𝑆𝐸! 𝑐 = log−restricted−likelihood 𝑦, 𝑋, 𝑡 = 1,… , 𝑇 − 𝜏;
"

#$
𝑐%% 𝑠 $ 𝑑𝑠 𝜏 > 0

where 𝑐!! 𝑠 is the 2"# derivative of 𝑐 𝑠 and 𝜏 is a smoothing parameter, 
chosen to balance the closeness of fit to the recorded counts (the first term) 
with the smoothness of 𝑐 𝑠 (the second term). 

Specifically, we use Generalized Cross Validation (GCV) (Craven and Wahba 
1979) to choose, and the R package mgcv



Model for the mean 

Choose 𝑡𝑟𝑒𝑛𝑑 𝑡 to minimize the penalized square error (PSE):
𝑃𝑆𝐸! 𝑡𝑟𝑒𝑛𝑑 = log−restricted−likelihood 𝑦, 𝑋, 𝑡 = 1,… , 𝑇 + 𝛾A

"

#$"
𝑡𝑟𝑒𝑛𝑑%% 𝑡 # 𝑑𝑡 𝛾 > 0

However, there is great extrapolation uncertainty for 𝑡 > 𝑇, so the trend penalty 𝛾 ≫ 0 and we use a linear 
extrapolation. There is an argument to make the slope zero (i.e., remove the trend), but this depends on an 
assessment of each country. In our out-of-sample forecasting validation studies the linear trend was better 
for WPRO counties, but an assessment should be made for each country separately.



Expected death estimation

• The expected is then forecast stochastically to represent the 
uncertainty in the estimate of the expected.

• Thus, the statistical significance of the observed can be 
determined (i.e., if it is a substantial increase or decrease from 
the baseline).



Expected death estimation

• One detail of the forecast is that it is an average over the 
sampling distribution of the parameter estimates.

• This is a simple way to account for uncertainty in our model 
for the expected deaths in addition to the sampling variation 
of the counts for given model parameters.

• We prefer this to a formal Bayesian model due to its 
simplicity.



Expected death modeling

In summary, we use a negative binomial generalized additive 
model (GAM)
• At the moment, this model is very simple in that it uses no other information 

outside of sex, age-group, and time/date.

• Once more data becomes readily available, such as flu counts, the model can easily 
be extended to incorporate it.

• Can easily add hierarchical models for sharing information across groupings
• We do not have a model for the reporting delay as member states rarely can 

provide that information



Example output from Calculator
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